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A shearing crack in a semi-space under plane strain conditions

R. DMOWSKA and B. V. KOSTROV (WARSZAWA—MOSCOW)

A TWO-DIMENSIONAL static problem for an arbitrarily situated crack in a half-plane is solved
by introducing a singular integral equation for displacement jump derivative on the crack line.
The integral equation is obtained using the solution for a single dislocation in a half-plane
and is then reduced to a set of simultaneous linear equations. Two cases are distinguished:
one, when the crack intersects the free boundary, and the other when it does not. As an example,
stress-intensity factors and the displacement jumps versus a distance along the crack for some
initial stress conditions are obtained.

W pracy zostal rozwigzany problem statyczny szczeliny $cinania w pOlprzestrzeni sprezystej
w warunkach plaskiego stanu odksztalcenia. Wprowadzono osobliwe réwnanie catkowe dla
pochodnej skoku przemieszczenia na linii szczeliny, ktore uzyskano wykorzystujac rozwiazanie
dla pojedynczej dyslokacji w poélplaszczyZnie, a nastepnie przeksztaicono je w uktad réwnan
liniowych. Uklad ten rozwiagzano numerycznie. Uwzgledniono oba mozliwe polozenia szczeliny,
tzn. szczeling, wychodzaca na powierzchni¢ pod dowolnym katem, oraz dowolnie poloZona
szczeling wewngtrzng. Na zakoriczenie pracy wykonano kilka przyktadow liczbowych, obli-
czajac wspolczynniki intensywnosci naprezen oraz rozklad przemieszczenia u wzdhuz szczeliny,
w polu statych naprezen Scinajacych. Obliczenia dotyczyly zar6wno szczelin powierzchniowych,
jak i wewnetrznych, a ich celem bylo przede wszystkim zbadanie zbieznosci uzyskanych roz-
wiazan, co zostatlo w pelni potwierdzone.

B pabore naHo peieHue IUIOCKOM 3a/1auy VIS TPELUHBI Cpesa B YIIPYToM NOJYIPOCTPAHCTRE,
Tlonb3ysick peleHHeM 1A eIMHCTBEHHOM MCNOKALMK B IIONYIIPOCTPAHCTBE BEEACHO CHHIY-
JIAPHOE MHTErPATLHOE YPaBHEHHE JUIA NPOM3BOJHOMN CKAYKA CMEINEHHMA HA JIMHHM TPELHMHLI,
KOTOpoe npeobpas’oBaHO B CHCTEMY JIHHEMHBIX YPaBHEHHit. DTy CHCTEMY pelleHO HyMepH-
ueckH. 3aflaua pellleHa 1A 00OMX BO3MOMKHBIX CIy4YaeB IIOMOYKEHMSA TPEIIMHBI, T. €. JUIA
TpPeillMHb], BRIXOAsALIEHl HA cBOBOAHYIO MOBEPXHOCT — M JULA BHYTPEHHOM TpeliuHbl, B 3a-
KIIHOUeHHH paboThl CAENMAHO HECKOIBKO HYMEPHUECKHMX IIPHMEPOB, BEIYHCIAA KO3 (UIMEHTEL
MHTEHCHBHOCTH HAaNpPMKEHWH M PACIIONOYKEHHE CMEIeHHsS U Ha TPEelIHe NPH IOCTOAHHBIX
HANDPKEHUAX, C LeNbl0 MCCIeJ0BIHHA CXOAMMOCTH IOJNIYYeHHOro B paboTe pelieHusA.

Introduction

THE FACT that a great number of crack problems have been solved reflects their importance
in the field of fracture mechanics (see, e.g., Fracture, 1968; PANASIUK, 1968). Most of
the solutions are limited to the case of tensile rupture which is of great importance for
engineering applications. Some problems of longitudinal shear cracks have also been
solved for reasons of their mathematical simplicity. In geophysical applications (i.e., earth-
quake mechanics), however, the shear cracks are of great importance because of the well-
known fact that compressive stresses in the earth’s interior must be very high. We shall not
enter into discussion of possible mechanisms of sliding deep in the interior of the earth, but
we shall mention here that the shear crack with friction may be a very good model for
faulting in earthquakes sources (AkI, 1971, BURRIDGE and HALLIDAY, 1971). When con-
sidering corresponding problems we must take into account surface of the earth which
is free of tractions. A somewhat usual case is, when the fault is strongly elongated and
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parallel to the earth’s surface so that the problem may be reduced to the two-dimensional
one.

