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A lower bound theorem for dynamically loaded rigid-viscoplastic
structures

W.J. MORALES (TAMPA)

A Lower bound on permanent dynamics deformations of impulsively loaded rigid-plastic
structures was presented in the author’s earlier papers. In the present paper, a proof is given
that similar lower bound exists also in the case of a rigid-viscoplastic material. This result is
of a particular value not only because most of the structural materials exhibit some degree of
strain rate sensitivity but also because corresponding upper bound could not be derived without
some additional information about the response of the structure. The method is explained on
the example of a beam for which the exact solution is known.

Dolne oszacowanie na trwale dynamiczne deformacje impulsywnie obciazonych sztywno-pla-
stycznych konstrukcji bylo przedstawione we wczeéniejszej pracy autora. W obecnej pracy udo-
wodniono, ze podobne dalsze oszacowanie istnieje rOwniez w przypadku sztywno lepkoplasty-
cznego materialu. Rezultat ten ma znaczenie nie tylko dlatego, ze wiekszo$¢ materialéw kon-
strukcyjnych wykazuje wrazliwos¢ na predkosc odksztalcenia ale rowniez dlatego, ze odpowied-
nie gorne oszacowanie nie mogloby byé wyprowadzone bez dodatkowych informacji o wlasnos-
ciach konstrukcji. Metoda zostala wyjasniona na przykladzie belki, dla ktorej znane jest roz-
wiazanie w postaci zamknietej.

B npenpiaymeii pabore aBropa Gblia JaHa HIDKHAMA OLIEHKA OCTATOUHBIX Aedopmaumii B 1u-
HAMHYECKH MTHOBEHHO HATPYHEHHOM »eCTKO-IIacTHYecKoM coopyyeHuun. lannas paGora
COJIEP>KHUT JOKA3aTeNbCTBO TOTO, YTO AHAJIOTHYHEIE OLEHKH MOYCHO JIOCTPOHTE TAKIKe B CIIydae
JHECTKO-BA3KOMIACTHYECKOr0 MaTepHana. JTOT PEe3y/LTAT MMEeT CYLIECTBEHHOE 3HAYEHHE HE
TOJIBKO [IOTOMY, YTO GOJIBIIMHCTBO KOHCTPYKTHBHBIX MaTepHanoB obiiafaeT 4yBCTBUTENLHO-
CTBIO K CKOpPOCTH AedopMHpOBaHMA, HO TAK)XKe H IMOTOMY, YTO COOTBETCTBYIOLIHE BepXHHE
OLIeHKH He Mornu Gkl ObITh Halaensb! Ges qonomuTensHOH MHMDOPMALMK O CBONCTBAX COOpPY-

sweHnA. MeroJ wumocTpHpyeTca Ha Npumepe Ganku, MUIA KOTOPOH H3BECTHBI 3aMKHYTHIE
pelleHHs .,

1. Introduction

IN EARLIER papers [1, 2], a technique was presented to bound from below the permanent
dynamic deformations of impulsively loaded rate insensitive structures. The technique
complemented the displacement upper bound theorem developed by MARTIN [3, 4] provid-
ing, through relatively simple calculations, a way of solving a number of problems of current
interest whose solution, if at all possible, may require involved numerical computation [5].

However, the results of experimental and theoretical investigations of dynamically
loaded cantilever beams [6] suggest that, while elastic vibrations do not have much effect
on the permanent deformations when the ratio of input kinetic energy to maximum possible:
elastic energy is of the order of 10, the influence of strain rate on the material yield stress
was primarily responsible for the deviations between the elementary rigid-plastic theory
and experiment. The study further showed that the effect of strain hardening decreased
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with increasing strain rate. The technique presented below provides a mean of comput-
ing lower bounds on the deformations of certain class of dynamically loaded time-depend-
ent inelastic structures.

2. Lower bound theorem

Consider a time-dependent inelastic body of volume V and surface § which at time
t < 0 is assumed to be at rest. Let a velocity %) be prescribed at all points in the continuum
at ttme ¢ = 0, and for times 7 > 0 it is assumed that the displacement rates i; are zero
on the portion of the surface S, and tractions 7; are zero on the portion of the surface
Sr. Furthermore, it is assumed that the effect of body forces F; is negligible in the process
of deformation.

