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A minimum principle in dynamics of elastic-plastic continua at finite
deformation

L. H. N. Lee and CHi-Mou N1 (NOTRE DAME)

THE coNcePT of employing finite acceleration-variations in formulating a variational principle
as depicted by the Gibbs-Appell principle in classical mechanics is employed to establish an
absolute minimum principle in dynamics of elastic-plastic continua in finite deformation. The
minimum principle is expressed in terms of Lagrangian strains, Piola-Kirchhoff stresses and
the constitutive relationships developed by Green and Nacup1 and which include thermo-
dynamic effects. The minimum prmclp]e is valid for continuous as well as sectionally discontin-
uous acceleration fields. The minimum principle may be employed to establish governing equa-
tions or to solve a problem by using a direct method of variational calculus. The application
of the principle is illustrated by two examples: one on the non-linear vibrations of elastic beams
and the other on the impulsive loading of rigid-plastic beams with axial constraints. The results
of this analysis agree with the analytical and experimental results of the two problems avail-
able in the literature.

W pracy przedstawiono koncepcje zastosowania skoficzonych wariancji przy$pieszenia do sfor-
mutowania zasady wariancyjnej, odpowiadajacej zasadzie Gibbsa-Appella w mechanice kla-
sycznej; jest to zasada absolutnego minimum w dynamice ofrodkéw sprezysto-plastycznych
przy odksztalceniach skoriczonych. Zasad¢ t¢ wyrazono w opisie materialnym odksztalceri
Lagrange’a i naprezen Pioli-Kirchhoffa za pomoca zwiazkéw konstytutywnych Greena i Nagh-
diego, uwzgledniajacych efekty termodynamiczne. Zasada minimum jest stuszna zar6wno dia
ciaglych jak i odcinkami nieciggtych p6l przyspieszenia. Zasade t¢ mozna stosowaé do formuto-
wania podstawowych réwnari jak i do efektywnego rozwigzywania zagadnien za pomoca metod
bezposrednich rachunku wariancyjnego. Zastosowanie tej metody ilustruja dwa przyktady do-
tyczace drgan nieliniowych belek sprezystych oraz udarowego obcigzenia belek sztywno-plas-
tycznych z wigzami w kierunku osi belki. Wyniki analizy sa zgodne z wynikami analitycznymi
i eksperymentalnymi, znanymi z literatury.

B pabote mpepcTaBieHa KOHUENMIMA NPHMEHEHHS KOHEUHBIX BapHauuil yckopenus i dop-
MYJMPOBKH BapHallHOHHOrO NpPHHIMIIA, OTBevaroulero npuuimry I'uGbca-Ammens B KimaccH-
YeCKOH MeXaHUKe; 3TO NPUHIMIT abCOIOTHOrO MHHHMYMA B JHHAMHKE YIIPYIO-IUIACTHYECKHX
cpef NpH KOHEYHBbIX Aedopmanuax. ITOT NPHHIMII BEIPAYKAETCA B MATEPHAIBHOM OITHCAHHM
pedopmaumit Jlarpamka u Hanpsxenmii ITnomm-Kupxroda npyu nomoliy onpefesiomyx co-
otHomenmit I'puna n Harmy, yunteiBaromux repmogiHamudeckue aqdextol, IpuHupn munmn-
MyMa CIIpaBe[UIMB TaK JUIA HeIpePhIBHBIX, KaK M JULA OTPE3KaMM paspeIBHBIX Honel yckope-
HHfA. DTOT NPHHIMII MOXKHO IIPHMEHATH TaK 1A (opMYTHMPOBKH OCHOBHBIX YPaBHEHHH, KaK
W anA addeKTHBHOTO pelleHHsa mpobiem NpH IOMOIH HENOCPENCTBEHHBIX METOOB BapHa-
IMOHHOTO McuHcneHus. IIpumeHeHre ITOTO METO/ia HIUTIOCTPHPYIOT /IBa IPUMEPa, KAacaIoIHeCH
HenmuHeHHBIX KoseGaHmii ynpyrux Ganox M y[apHOH HATpYSKH >KeCTHO-ILTacTHUeckux Ganox
CO CBA3AMM B HaNpPABJICHHH ocH Oamky. PesysbTaThbl aHaNM3a COBNAMAIOT ¢ AHATHTHUECKHMA
M IKCIIEPHMEHTATBHBIMM DE3Y/IBTATAMH HIBECTHBIMH M3 JMTEPATYpPHI.