Recently, such a problem was studied for the case of strike-slip fault — i.e., for a lon-
gitudinal shear model [5, 14, 15, 16]. For dip-slip fault, when displacements are in the
vertical plane, the corresponding problem refers to the plane strain. Although methods for
solving plane crack problems in a half-space have been developed (BowiEg, SAVIN, SIH,
Paris, ERDOGAN), they are useful only for tensile cracks because they are based on the con-
formal mapping, and for shear crack the normal components of displacement and stress
vectors must be continuous across the crack surface, which after the mapping cannot be
reformulated as a local condition. Owing to the lack of a proper mathematical technique,
some simplified models were considered — that of a single dislocation line within a half-
space or some prescribed distribution of dislocations on plane of the fault (CHINNERY
and PETRAK, 1968).

This suggests the following approach to the crack problem:

(a) introduce an initially unknown distribution of edge dislocations, slip planes of
which coincide with the crack plane;

(b) solve the problem of a given distribution of dislocations for the shear stress on
the crack plane;

(c) requiring the stress to be the prescribed stress on the crack, obtain an integral
equation for the dislocation density;

(d) then, solving the equation numerically, obtain the solution of the crack problem.

Such an approach is realized below.

1. Mathematical formulation

Consider a homogeneous elastic half-space having Lame’s constants A and x and
containing a strip-line crack which reaches the surface (surface crack, Fig. la) or is em-
bedded into the half-space (internal crack, Fig. 1b).

a b

FiG. 1.

Denote by o the angle between the surface of the half-space, and normal to the crack.
Let us assume that external loads would create in a half-space without a crack a stress
field o7}, which would not depend on the coordinate along the crack edge (x3). Then we
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obtain a plane strain problem, when no quantities depend of x, (Fig. 2a and 2b), and
the crack surface is given by

(1.1) x, = —ssina, x, =scosa, O0<s<b
for surface crack, or
(1.1 X, = —ssina, Xx, =scosa, a<s<b

for internal crack.

Our objective is to find the stress perturbation which is connected with introduction of
the crack into the half-space. The corresponding displacement vector (u,, u,) will be con-
nected with the stress field perturbed by the crack formation as follows:

(]2} gij = 0‘3'1‘ Auk,k+2pu;,,-, I.,j, k = l, 2,

where the comma denotes partial differentiation with respect to the Cartesian coordinates
and the summation convention is assumed. Equation (1.2) may be rewritten in the form:

(12') Ty = lu,‘,;+2pu;,,-, f,j,k = 1, 2,

where 7;; = o;;—of} is the stress disturbance created by the crack.
We suggest that the external forces do not change during the crack formation.
Then 7;; will satisfy the homogeneous equilibrium equations

(}.3) Tij,j = 0

and, independently from external tractions applied to the surface x, = 0, disturbance 7
must satisfy the following boundary condition:

(1.4) 7, =0 for x,=0, i=1,2.

Let us assume, that the confining pressure corresponding to the initial stress off is
sufficiently high to prevent any opening of the crack —i.e., the crack is a purely shear
one. Consequently, we obtain the following condition on the crack line:

(1.5) uf —u; =0 on the crack surface,

3 Arch. Mech. Stos. nr 3/73
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where u, = u;n; = u;cosa+u,sina, and “plus” and “minus” superscripts denote here
and hereinafter quantities on different sides of the crack, as in Fig. 2.
Also, the normal component of the stress must be continuous on the crack, which

gives
(1.6) r—1y =0,
because all components of the initial stress ¢} are continuous. Here
Ty = Tymn; = Ty, c0s%a+7;,8in%a+ 27, cosasing.

For the sake of simplicity, we assume that there is no friction between the crack sides.
Then shear stress on the crack line must be zero, or

(L7 7, = —af = f(s),

where

1 2
7, = T(122—-.-:“)s'.mZ.-:t:+rlzt:m’.Z{:lt, and

(1.8) f) = —a? = —ll, (09, —02,)sin2a— 62, cos 2x

is a given function on a crack line [Eq. (1.1) or (1.1')].

Since the displacement »; must be singlevalued, one has the following conditions at
infinity :
(1.9 -0 as r— oo,

where r = ]./ x%+x2. Then, for stress components, it follows that
(1.9) 7;=00"% as r- .

For a surface crack [Eq. (1.1)] an additional condition must be stated at the point
r = 0 which provides the uniqueness of the solution:

(1.10) 7;=00%) a r-0, A>-1l.

Equations (1.2), (1.3), together with the boundary conditions (1.4) to (1.7) and the
additional conditions (1.9) to (1.10), constitute complete mathematical formulation of
the problem under consideration.