In order to generalize the uniaxial experimental observations to combined state of
stress, DRUCKER [7] formulated a criterion of stability for a large class of engineering materi-
als in terms of the work done by the stress increment on the plastic deformation increment.
Denoting the generalized stresses acting at a section of the body by @, (k =1, ...,n)
and the associated generalized strain rates by gx (k = 1, ..., n), if dQ, represents a stress
increment and dg, the corresponding strain rate increment from some initial state Qp,
g2, Drucker’s definition of a stable plastic material requires that,

@.1) dQy dgy > 0.
Hence, if the state of stress of a material element is changed from Qf to QF with an
associated change in strain rate from g; to ¥, Eq. (2.1) may be written as,

qk
22) [ ©@—0Pdg>o.
ak

In the nine-dimensional stress space, the components of the stress vector Qy can be
visualized as the component of a stress or “force” vector in an n-dimensional Euclidian
stress space. Therefore, in the stress space, Q, is represented by a point while (Qf —07)
is represented by a path. Consider now the path from a third stress point Qf to QF passing
through Qf as shown in Fig. 1, Therefore, from Eq. (2.2),

qk 9k qk
23) [ ©@-00din = [ ©@—0Ddji+ [ (Qu—0Ddg, > o.

dk ak ak
But if QP and Qj are two stress points which lie within the yield surface, the path between
the two points is reversible. Therefore,

9k 9k
2.4) [ ©@—0pdi= [ @—abdo
i i
and
9k Gk
@5 [ ©@—-0Ddi = [ (©—09)dirn—(Qi—09) G¥—3D),
& i
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Qi

(Stress Space)

Fic. 1.

where Qf remains constant along integration path to stress point QF lying outside yield
surface.
Replacing Eqgs. (2.4) and (2.5) into (2.3)

o ak
26) | @-iddo+ [ (©@~0Ddaw > (0i-09) G-
o dk

The integrals in Eq. (2.6) denote integration along paths from stress point Q) to Q3
and QfF, respectively. It is to be noted that the integration can be carried out independently
of each other and hence in stress space the above equation represents two independent
stress paths from an initial state Qf. If the material is assumed to be stressed from the
virgin state, Qf and g are set equal to zero and Eq. (2.6) becomes

o @

@7) [ adou+ [ ovdin > 0t
0 0

The result shown in Eq. (2.7) enabled MARTIN [4] to establish a minimum principle
for viscous continua which was then used to develop the displacement upper bound theorem
by noting that the s and * system are completely independent of each other. The same
condition will be employed to derive the displacement lower bound theorem for dynamic-
ally loaded rigid-viscoplastic continua.

Let the s-system represent a statically admissible stress field and the *-system be a ki-
nematically admissible strain field. Furthermore, let the response of the system for times
t > 0 be characterized by displacement, velocity, acceleration, generalized stresses and
strain rates given by u;, &, ii;, Ok, §x, respectively. Since the complete solution is both
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statically and kinematically admissible, the true state can be associated with either the
s or the * system. Let the true state be associated with the s-system and let &}, gF be any
time dependent kinematically admissible field. Integrating Eq. (2.7) over the volume V
of the continuum, we hawe

8 ok

(2.8) def G dQy+ deth dgy > J‘Qté’de-

vob v o6 v
From the principle of virtual velocities,
29 [owatav = [ Titas+ [Farav- [ eiitav

v $ v v
and since F; = T; = 0,
(2.10) [ Qeiwav =~ [oiiitav.
v v

From (2.10), Eq. (2.8) become
9 ak
(2.11) fa’Vf 3 dQy + def Qudg > — fgiiife;“dV.
v v @ v
Integrating Eq. (2.11) from £ = 0 to t = ¢, the response time of the structure,

r O '} 9k r
@) [a[av| gdoe+ [ a [av [ Qi — [av [ giiitde.
] 4 0 0 v 0 v 0

Adding a positive definite quantity to the left side of Eq. (2.12) will not affect the
inequality, and since

i 9 i 9 i
@.13) [at [av [ qudou+ [ dr [av [ Quddi= [ dt [ Quinav
0 V 0 0 v 0 0 V
then,
s s %
2.14) [ at [Qunav> [ at [av [ g.do,
0 v 1] V 0

for all terms in Eq. (2.13) are positive definite quantities.
Hence, from Eqgs. (2.14) and (2.12)

i - ax 7
@2.15) [ at [D@yav+[ dat [av [ Qudg> — [av [ ciiipat,
0 V 0 14 0 V ]

where D(g,) is the rate of dissipation of internal energy and is defined by

(2.16) D(qe) = Qudi-
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Since a rigid-viscoplastic continuum is a totally dissipative medium, the internal and
external dissipation rates can be equated

d L ;
@1 4 [ Seiisav = ~ [ D@yav.
4 v

Integrating (2.17) between t = O and t = ¢,

(2.18) —fgu 9dV=fd:fD(q,,)dV

since by definition i, = O at ¢ = t; and &; = & at ¢t = 0.
Substituting (2.18) into (2.16),

t T 1
(2.19) % fgfl?f{?dV+ f dt def Oidg, = — def oti;ukdt.
4 0 v 0 vV 0

The term on the right side of Eq. (2.19) is next integrated twice by parts with respect
to the time variable as follows,

