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On the stability limit of non-linear resonances in multiple-degree-of-
freedom vibrating systems

W. SZEMPLINSKA-STUPNICKA (WARSZAWA)

THE PAPER presents an analysis of stability of solutions derived in [1] and concerning non-
linear, dissipative vibrating systems with many degrees of freedom; the solutions represent
the so-called non-linear resonances, periodic and almost periodic (combined). The analysis
is based on investigating the equations written in terms of variations which, in the case of the
Ritz method, assume the form of a system of ordinary differential equations, their coefficients
being periodic or almost periodic functions of time; in the case of the method of averaging
the problem is reduced to a system of ordinary equations with constant coefficients.

Dla nieliniowego, dysypacyjnego ukiadu drgajacego o wielu stopniach swobody przeprowadzono
analizg statecznosci rozwigzan ustalonych, otrzymanych w pracy [1], a przedstawiajacych tzw.
rezonanse nieliniowe. Wyprowadzono jednolite kryterium granicy pierwszego obszaru niestate-
cznosci wspblne dla wszystkich typéw rezonanséw nieliniowych-periodycznych i prawie-perio-
dycznych (kombinowanych). Analiza opiera si¢ na badaniu réwnan rézniczkowych zwyczaj-
nych o wspodlczynnikach bedacych periodycznymi lub prawie-periodycznymi funkcjami czasu,
a przy metodzie uSrednienia ukladu réwnan zwyczajnych o wspolczynnikach statych.

Ina uennueiinolt KonebGaTenbHOM CHCTEMBI C 3aTYXaHHEM C MHOTHMH CTENEHAMH CBOGOMBI
NpPOBE/IEH AHANM3 YCTOHYMBOCTH YCTAHOBMBINMXCA pemueHnii, momydeHnerx B paGore [1],
a NpeCTaBNAIOIMX T, Ha3, HeluHelHble pesoHaHchl. BeiBeleH OAHOPOIHBIN KpHTEpHIl rpa-
HHIbI MepBoit 0ONAcTH HEYCTOHYHBOCTH COBMECTHBIA [IA BCEX THIOB HEJIMHEHHBIX peso-
HAHCOB — MEPHOAUUYECKHX ¥ TMOYTH-TIEpHOJHYECKHX (KOMOHHMPOBaHHLIX). AHANMH3 ONHPAeTCH
Ha MCCJIEJOBAHHIO YPaBHeHHH B BapHAllMAX, KOTOphle NpH Metode PHTua mprHEMaT dopmy
cucTeMbl 0OBLIKHOBEHHEIX AHGdhepeHIMANEHEIX YpaBHeHHH ¢ KoaddHUHEHTaMH, ABIAIOLUMHCS
NEPHOAMYECKAMH HIIH TOYTH-TEpHOAMYECKAMH (QYHKIMAMH BPEMEHM, a IIDH METOHe ycped-
HEHUA — CHCTeMbl OOBIKHOBEHHbIX AHGbepeHIMATEHBLIX YPABHEHHH ¢ OCTOAHHBIMH Koaddu-
LHEeHTaMH,

1. Introduction

INVESTIGATED in a former paper by the author [l] were non-linear resonances of
discrete dissipative systems with many degrees of freedom. A uniform approach to all
types of resonances, periodic and almost periodic, was presented and the relations between
the first order solutions resulting from the Ritz and averaging methods were given.

In the present paper, an analysis will be made of the stability of the solutions derived
in [1], and a criterion will be given for the limits of the first instability region, uniform
for all types of non-linear resonances. The analysis will be based on investigation
of the corresponding variational equations which, in the case of the Ritz method, assume
the form of a system of ordinary differential equations, their coefficients being periodic
or almost periodic functions of time; in the case of the method of averaging, they consti-
tute a system of ordinary equations with constant coefficients.
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2. General equations

The mechanical model of the system consists of a chain of » concentrated masses
my, ..., m, linked by means of massless springs and energy dissipating elements. The
masses are acted on by harmonic forces directed along the axis of the chain. The equations
of motion of the system have the form:

&lt) = m:i','!' K; Xi— X))+ pfi(xy, ...,x,,,J'r 3 =eey Xn —PiCDSQ! = 0,
(2.1) () kg‘: ii( l) i“f( 1 1 )

"5 12y s bl
where x; denotes the displacement of m; from the position of equilibrium, Kj are the
stiffnes coefficients of the linear part of elastic forces, u is a small parameter, and 0 < x 1.