1. Introduction

THE VARIATIONAL methods of formulations and direct solutions have been extensively
investigated in the field of solid mechanics [1]. The concept of virtual work or virtual
displacement has been the basis of variational formulations in infinitesimal and finite
elasticity. For static problems, the principle of virtual work leads to the principles of
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stationary and minimum potential energy. It has been further generalized by the introduc-
tion of Lagrange multipliers to yield a family of variational principles which includes
the principle of minimum complementary energy. For dynamic problems, the Lagrangs’s
equation of motion and the Hamilton’s principle may be derived from the principle of
virtual displacement. It is to be noted that, in general, the Hamilton’s principle is a sta-
tionary principle and not an extremum principle for non-conservative systems.

In the theory of elasticity, whether linear or non-linear, the steps of establishing a vari-
ational principle are reasonably straightforward. Additional considerations must be
given to that in the theory of plasticity. As a consequence of the irreversible property,
the constitutive equations of a plastic continuum are expressed in terms of the velocities
or the rates of stress and strain and not of the stresses and strains themselves. Therefore,
variational and extremum principles of plasticity have been expressed in terms of veloc-
ities [2, 3, 4]. In applying these principles, the velocity or rate variations are only allowed
along some permissible paths [2], such that regions of loading or unloading associated
with admissible velocity fields must be agreeable with the true regions of loading or un-
loading. Special care is usually required in carrying out the velocity variations for a real
problem.

A variational principle is not necessarily very helpful in solving problems. The assum-
ed velocity fields may not be close to the true one. What is required instead is an absolute
maximum or minimum principle. In classical mechanics, the Gibbs-Appell variational
principle [5], which can be deduced from Gauss’s principle of least constraint [5], is an
absolute minimum principle. The principle employs finite, variational differences in ac-
celerations and is particularly well suited to the study of non-holonomic systems. A parallel
minimum principle in dynamic plasticity has been developed by Tamuzu [6] for rigid-
plastic bodies involving infinitesimal deformations.

In this paper, the concept of finite variations in accelerations is employed to establish
a minimum principle in dynamics of elastic-plastic continua subject to finite deforma-
tions. The minimum principle can be used for formulations as well as for approximate
solutions of problems. Two examples involving motions of beams are given as illustrations.

2. Kinematics

Consider a body of a continuum occupying in its natural state a region ¥ and bounded
by a piecewise smooth surface 4. Let the initial position {Xx} and the position {x;} at
time ¢ of a particle of the body be referred to a fixed system of rectangular Cartesian co-
ordinates. Let {Ug} be the displacement vector of the particle at time z. The history of
deformation of the body under influences of external forces is then given by the functions

=123,

m
(2'1) xﬂl=xlll(XM’t)s M= 1’2'3;

or

22 Ug = Ux(Xns 1), K=1,2,3.



A MINIMUM PRINCIPLE IN DYNAMICS OF ELASTIC-PLASTIC CONTINUA AT FINITE DEFORMATION 459

In general, lower case Latin indices are associated with the coordinates {x;} and upper
case Latin indices are associated with {Xy}. The functions x, and Ux are assumed to
be piecewise continuous and differentiable within the domain of the body.

Consider an element of initial length dS in the neighborhood of a typical point. The
length at time ¢ of the element in the configuration {x;} is denoted by ds. If at time ¢ the
body is conceptually unstressed in the neighborhood of the typical point and has its tem-
peratures reduced to the initial temperature 6,, the thermo-elastic strains will be released
and only the plastic strains will remain. Upon unstressing, the length of the element be-
comes ds* which may be measured in a configuration represented by the partical position
{x¥}. It is assumed that the functions

i=1,2,3,
M=1,2,3

and their derivatives are continuous only in the neighborhood of the typical point. The
configuration {x*} is a conceptual configuration embedded in the memory of the material,
only under certain conditions, which may coincide with a real configuration. The confi-
guration {x}} is used here strictly to characterize the constitutive relationships.