I £ 5 '
(2.20) — [ oiiietdt = — it | +9ﬁ:ui( — [ oiituat.
0 0 0 0
Butatt =0, = 0, & = u?. Hence,
) 'y
@.21) — [ ciiigtdr = gidit| +oitu| — [ outud.
0 =0 r-tf 1]

Replacing Eq. (2.21) in (2.19),

(2.22) f o U dV + f dt f v f 0:d, > f oitlir

dV+ fgu‘ av

ll= f.r

i
- f s,
Q

The assumed kinematically admissible velocity field #¥ is then chosen in such a way
as to cause the vanishing of the last term on the right side of (2.22). If &} is assumed to be
representable by a product of a time-independent function Uf(x;) and a time-dependent
function f*(t), then

(2.23) it = UF(x)T*(t).
If 7* is chosen to be of the form,
(2.24) T* = (tg-1)ty, 0<t<t},

T =0, t>1},

where 1} is a constant yet to be determined, u¥ will vanish.
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Substituting Eq. (2.24) into Eq. (2.23),

(225)f9U, u;[ dav > rf{fgui U¥ V——fguiu?dV fdrfdlff deq,‘}

!=ff
Since the objective of this theorem is to obtain a lower bound on the maximum per-
manent deformation that a structure undergoes at time ¢ = 7, when subjected to a dy-
namic loading, i.e.,

(2.26) (Udmax| = lower bound.
I= If
Equation (2.26) can be put in this form by recalling the extended mean value theorem
of integral calculus [8], that if f(x) and g*(x) are two continuous functions in the interval
a < x < b and if the maximum value of f(x) in this tange is denoted by M, then, provided
£*(x) does not change sign in [a, b],

b b
@27) Jr@ g @ax < M [g*xyax,

where M > f(x) for all x in [a, b).
Denoting the three components of »; and U¥ as u, g, w and U*, G*, W*, respectively,
the left side of (2.28) can be written as

228 Joutu| av=[ouru| av+ [ocre| av+ fgw*w| av.
v =1, Vv t=tf 4 t=ty t=tg
In order to obtain lower bounds on each of the three components of ;, three separate
choices of the components of the assumed kinematically admissible field U% must be
made. For example, if a bound for w is desired, U¥ can be assumed to have components
U* = G* = 0 and W* # 0. Under these conditions, Eq. (2.28) becomes

(2.29) f gU*u,l dv = f QW*w| av.

f-.!'! l'::.l'.r

Applying the result of Eq. (2.27) to Eq. (2.29),

(2.30) [owew| av<w.l [owrar.
14 f=ff |'=lfy

Hence, from Eqgs. (2.25) and (2.30), a lower bound for w,,, is obtained from

;(I{Jgﬁ’*dV)r}{fgu,Uth-ifguku,‘dV ferde Qlqu}

Two other similar expressions are needed to bound the u_,. and g,,, components of de-

@231) w,,,,

= ‘f
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formation of a body resulting from an impulsive loading. Therefore, the result of Eq. (2.31)
can be generalized to

2.32)

‘J‘ M
e > (11 [ o) r;{ [eigvav-= [ oipigav~ [ ar [av | deé;},
r=tp v v il 0 v 0

if the stated limitations on the assumed velocity components are recognized.

In order to use the previous expression, information regarding the last term is
needed, for at this stage both #, and ¢} are unknown. However, MARTIN [4] obtained
a lower bound on the response time in the form

éa
- IDO _‘l 10 Co
(2.33) tr = (lf'fdl/ar deq,‘) Lfgu.-u.fdl/ 5 !@ui udvh,

where #f denotes a time-independent kinematically admissible velocity field and ¢ the
corresponding generalized time-independent strain rate field. If £} is chosen equal to the
right side of Eq. (2.31), i.e.,

9k
. e 1 i
(2.34) 1 = (1," def deqk)ifgu?ufdi/—i fgu?u?dy},
14 0 v v
then
(2.35) t> .