The functions fi(x,, ..., x,, X, ..., X,) represent the non-linear part of the elastic
forces and the damping forces; moreover, the relation f;,0,...,0,0,...,0) = 0 holds
true. It is assumed that the functions may be represented in the form of finite power series.

In applying the method of averaging, it is convenient to use the equations of motion
written in normal coordinates introduced by means of the transformation

(2.2) xi= ) boyke, i=1,2,..,n.

J=1
Here, boy, i = 1,2, ..., n, is the j-th eigen function of the linearized system (at u = 0).

The Egs. of motion (2.1) assume in that system the form
(2 3) Ej(‘) = MG]E';}+MOJw§j£0J+#Fj(EOI 3 reey EOII’ E.OI EICERS | éﬂn)_QOJ COSQf = 0:
x j=12,..,n,

where

MUJ‘ = Zmib%u) QOJ = 2 -Pib()ij s Fj = Zﬁbﬂﬂ'
im1 i=1

i=1
The solution describing the phenomenon of non-linear resonances in the first approxi-

mation is assumed in the form [1]
P

Xp= Er,(b;,cos 0,+e;sinb)+Cicos2t, i=1,2,..,n,

g1

(2.4)
as=wxr+¢s: bls=1: els"_‘os 5=lg2:---;P- IQP-\(-",
or, in a simplified notation,

P
X;= Z(rﬁi)cos 0,+rsinf)+CicosQt, i=1,2,..,n.

s=1

(2.9
=0, s=1,2,..,p.

The condition of existence of non-trivial solutions r; yields the relation between £ and

“’a:

P
1
2.5) Q== D' nw,,

s=1

where N, n, = F1, F2, ...
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Periodic resonance occurs when p = 1 and 2 = w,n,/N. The combined resonances
(p = 2) represent almost-periodic vibrations, since the frequencies w,;, s =1,2,...,p,
are generally assumed to be incommensurable numbers.

According to the Ritz method, the unknown coefficients of the solution (2.4), r,,

P
ws, by, e, and @ = NL Z n, @, are determined from the equations
5=1
1 T
Y= ,],T;f fe‘(r) cosf,dt =0,
o
T
26  Ye=tm L[ e@sino.d =0,
0

P
ZE%Zn,w,—Q:O, s=1,2, 50 T=1,2,..,mn

g=1

When the averaging method is used, new variables E,(r),ﬁ_ﬁj(t) have to be introduced
by means of the transformation

&o; = Gy(t)cosb;+d; cos 2t,
@27) £o; = —@;(t)woy sin0;—d; QsinQt,
0 = wost+D,(f), j=12,...,n

The equations of motion (2.3) yield™®’ the system of algebraic equations with the unknowns
a,,...,a,and P,

T
da, .. 1 [ pF,sinb, , _ _
(2.8) -Er_-_ll-l_l:_.;o_f‘n mdf—~pﬂ,(ﬁ,..., ﬂp, ¢)—0, 5= l, 2, ey Py
AP P P
L) — ﬁ T .I._ =
(2°8) E = N i H,A,(ﬂl, ceey dpy ¢) Q+ NZHS{UDS 0:
J= S
where
T
e d®, _ lim 1 [ Fycosf, ’
L dt T T TO ﬂ,Mo,Cﬂo i
= & RS
dt = 0y = wost+pd,, d = "ﬁ;{ n, P,
3. Ritz method

The stability of the solutions obtained by means of the Ritz method —i.e., by means
of the Egs. (2.6) — is investigated by introducing a “perturbation™ 8x; into the solution

(*) Variables @(t), ®;(t) and a;, P; are related to each other by means of the equations [1]
da da '} dﬁ 'y do '

?‘_=‘?;‘ +Mj(ﬂ'1,.--,ﬂp,¢',f), —‘dr = ? +.||‘~Lj(ah---)ap'¢,')! j=1,2,..,n
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x;(t) and by inserting x;+ dx; into the equations of motion (2.1). Disregarding the terms
which are non-linear in dx;, we obtain the linear equations written in variations,

dox N
de(t) = m 4 Y Kb~ dm)+udfy = 0,

ke=0

Z( 8x,+ --f—’a ) i=1,2,..,n.