Unfortunately, there does not exist any straightforward analytical approach to the
problem. There exists, however, a closely related problem, solution of which may be
obtained very easily — namely, the problem of Somigliana’s dislocation. This problem
differs from that just formulated in that the condition (1.7) is relaxed to

(1.11) tt—17 =0 on the crack line,

and an additional condition which specifies the tangential displacement jump is formul-
ated:

(1.12) ut—u;y = u(s) on the crack line.

Here u; = —u,sina+u,cosa, and the function u(s) is assumed to be known. Suppose
that the analytical solution for the last problem is constructed for an arbitrary function
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u(s). Then, if we were able to find such a function u(s) that the corresponding shear stress
distribution would be f(s), our main problem would be solved. Next, the problem of
Somigliana dislocation may be reduced to the Volterra one, which is characterized by
the specific function u(s):

for s<ysy,

1
(1'13) H(S) o ﬂy(s, Sl) o {0

for s>3,.

In fact, if ={}? (x,, x5, 5,) is the stress solution for the function (1.13), then, from the
linearity of the problem, the stress solution for the arbitrary function u(s) will be given by

o

(1.14) T, x2) = = [ 0(s) 11, %3, 51)dsy,
0

where the prime denotes the derivative with respect to s, .

Now observe, that in our crack problem the displacement jump and its derivative
outside the crack equal zero. Then, using the condition (1.7), we obtain the following
equation for u'(s;):

(1.15) [ s, spu'(s))ds, = —f(s),

b
where 7{)(s, s,) is the shear stress on the crack line corresponding to the Volterra dis-
location situated at s = 5, (or, more precisely, at the point x, = —s,sina, x, = 5, cosa).

Since the Eq. (1.15) contains only the displacement jump derivative u'(s,), in the case
of an internal crack the following condition ensuring displacement continuity outside
the crack line must be added to the equation:

(1.16a) u(@—ud) =0
or

b
(1.16b) Ju(syds=o.

In the next section, we obtain a convenient expression for {"(s, s,).

2. Solution for a single dislocation

We start from the general solution of the Egs. (1.2') and (1.3) in the Kolosov-Musk-
helishvili form (MUskHeLISHVILI [10]):

T+ 7 = 2(‘15(2)"'6(7));
Ty2— Ty +2iT; = 2('@’(2)+W(2));
2.2) 2u(uy +iuy) = xp(2)—zP(2)—9(z),

where z = x, +ix;, the prime means derivative with respect to z, the bar denotes complex
conjugation, and

@1

A+3pu

2.3) gt

3
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The function @, ¥ and ¢, y are related by
2.9) D) = ¢'(2); ¥()=vy'(2),
and all the functions must be holomorphic whereever the medium is assumed to be con-

tinuous.
Therefore, in our problem of single dislocation @ and ¥ must be holomorphic every-
where in the half-plane Imz > 0, excluding the point z = z,,

(2.5) zy = —sysina+is,cosa = is, €,

where the dislocation must be situated. In the vicinity of this point, the stress components
may have singularity of the first order. From the Eq. (2.1) it follows then that @(z) may
have at z = z, a simple pole, whereas ¥ may have a pole of second order. The corres-
ponding representation for @(z) and ¥(z) would have the form

0@) = ;5 +0,0),

2.6
) b az,

-2 * (z—2y)?
where @, (z) and ¥, (z) are holomorphic in the half-plane, and @ and b are complex num-

bers.
The functions @ and v, and consequently the displacement components, will not be

singlevalued within the half-space, but if we make a cut from z = z, to z = 0, then the
displacements will be single-valued and will have a jump across the cut.

From the conditions (1.5) and (1.13) it follows that the complex displacement jump
must be equal to ie®™ Then from (2.2), (2.4) and (2.6), we have:
@7 27i(b+xa) = —2uie®.

From the condition that no external force is applied on the dislocation point we obtain
(MUSKHELISHVILI, 1966):
(2.8) 2ni(a—b) = 0.

It follows then that

+!{ll(z):

Y(z) = -

iV R S
@9 @ = O ax+1)

It now remains only to calculate the functions @, and ¥;, holomorphic everywhere
within the half-space. To this end, we use the boundary conditions on the half-space surface
(1.4) or
(2.10) ng'f‘l‘flz = 0 fOl‘ Xz = O.

Using the Eqs. (2.1) and (2.6), we obtain:
efd +e- ix

X, —24

et

Ty +iTyy = By (x,)+ P, (xy) +x, Dy (x) + ¥, (x)) ~ n(:_'_ i) {

+ =
X, —Z (xy=2,)?
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Note that @, (x,) is a boundary value of a function which is holomorphic within the
half-plane Imz < 0, and rewrite this equation in the following form:

ei’} = =@, (x;)—x, Di(x,)

any Bay-—2 {2cosa X1 —Z,

alet) \xi—z,  (x—2z,)?