Then, since g§f is zero for t > t}, the last term of Eq. (2.32) can be evaluated as,

tr qx ty Ty 'y 9y
@36) [at [av [ Qudin=[ dat [av [ Qudi+ [ ar [av [ Qudiy
0 v 6o v 0 ORI R

:} a
=[a [av | Qudi.
1] v 0

Therefore, the lower bound theorem becomes,
(2.37) 1 ax
> (1; f QU?‘dV) :;i f 0il? U:dV—% f oili0dV— f dt f av f Q,‘dé,}.
V Vv vV 0 vV 0

(ui)m aX
3. Example problem

‘ﬂ;f

Consider a cantilever beam of length L and mass m per unit length with a point mass M
attached at the tip. At time ¢ = 0, the mass M is given an initial velocity ¥, in the vertical
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direction, while the remainder of the structure remains stationary. The beam will be assumed
to be rigid-viscoplastic with constitutive equation

5
-:If-=(—ﬂ—"—{——l) for M= M,,
(3 1) ko MD
’ i(o = for M < Mg,

where the curvature rate k and bending moment M are the only non-zero generalized

strain-rate and stress, respectively, and ko, M, are constants having the dimensions of
curvature rate and bending moment, respectively.

To determine a lower bound on the permanent deformation, a kinematically admissible
velocity field U* must be assumed. Thus, if the assumed mode shape U* is given by

. e X
(3.2) U (1 cos— L)
where A is a constant amplitude,

. . . d?u* . d*U* |2 X t

* o JSTH = = T* = A|l— Sl |y [N
3.3 k* = k°T 7 T e A(ZL ) cos > (1 7 )
Then

. L ; LT s 0\
(3.4) fdvuf draf Q.qu=5fdx6f d:of Mdk=!dx! Mokc,{-ﬁ—(};o—)
+(i—:}}dr Moko!*!{ﬁ (:o )m+%(§;—)}4x.

T 12/5 6/5 6/5
. 5 = A V
- — ‘ oo oL AL o
(3.5) Vf v a[ dt af Qidiy = Mok, er= - ( 4) (Vo) (JEOL*)

Neglecting the mass of the beam compared to the point mass M,

zi f oidigdv = %MV&, f oUFSdV = AMV.
v’ vV

(-6)

Substituting Eqs. (3.5), (3.6), and (3.6), into (2.37),

AM 221 4

. 12/5 6/5
37 uz AMV,— %erg—mku}[i(i) (V) (
0

ki
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Utilizing the response time lower bound theorem, Eq. (2.33), MARTIN [4] obtained

(3.8) t = 0.552MLV,[M,,
where
(3.9) ( Vo ) = 3.62x 102,
koL?
Hence, from Eq. (2.35),
(3.10) t} = 0.552MLV,[M,.

Therefore, substituting (3.10) into (3.7),

0.52ML ([ A\ | 5 (7 \" AN Vo \*°, = (4
up o2l (5] () () = (o)
(3.11) (A)Mo 0‘(%) 2 i22(4) (Vo) (koLZ) 4 (Vo)}

o

Eq. (3.11) can be optimized numerically with respect to (4/V) utilizing Eq. (3.9)

ML
3.12) uz O.ZBT{? Vs.
The upper bound on u has been obtained by MARTIN as
ML
(3.13) u < 0.36 M, vi.
Therefore,
ML ML
(3.14) O.ZSTqu Su< 0'36_’7; Vi.

The exact solution to this problem was given by CowpER and SYMONDS [9] as

ML
Utilizing the mode approximation technique introduced by MARTIN and SymonDs [10],
an approximate end deflection was determined by Symonps [11] as

ML

(3.16) u =030 M,

Vi.

4. Conclusions

Through the use of energy methods and basic inequalities inherent in the theory of
plasticity, a technique is presented to bound from below the permanent deformations
of impulsively loaded visco-plastic structures. This method complements the displacement
upper bound theorem introduced by MARTIN providing by means of relatively simple
calculations a way to bracket the response of a number of engineering problems whose
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solutions, if at all possible, require long running numerical solutions. It is in this respect
where this technique becomes a powerful tool for preliminary design.

The lower bound theorem is applied to a sample problem and the result compared
to the exact solution, Martin’s upper bound resuit and to the amplitude of the mode
approximation technique. Good results are obtained with both the bounding and the
approximate methods. However, without denying the usefulness of the approximate
technique, the bounding method constitutes in many instances a more powerful method
to a number of engineering problems requiring preliminary assessment of the capabilities
of a structure and possible design for the upper bound yields a consistent conservative
estimate and the lower bound allows for the close bracketing of the exact structural response.
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