Expanding the functions éf into generalized Fourier series, we obtain

(3.1)

(3.2) of; = 2 Sxx [2 PO cos20,+g®sin26, + higher and mixed harmomcs]

s=1

2 8xy [ y P¥cos 26, +gFsin 26,4 higher and mixed harmomcsl
=1

If the perturbations dx; obtained by solving of the Egs. (3.1) increase indefinitely
in time, the solution x;(r) is defined as unstable. If all solutions dx,(z) decrease and tend
to zero with ¢ — oo, then the solution x;(¢) is defined as asymptotically stable. A station-
ary solution dx; corresponds to the boundary separating the stable and instable solu-
tions.

Let us observe that the disturbance dx; is imposed over the solution x; at a constant
frequency of the excitating force (2, which implies a substantial difference between
the periodic and combined resonances. In periodic resonances (p = 1), the constant
frequency {2 corresponds to a constant frequency ws, since 2 = w.n /N. In combined
resonances, however, the constant frequency £ is not necessarily accompanied by con-
stant frequencies w,, ,, ..., w,, since they may be disturbed by dw,, s =1,2, ...,p,
and only the condition

Y
1 hj
3.3 — ngbw, = 0

must be fulfilled.

In the case of periodic resonances (p = 1), the system of equations (3.1) becomes
a system of Hill’s equations with dissipative terms. These equations may be solved by
means of one of the approximate methods. The “small parameter method” is frequently
applied making use of the assumption that the time-dependent terms are small by com-
parison with the constant terms [8-10]. Once it has been decided to solve the problem
by means of the Ritz method, this simplification should be avoided and, using the FLoQUET
theory and the results of [4], we shall seek a particular, stationary solution corresponding
to the boundary of the stable and instable regions in the form of the Fourier series:

(3.4 dx; = Or{cos kO, + rlsinkB,, i=1,2,..,n
where k =1,3,5,...or k=0,2,4, ...
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The more terms are retained in the solution, the more instability regions will be obtained.
Investigation of instability regions by this method is, in the case of a single Hill's equation,
dealt with extensively in [7]. Assuming k = 1 in the Eq. (3.4), we obtain what is called
the first instability region, and when higher harmonics are taken into account, higher
order instability regions are found.

In the present paper, we shall use the notion of the “first instability region”, both
in the Ritz method and in the averaging method, thus the notion should be defined in-
dependently of the method of investigation of the stability problem and remain valid
also for the almost-periodic solutions — i.e., for combined resonances.

The notion of the “first instability region” will be understood as a region at boundary
of which the disturbed solution x;+ dx; is a function of the same form as the solution x;
whose stability is being investigated; the amplitudes, phase angles and frequencies of the
individual harmonic components differ, however, from the corresponding values of the
undisturbed solution by certain constants 6r{}’, orf?, dw,, d®,, and at least some of
these constants are different from zero,

I

P
D 1D+ 6rD)cos(0,+ 06,)+ (rD+ 0riP)sin(8, + 36),] + CicosQr,

s=1

x;+ 6x,-

(3.5)
0,+ 80,

(ws+ dw)t+ P+ 0P, i=1,2,....,n, s=1,2,..,p,

the relation (3.3) being satisfied.

In the case of a periodic (p = 1) resonance, dw, = 0 and the variations dx; oscillate
with the frequency w, = 2N/n,.

At the limits of a higher order instability, the disturbed solution also contains har-
monic components with frequencies different from those appearing in the solution for x;:
moreover, frequencies of these additional components determine the order of the
instability region.