The finite strains and other variables of the body may be expressed in terms of either
Lagrangian {Xx} or Eulerian {x;} coordinates. The Lagrangian variable rates, which
contain no convective terms, are usually preferred for materials with memory. The Lagran-
gian strain tensor Ex is given by

(23) X? —. 1?(XM9 t)s

(2.4) ds?—dS? = 2Ex  dXxdX,,
where

(2.5) 2Exy = Xy, xXk,L— Okr,

or

(2:6) 2Ex = Ux,1.+ UL x+ UnxUn,L.

Here, a partial differentiation of a variable with respect to X is designated as ( ), x. k.
is the Kronecker symbol and the repetition of an index in a term indicates summation.
The Lagrangian strain may be divided into the elastic and plastic parts by the relationship

2.7) ds?—dS? = (ds*—ds*?)+ (ds**—dS?) = 2(Ex.+ Exp)dXx dX,,

where the elastic strain, Eg;, is given by

28) 26}, = (g—ﬁ— = f)%jﬁ—

and the plastic strain Eg|, is given by

(2.9) 2Ex1 = xi,xXt,.— Oxv-

Equations (2.4) and (2.7) show that the finite Lagrangian strain can be expressed as
(2.10) Exy = Egr+ExL.

Consider that, at time t = f,, the true displacement field U} (X, , X,, X;, 1) and velocity
field U+(X,, X, X3, to) are either predetermined or given in the body. The superscripts +
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denote here and in the sequel the true fields. The dot above the letter denotes differentia-
tion with respect to time. The true acceleration U3 is to be determined by the minimum
principle from a set of admissible acceleration fields, Ux, which satisfies the kinematic
boundary conditions and the continuity condition of the body. The admissible strain
accelerations E, k. may be expressed as

. 1 " ve o % i
2.11) ExL = T(UK,L'F UL x+Unm,xUst, L+ Un, LUk, x +2U5f kUt 1) -

Accompanying the strain acceleration variations, there may be stress variations. It
is known that prescribed external forces depending on the accelerations of a body are not
admissible in Newtonian dynamics [5). It is also recognized that the dependence of stresses
on time rates of strains of higher orders is permissible by existing constitutive theories.
However, the effects of strain accelerations on the general constitutive relationships of
specific continua have not been theoretically or experimentally determined.

3. Constitutive relationships

The constitutive relationships of elastic-plastic continua at finite deformation have
been investigated in recent years and notably by GREEN and NAGHDI [7, 8], and by Lee
and Liu [9, 10). A Lagrangian representation as well as its alternative forms are employed
by the former, and a representation involving both Lagrangian and Eulerian variables
is used by the latter. The Lagrangian representation is employed in the present analysis.

GREEN and NAGHDI assume that the Lagrangian strain can be divided into two parts,
elastic and plastic such as it is shown in Eq. (2.10) except that Eg; and Ey, may be
non-symmetric while Ey; is symmetric. Eg; and Ey; as given by Egs. (2.8) and (2.9)
may be physically measurable and can be the subsets of the conceptually general elastic
and plastic strains postulated by GREEN and NAGHDI. The essence of their results [7, 8]
are given, for convenience, as follows.

The constitutive equations developed by GREEN and NAGHDI are based on the first
and second laws of thermodynamics, invariance conditions and the classical concept of
a yield surface. It is postulated that the constitutive equation, in terms of Piola-Kirchhoff
stress tensor Sy, has the form

3.1 Sk = Ski(Emns Exns 9)-
The yield surface may be described by a function of Piola-Kirchhoff stress tensor, plastic
strain Eg; and temperature 6 such as

(3"2) f(SKL! E.,K'Ls 6) =¥,

where fis a regular (continuously differentiable) function of its variables and x is a scalar
which depends in some way on the history of motion. It is assumed that

(3.3) %= hxr(Sun, Exy, 8) KL»
where hk, are tensor functions of Sy, Exy and 6. The constitutive relationships may
be expressed as

(3.4), Exy = Zﬁxn 6f SMN+ gg )
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when f = x(% # 0) and --—af--S +g-t§>0

OSun i)
and
(3.4), E¢, = 0.
when
e of . of s
f~— x(x = 0) and %;Sun‘f“ Eﬂ <0

or when f < x with x = 0.