" e~ ix
aGet1) x -z,
Both sides of the Eq. (2.11) are boundary values of functions which are holomorphic
within the upper and lower half-planes, respectively, and consequently are holomorphic
everywhere. It follows from the condition (1.9°) that the functions must tend to zero at
infinity. We conclude then that both sides of the Eq. (2.11) are equal to zero. Now, we
easily find that

=¥ () +

o 2cosa  z—zy g,

5 0.6 = ety ane ~ e
—ix

(2.13) V@) = oty 55~ 2@ -29i0).

The Egs. (2.6), (2.9), (2.12) and (2.13) constitute the solution sought for. From (2.6)
it follows that the normal and shear components of stress on the crack line are given by

2.14) ) —it™") = B(2) - B(z) - e**(zg' (2) + ¥ (2)).-

Now, using the Egs. (2.6), (2.9) and (2.12) to (2.14) and evaluating the real and imagin-
ary parts of the Eq. 2.14, we obtain:

ale+1) o, 1 s+ 5, cos2a
(215) 2u o= §—S8;  S*+5,2+2s5,c082a
45, cosa(s—s,)(s>cos 3o+ 3525, cosa+ Isscos o+ 53 cos 3}
(524 5%+ 255, cos2a)®
and
2.16) a(xz+1) ) = 4s2cos?a(s®sinda + 3525, sin 20— s3sin 2¢)
' 2 " (s2+53 + 255, cos 2a)®

Now, we are in a position to return to our basic crack problem.

3. Integral equation for the crack problem

Introducing the expression for 7{"? from the Eq. (2.15) into the Eq. (1.15), we obtain
the following singular integral equation for u'(s), the derivative of the displacement jump:

b b
1 ‘'(s,)d 1 3 +1
@.1) ;f”—ﬁ‘—l% + ;fK(s,sl)u (n)dsy ="75 ) for a<s<b,

where
5§+ 5, cos2a
(s2+57+ 255, cos2a)
45, cosa(s—s,) (s°cos 3a+ 355, cos a+3s{scos a+57 cos 3a)
(s2+5%+2s5, cos2a)? ’

(32 K(ss) =
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For the surface crack, we obtain the same integral equation, where only a must be
replaced by zero.

Though we have restricted ourselves to the case in which there is no friction between
crack surfaces, we note here that friction may easily be accounted for by a slight modifi-
cation of the above equations. Consider, for example, the case of Coulomb friction. Then
in place of the condition (1.7), we should have:

(3.3) o+ ko, =0,

where k is the coefficient of friction. Introducing into this equation the stress perturba-
tions 7, and 7,, we obtain:

3.4 T,—kt, = —a?—kd?.

Now, after examining the previous considerations, we conclude that to account for
friction we must put

35) ety
and

B s+5;c082a
(3.6) K(s,s5)) = (52452 + 255, cos 2at)

& 45, coso(s—s,) (s*cos3a+ 3525, cos a+ 3sscos a+ 55 cos 3a)
(s2+ 5%+ 2ss,cos2a)?

452 cos?a(s3sin 4o+ 3s2s, sin 20— 3 sin 20)
(s% 452+ 255, cos20)

+k

We shall not go into greater detail of the friction case, but one must understand
that in this case essential properties of the integral equations will be the same as for
the case without friction, which will be explained below.

The properties of the integral equation (3.1) are quite different, depending on whether
the crack is internal or the surface one.

If a # 0 (internal crack), the Eq. (3.1) is a common singular integral equation of the
type thoroughly studied elsewhere (see, e.g., MUSKHELISHVILI). Without going into detail,
let us note here that the Eq. (3.1), together with the condition (1.16b), has a unique so-
lution, which has the inverse square root singularities at s = g and s = b:

3.7 u'(s) = 0((s—a) _%) ass—a+, and

u'(s) = 0((.6—5)%) as s — b—.

At the other points between a and b, u'(s) has the same smoothness as the right-hand
side of the Eq. (3.1). This suggests the following representation for u'(s):

. o(5) x+1
o O Vane-a

where ©(s) is a smooth function of s.
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Then the Eq. (3.1) takes the following form:

v(s;)ds,
3.9 f GBIV O—06 - (Sl_a) f K(s, s;)e(s 1)

For fracture mechanics, of the greatest importance are stress intensity factors —i.e., the
coefficients in the asymptotic representation of the stress (in the case under consider-
ation the shear stress 7,), having the form:

= f(s).