The role of the higher instability regions was investigated by the author in [3], on the
example of a system with a single degree of freedom. It was established there that, provided
the considerations are aimed at determining the stability of a solution having an assumed
form, examination of the first instability region proves to be sufficient. The regions of
higher order instability merely indicate the values, of parameters at which the form
of the assumed solution is not an adequate one i.e. the assumed harmonie components
are not dominating over “higher” harmonics.

In the subsequent considerations, we shall confine ourselves to the investigation of
the first unstable region. The solutions of the variational system of the Egs. (3.1) may,
in the case of periodic resonances, be sought in the following form:

ox; = 6r{DcosO,4 6riPsinb,, i=1,2,..,n,
(3.6)
0, = w;t+D,+6D,, {2 =0.

Here 6rfD, ér ?), 6D, are certain constants which do not identically vanish.



506 W. SZEMPLINSKA-STUPNICKA

Let us substitute the expressions (3.6) in the Eqgs. (3.1) and require them to satisfy
the equations following from the Ritz method:

Tow T

T
8X,, = lim 1_{ de(t)cosbudt =0, i=1,2,..,n,
G.7) *

T T

T
sy, = lim 1 f de,(f)sinO,dt = 0,
0

where de;(f) denote the residuals of the Eqgs. (3.1) after substituting into them the solution
(3.6).

These equations form a base for derivation of the criterion of the limit of the first
unstable region limits in the case of periodic resonances. Constructing a formal extension
of the above procedure to combined resonances, we might apply the principle of super-
position and seek the solution in the form:

P
(3.8) ox; = 2 (0r{Dcos O+ 0r{2sinby), i=1,2,..,n.

Such a procedure would not, however, account for the specific features of combined
resonances, namely for the frequency variations dw,, s =1,2,...,p, according to
the Egs. (3.3). Let us therefore modify the approach to the problem and start from the
definition of the limit of the first unstable region. Assuming the disturbed solution x;+ dx;
in the form (3.5), the variation of the residuals of the equations of motion Je;(f) are ex-
panded into a Taylor series in the vicinity of the undisturbed solution defined by the
values r @, o, @, 5s=1,2,...,p

(€X)) ae,(r)=2[2(aaf{,a}. arz] )] Z;e‘ad-as‘aqs

sml =)=
I=1,2,0i;m, P =0, s=1,2,..;p-
Consistent application of the Ritz method requires that the following equations be
satisfied:

sx,, = lim 1 f 8e,(t) cos 0,dt =

T—wo T

@¢10)  oy,=lml ; f 8e,(t)sin 0, dt =

- —-er,éw, will, T L0t gl

Let us now observe that the relations

%, s 2 g“' sin 0, dr = ZY",
Tk 3 T jk Tk

lim 1 [ Og
3.11 cosB.dt =
(' ) T—sw T a jk 'd
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are true and hence the Egs. (3.10) may be represented in the form:

3 0Xs . Xis
8X,, = \"Z(G‘;)a jna},) 2‘ a,,+ 5 92 =0,

=1

\ ! i,
3.12) 6Yw_22’(§l:;’]d5;‘1+§l:;}652) Z e sy + 2t 0 = 0,

je=l k=1

"?32 YA
0Z = 2;2;(5(11 ’l‘+6‘2]5 ) l‘g‘ajk‘éwk+535¢=0.
=1

wherei=1,2,...,n,5=1,2,...,p.
The condmon of existence of the non-vanishing solutions dr}) @, dw,, 0P, yields
the requirement that the characteristic determinant should be equal to zero,

O Xins oen Kaps Yypsovs Yaps Z)
oY, ... r®, ... 1® wy, ... w,, D)

It will be demonstrated that this condition is satisfied at those points of the resonance
curves ry = ry(£2),s = 1,2, ..., p at which the tangents are vertical. To this end, let us
differentiate the Eqs. (2.6) with respect to the independent variable 2.