In Eq. (3.4),, 4 is a scalar function of Syy, Eyy and 0 and Bg; is a symmetric tensor
function which may be determined by the condition that during loading f = % and con-
sequently

a \_
(3.5 e - E—)- L
In order to satisfy the Clausius-Duhem entropy production inequality, the elastic
strains follow the relationship

(36) Sk = Cogps
where g, is the initial mass density and A is the Helmholtz free energy function which is
a function of Eg;, Ex; and 6. Equation (3.6) can be used to express Eg; in terms of Sgy.
Although the constitutive relationship by GREEN and NAGHDI as just described is
of a “rate type”, the effects of strain rates are not included. It is known experimentally
[11, 12] that, in one-dimensional cases, the strain rate does influence the yield stress.
Empirical relationships between yield stress and strain rate for one-dimensional cases
have been suggested [13, 14]. General constitutive relationships for rate-dependent mate-
rials, excluding thermal effects and at infinitesimal deformations, have also been suggested
[14, 15]. However, the effects of strain rates and temperature on the constitutive relation-
ships at finite strains require further investigations. In the subsequent analysis, it is assumed
that the constitutive relationship is not influenced by the strain acceleration but may be
influenced by the strain velocity such as

(3.7 Sk = Skr(Enns Exins Erin 0)-

4. Minimum principle

The true accelerations Uy and Eg; are distinguished from all possible ones by satisfying
the equations of motion in the Lagrangian coordinates:

@.1) [StL(Bmr+ Ui, D] x+00(Fy— Us) = 0,

where Fy, is the body force per unit mass. The true Piola-Kirchhoff stresses, Sg;, satisfy
the boundary conditions

4.2) SEL(Ome+ Uy, )Nk = Ty
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on that part of the initial surface area 4y, where the surface force per unit area T is
prescribed. N is the outward unit normal to A.

Consider a class of arbitrary small acceleration increments, éf;'u, which are continuous
triply differentiable over the domain ¥, and which vanish over the boundary surface
Ay, where the displacements are prescribed. Multiplying Eq. (4.1) by 86Uy, integrating
the products over ¥ and employing Eq. (4.2) and the Gauss theorem, it is found that

@3) [ TyoUudd— [ St oExdv+ [ oo FuoUaV — [ 00UsUpdv = 0.
AT 14 v v

Equations (4.3) may be restated as

(44) 600:‘; =0,

where

"2 . -
@5 J= f go%i‘-dm f S By V-~ f T Uik = f 00 Fa UnedV
¥ V AT V

and 8, J is to be interpreted as the first variation of the quantity J as the acceleration
is varied in accordance with the compatibility and boundary conditions. Equation (4.4)
states a variational principle, that is, of all accelerations satisfying the given boundary
conditions, those which satisfy the equations of motion are distinguished by a stationary
value of the functional J. Furthermore, it may be shown that the true accelerations are
those which minimize the functional J.

The functional J is a function of acceleration Uy, velocity Ui displacement Uy and
its history. Consider that the body has a prescribed or predetermined configuration and
velocity field at time #,. Let Uy, be any kinematically admissible acceleration field distinct
from the true acceleration field Us; . The difference between J*(Us:, Uz, Us) and
J(Ug, Ugy, Uyp) may be expressed as

@46 Jt—J= f %(ﬁﬁ’—f}'ﬁ)dV+ f Stu(Efy— Exp)dV
V Vv

~ [ eoFutlii= U~ [ TuWii—tiwaa.
v ¥r
The first term at the right-hand side of Eq. (4.6) may be transformed to
@n [ L @i-av = [ o0 UG- Unav- [ & k- Unrav.
v

Using Eqgs. (2.11), (4.1), (4.2) and the symmetry property of Sk., the following integrals
may be written as:

@8 [ooUiUi~Up)dv— [ ooFu(Uii—UrdaV = [ Tu(Uyi~Un)dA
v v AT
= [ {oo(Wii—Fa)~ [Stu(Owr+ Ugi, 0) &} (Uii+ Ur)a¥
v

= [ St@urt Ui, ) (U= Up) xdV = — [ StuEtr—Ex)av .
| 4 v
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Substitution of Egs. (4.7) and (4.8) into Eq. (4.6) yields

4.9) T = f-“zi(c"r;,- Up)?dv.

v
In the foregoing evaluation, it is assumed that the Piola-Kirchhoff stresses are functions
of elastic strain, plastic strain, strain velocity, temperature and their history but not strain
acceleration. As the integral at the right-hand side of Eq. (4.9) is positive definite, an
absolute minimum principle is established, i.e.