(3.13) 4=

=0,

n P
V' Z (axf,drm X, aw)) ZaX;,dwk 0X; d®  0X;s 0

< < \orpao T do d0, d2 T 30 A0 T o0
n P
O N[OV d) 0¥ drD)\ N 0¥, dw, 0¥, d2  OYi
G149 Z, kz ( D e T de ~ 0, d2 T 50 a0 30 =
=

22 oz arp 0z dr}:))+ 0Z dwy 0242 0Z _
Ly orh dQ ar;:)}:‘rT dw, dQ " oPdD " 2

i=1,2,..n, s=1,2,...p
Solving this system for dr{p’ @ [dQ, d®[dQ, dw|df2, we obtain:

i AP, J=1,2,.m
d.Q A4 k=1,2,..,p,8=1,2,

where 4 is the characteristic determinant of the system, and 4§ — the transformed de-
terminant 4 in which the j{>-th column has been replaced by the column of terms — X,/
[0, ..., —0X,,[02, ..., —Y,,/002, —0Z|0Q. Let us observe, moreover, that the char-
acteristic determinant of the Eqs. (3.14) is identical with the characteristic determinant
of the Eqs. (3.12) and may be expressed by the formula (3.13); thus, those points of res-
onance curves which have vertical tangents

drip)@) o W . 13

0T k=1,2,..,p,
correspond to zeros of the determinant (3.13) —i.e., they determine the limit of the first
unstable region.
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4. Method of averaging

The starting point for the investigation of stability of solutions obtained by the
averaging method is the set of Eqgs. (2.8). In order to simplify the notation, the right-hand
side of the Eq. (2.8') is denoted by uD ,, and the general phase angle @ by a,_, . Equa-
tions (2.8), (2.8)' are now written in the abbreviated form as

da,
“.1) - - uDy(ay, a5, ..., 0,,,) =0, s=1,2,.. p+l.

Let a,,a,, ..., a,,, be the solutions of the system of Eqs. (4.1). Let us impose over
these solutions certain perturbations at a constant frequency {2, and consider the per-
turbed solution

4.2 a,t) = a,+éda,, s=1,2,..,p+1.
It may be observed that, although the perturbations are directly imparted to the am-
plitudes a,, a,, ..., a,,, only, they are also indirectly transmitted to the frequencies

@, ..., ws, provided p > 1. It follows that, in accordance with the Eq. (2.9):
o+l

% o % 0A
4.3) @ = wos+ud @, a, ...,a,,,) = wost+puda,+, ..., a4, )+ e

day, .
601‘ *
k=1

Substituting the disturbed solutions into the Egs. (4.1), and expanding D, into a Taylor
series in the neighbourhood of the undisturbed solution we obtain — the terms non-
linear with respect to da being disregarded — the system of equations in variations:

p+l
doa, D

—da,, s=1,2,...,p+].

(44 &~ £ Oa,
k=1

The coefficients dD,/da in the solution considered are constant, and hence the parti-
cular solution of the Eqs. (4.4) has the form:

(4.5) ba, =bae®, s=1,2,..,p+l.

Non-zero solutions for da,, are obtained when the characteristic determinant of the
system vanishes. Expansion of that determinant leads to a polynomial of order p+1
in 4,

(4.6) A(A) = bo AP 4+ b, A+...b,A+b,,, = 0.

According to the stability criterion, the solution of the set of Egs. (4.1) is stable if
the real parts of the roots of the Eq. (4.6) are negative, i.e., if the Routh-Hurwitz condi-
tions [7] are satisfied. The limit separating the stable and unstable regions is reached
when the real part of one of the roots 4 changes its sign — that is, when it assumes the
zero value. In applying this method to investigations of periodic resonances [5] —i.e.,
when p = 1 — the polynomial (4.6) was of second order,

(4'7) Zz+bl Z+b2 = 0.

In the case of positive damping, the coefficient b, was always positive. Hence the con-
dition b, > 0 was, according to thc Routh-Hurwitz criterion, the only condition to be
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satisfied in order to make the solution stable. Zero value of that coefficient, b, = 0, cor-
responded to the vanishing real part of the root 4, and thus — to the limit of the first
unstable region.