(4.10) J+-J<0.

If Piola-Kirchhoff stresses depend on strain accelerations, the minimum principle
remains valid for a limited class of acceleration fields subject to the kinematic boundary
constraints and the requirements that

Exi(St—Skr) <0in V
and
4.11) Sk =SE, on  Ar.

The minimum principle given by Eq. (4.10) shows that the acceleration field satisfying
the equations of motion and kinematic conditions at each instant is unique.

5. Discontinuous fields

It is possible to generalize the minimum principle depicted above to the acceleration
fields which have discontinuities on the surface dividing the body into a finite number of
regions inside which the accelerations are continuous. Such a generalization is necessary
since in practical problems the spatial derivatives of accelerations may be discontinuous.
The value of the functional J for the entire region of a body is equal to the sum of that
of its sub-regions such as

(5.1) T - ZJ,-,

where J; is the value of the functional for the ith region which may be bounded by a true
discontinuity surface o*, and/or an assumed discontinuity surface o. Here, a discontinuity
surface is a material interface on which the displacement, velocity and stress traction
must be continuous and they are either prescribed or pre-determined. Thus, by Eq. (4.10),
the value of the functional J;* of the true acceleration field for the ith region is less than
that of any other corresponding admissible field or

(5.2) Jr—J;<0.
Eq. (5.2) shows that

(5.3) J*—T= ) (U#-1)<0.
i
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Therefore, the minimum principle remains valid for a body having discontinuous accelera-
tion fields. Using the Green-Gauss Theorem, Eq. (5.1) may be expressed as

3 5 i
54) J= Z ¥ f & Ghav+ f Sxr ExpdV
i V—a V-0
= f@oFxt}de— fobdi”F f[SKLNK(aML'i‘UM.L)[}M]da;
¥V—o AT a

whereby the last integral is extended over all discontinuity surface ¢. Here and in the
sequel, quantities enclosed by a boldface bracket indicate the jump, that is, the difference
between their values from the positive and negative sides of the discontinuity surface.

The minimum principle obtained above may be employed to derive the exact or ap-
proximate field equations of any non-holonomic problem. However, the exact solution
of a non-linear or non-conservative problem is usually difficult to obtain. Nevertheless,
the minimum principle in conjunction with a direct variational method can be applied
to obtain an approximate solution of a problem. Two examples are given as follows.

6. Non-linear vibration of an elastic beam

Consider the large-amplitude, free vibrations of a flexible rectangular beam of uniform
width b, and thickness k and of length /. The beam is pinned at the ends to a rigid base.
The beam is initially straight and subjected to an initial axial tensile force of N,. The plane
motion of the beam may be described by the displacements (U,, U;) in the directions
of the axial and transverse coordinates (X, Z), respectively. Employing the Bernoulli-
Euler assumption, the displacements may be expressed as

Ul(X, Z, I) = U(X, t)-—ZWIx,
(1) Us(X, Z, 1) = WX, 1),

where (U, W) are the displacements of a point at the centroidal axis of the beam and
Wx = 0W/[dX. Assuming that a linear relationship between Piola-Kirchhoff stress and
Lagrangian strain prevails and that

6.2) Ui, =0,

the functional J, by Eq. (4.5), for the beam in the absence of surface tractions and body
forces, may be expressed as

I
63 J= f {“:IT EAW(W x+ W, W) +'EI[ W, xxW, xx+ % W2, xx W xx+ W)
0

1 ot . 3 T r
+ 5 Wix(W W x+ W.’x)] + 40 I Wix(W xx Wxx + Wixx)

+N°|:W,XW,X+ W+ %h‘(W,HW,H+ an)] + i‘% W22 W}x} ax,
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where E is Young’s modulus, 4 and I are the area and moment of inertia of the cross-
section, respectively.

A variation of the functional J with respect fo W may yield an equation of motion of
the beam. However, it is tedious to obtain a solution of the non-linear equation. Instead,
an approximate solution may be obtained by assuming that

(6.4) W= asinzc%{sinwr, %x=1,2,3
and
W = —w‘sinf—?isinwtéa.

Using Eq. (6.4) in the condition 8,..J =0, omitting the second and higher order terms,
and equating the coefficient of sinwt da to zero, it is found that

(6.5) w? = 0§ I+Z( )2 El(xn)) ‘

where
EI

[T

The approximate relationship between the frequency w and the amplitude ratio afh,
as given by Eq. (6.5), agrees very well with the analytical and experimental results by
RAY and BErT [16].

(6.6) w} =

7. Impulsive loading of a rigid-plastic beam with axial constraints

As another example, the subject problem solved by SymonDs and MENTEL [17] is consid-
ered. A rectangular beam (b x h) of length 2/ and mass m per unit length is subjected to
a very short pulse of uniform pressure that imparts a uniform velocity v, to the beam,
with zero initial displacement. The ends of the beam are pinned to immovable supports.
It is assumed that the Piola-Kirchhoff stress versus Lagrangian strain relationship of the
material is rigid-plastic and that the strain-rate effect is negligible. At any section, there
is an axial force N and a bending moment M. Plastic deformations occur at regions or
surfaces of discontinuities satisfying the plasticity condition [17]

.1 f(M[My, NINo) = M|My+N?[N?,—1 = 0,

where M, is the limit moment in pure bending and N, is the axial force at yield in simple
tension or compression. The corresponding flow rule [17] takes the form
(7. 2) No & N

=2,
Mo?ﬂ NO
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where ¢ is the strain at the beam center-line and # is the curvature; dots indicate time
rates.

An approximate solution of the problem may be obtained by assuming that Egs. (6.1)
and (6.2) hold for the present problem and an admissible velocity distribution, which is
symmetric and given by

W=£—Xl'w for 0< X< &,

W=¢déand W=9o for &l<X<I,

where X = & is a surface of discontinuity in W. Here v, £ and & are functions of time
with the initial conditions t = 0, 2 = v,, £ = 0 and é = 0. For the rigid-plastic beam,
Exy = 0 everywhere except at the surfaces of discontinuity, it is assumed that the square
of the slope of the deflection curve is small as compared with unity and that the axial
force N may be taken as constant along the beam. With these assumptions and the velocity
field by Eq. (7.3), the functional J, by Eq. (5.4), for this problem may be expressed as
m (0&—Ev)?l oé—Ev

3 F e

Equating the derivatives of J with respect to ¢ and £ to zero, the following two equations
are obtained:

(7.3)

(7.4) J = + mi2l(1 — &) +2(M— NJ)-

(1.5) % =0
and

. M-N§ 3
(.5 =g ol

Equation (7.5) shows that
v = 7, = constant
and
(7.7 d=uot for 0<t<t*
where t* is the time when £ first reaches the value of unity. If has been shown by SYMONDS
and MEeNTEL [17] that Eq. (7.2) may be expressed as
Ml
No = 2M,°
Employing this equation and the plasticity condition Eq. (7.1), the solution of & from
Eq. (7.6) is found to be

6M, N29v2 2 )
7.9 2= bl ok el
(7.9) £ m013(1+ vi7o A
The time ¢* may be determined by Eq. (7.9) by setting £ = 1.

For t > t*, £ = 1 = constant, there is one surface of discontinuity in acceleration at
the center of the beam. Assuming that
Xv

(7.10) W:T for 0<X<l.

(7.8)
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The functional J by Eq. (5.4) may now be written as

vig .
(1.11) J= 2['"2”' +(M+N6)-€;—:|.
Minimization of J with respect to o yields an equation which leads to the solution
6 Ng
2 —g2 _ P | 25— %) 4 0 (53 543
(7.12) 92 =93 Myml? [Mo(é 0*)+ P (6*—4 )],

where 6* = vot*. The maximum deflection which occurs at ¥ = 0, may be readily de-
termined by Eq. (7.12). The foregoing results are identical to those by SymonDs and
MENTEL [17].

8. Conclusions

An absolute minimum principle, which is based on the concept of acceleration-varia-
tions, has been developed for dynamics of elastic-plastic continua at finite deformation.
It has been shown that the principle is valid for continua whose constitutive relation-
ships are independent of strain-accelerations; for such continua, there are no stress vari-
ations accompanying strain-acceleration variations. The limitations of the principle for
strain-acceleration dependent continua may be further evaluated when specific constitutive
relationships are known.

The minimum principle is valid for continuous as well as sectionally discontinuous
acceleration fields. The minimum principle may be employed to establish governing
equations or to solve a problem by using a direct method of variational calculus.
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