In the case of combined resonances (p = 2), the polynomial (4.6) is of a higher order
than 2, and its roots may by either real numbers or complex conjugate numbers. However,
the relation

bp+1 = 21 * 2,3‘ — A.P‘fl‘

remains valid.
In this manner, independently of the order of the polynomial (4.6), the condition

(4.8) bpor =0

corresponds to zero value of one of the real roots A i.e., to the limit of the first unstable
region.

The remaining Routh-Hurwitz conditions concern the behaviour of the real parts
of the complex roots of the polynomial (4.6). It may be proved that vanishing of the real
parts of the complex roots 4 corresponds to the instability limits of higher orders. Let us
investigate the behaviour of variations dx; corresponding to a pair of imaginary roots

(4.9) Ae12 = Fiky, A — a real, positive number.
The solution of the equations written in variations is then:
(4.10)  day(r) = dalDcos Ayt +8aPsin Ayt = dag cos(Ax-t+68), s=1,2,..,p.

Substituting this expression into the transformations (2.2) and (2.7), we arrive at the
conclusion that the perturbation of x; — that is dx; — contains harmonic components
with frequencies ws+."1;‘, and w,—uflh s=1,2,..,p. According to the definition, this
corresponds to an instability limit of a higher order.

In order to derive the criterion of the first instability limit, it is necessary to differen-
tiate the Eqs. (4.1) with respect to the independent variable £ and to solve it with respect
to day/dS2, as in the Ritz method. We then obtain:

das .L a(Dl:DZ!"'!DpH)

4.11 2 )
( ) dQ bp+l a(als‘--as—-hg’asq-h---s ap+l)

This implies that the points of the resonance curves a;, = a,(2), s=1,2, ...,p+1,
in which the tangents are vertical,

da,

(4.12) 0

=w, s=1,2,...,p+l1,
correspond to the limit of the first instability region b,,, = 0.

If the solution is represented in the form (2.4), the corresponding conditions assume
the form

dr dd

=00, F=1;2iu0p
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5. Conclusions

In this paper it has been shown that for all types of non-linear resonances, periodic
and combined, a uniform criterion exists for the limit of the first unstable region. In-
dependently of whether the resonance curves r; = r(2) and a, = a,(22) are found by
means of the Ritz method or the averaging method, those points of resonance curves
which are characterized by vertical tangents

& e, or D
aQ a

correspond to the limit of the first instability region.

It should be borne in mind, however, that the resonance curves obtained by the Ritz
or the averaging method are close to each other only at very small amplitudes of motion,
and at larger amplitudes they may differ substantially (cf. e.g. [2]).

Determination of a uniform criterion of the limit of the first instability region for
periodic and combined resonances is possible only by taking into account the variations
do, of the frequencies w,,s = 1,2, ..., p appearing in the solution (2.4). This result
could not be achieved by finding dx; = dx;(¢) from the formal solution of the variational
Eq. (3.1). It may be concluded that in fact, the stability of individual harmonic compo-
nents with frequencies w, should be considered as the orbital stability phenomena, since
the “partial” solution

s=12,..,p,

ridcos(w,t43D,) + riPsin(w, ¢ + Dy),
for which the disturbed solution at the instability limit takes the form
(r{D+ 8r{D) cos[(ws+ Swg) t+ Py + 6D )+ (rP + 6r2)sin[(w, + dw,) t + D+ 6D,],

satisfies the orbital stability condition, and not the Liapunov condition of stability of
motion. This conclusion is somewhat surprising since the notion of orbital stability is
generally attributed to periodic motions of autonomous systems (in particular self-excited
motions characterized by limit cycles), and not — as in the case considered — to station-
ary motions of a non-autonomous dissipative system. Note, however, that this remark
concerns the stability of individual harmonic components, and not the general solution.

The method presented for investigation of instability limits of combined resonances
consisting in the representation of a disturbed motion x;+ dx; in the form (3.5) enables
us to determine only the first instability region. The analysis of higher order instability
regions by means of the Ritz method requires further investigations.

Analysis of the problem of stability of combined resonances by means of the averaging
method yields an interesting conclusion that, in such a case, the method makes it possible
to detect the instability regions of orders higher than one.
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