-5 )(31"‘“)

T zfz%i)—__) as s—b+, and
-5
(3.10) (@)
as §=a—.
1/ 2(s—a)
We easily obtain from the Eq. (3.9) the expressions for K(a) and K(b):
2 2
(3.11) K@) = ]/b—a ‘0(@), K@) = h]/!—’-_—a o(b).

Now, the case of surface crack (@ = 0) is more complicated. In this case, the kernel
K(s, s5,) has a singularity at the point s = 0, s, = 0, so that the usual theory of singular
integral equations cannot be applied. The scope of this paper does not permit us to study
the equation thoroughly. Using the fact that the crack problem with the additional condi-
tion (1.10) has a unique solution, we can prove that the solution of the equation is also
unique. A proof of the existence of the solution would be rather difficult. So we restrict
ourselves here to investigation of the behaviour of the solution at the end points s = 0
and s = b, assuming its existence. Usual methods give the following asymptotic re-
presentation for the vicinity of s = b:

(3.12) W)~ ———— as s b—.

Obtainment of an asymptotic representation of the solution near the point s = 0
needs rather sophisticated treatment. However, owing to the great importance of this
point, we describe it in greater detail in the Appendix.

As is shown there, the asymptotic representation of u’(s) near the point s = 0 has
the form:

(3.13) u(s) = Re ) us™,  (Ref, > —1),

where u, are unknown constants and g, are roots of the following equation:
(3.14)  2cosmf—f(f+1)cos2af—28(f+2)cos2a(f+1)—(B+1)(B+2)cos2a(f+2) =
It may be shown that this equation has no roots between —1 and 0. So the main term
of the expansion (3.13) is
(3.15) u'(s) = Reu,s”,

where Ref; > 0 and Img, # 0.
From (3.15) it is seen that u'(s) tends to zero as s — 0. This fact will be of substantial
use for the algorithm which is developed in the following section.
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4. Reduction to a set of simultaneous linear equations
4.1. Internal crack

For numerical solution of the Eq. (3.9), we shall replace it approximately by a set of
simultaneous linear equations. For this purpose, we shall use the Hermite quadrature
formula to represent the integral

b

I;J‘K(S,Sl) '/ﬂ(sl)sdsl ’

-a)s—b)
which gives
v(s,)dsy c

4.1 — [ &G, Z

( ) f ( 1) ]/(S a)(s b) < K(S,Sm)ﬂ(sm)?
where

a+b b—a

4.2) s,,_—T+——2—x,.., M= N
Here, x,, are the zeros of T,(x), the Tschebyscheff polynomial of order , first kind —i.e.,
43) X = COS 2’"2; LI

A similar representation for a singular integral

f v(s,)dsy
(s:—5)V (s—a) (s=b)

may be obtained as a specific case of the general formula derived by KorNEICHUK [8],

which in our case gives:
( 2s b+a)
b n Un_1 B e G
_l_f o(s,)ds, _ 1o v(sm) b-a b-a
(51

—)/G-a6=b) 7 & Gn=9) Up1 (o) ’
where U,_,(x) is the Tschebyscheff polynomial of second kind, and s,,, x, are defined
in the Eq. (4.2), (4.3).

So the Eq. (3.9) can be written in the approximate form:

o U (_ﬁ___ b+a)
B 5 R — T

1 O
+— P 06K, $m) = f(5)-
m=1
To obtain from this equation a set of simultaneous algebraic equations, it is convenient
to set

(4.6) s=!x=——+T}'b k=1,..,n=1,
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where y, are the roots of U,_,(y) —i.e
k
Ve = cosvni, k=1,..,n—1.

Then the second term in brackets in the Eq. (4.5) vanishes and we have:

@) —2 (s,..)[

m=1

+K(tk,s,,,)] =fit), k=1,..,n-1.

To complete the set of equations, we must represent the additional condition (1.16b)
using the expression (3.8) and Hermite’s formula, which gives

4.8 % Z‘ b(Es) = 0

This formula gives just the last, n-th equation of the set.
Now, once the set is solved, the values of v(s) at any point may be obtained by in-

terpolation. The corresponding expression is

n-1 n
@9) o) == ) (Z o(5m) n(x..,)) :r,,(z‘b o ").

k=0 "m=1

for s = a and s = b, this expression simplifies to

(4.10) d(b) = .,11_ 20(5,,.)(1 + (1= %n)" Ty 1 ()

and "

.11) v(a) = % Z V(Spome 1) (1 + (1= X) 7 To g (X))
m=1

We may easily obtain the appropriate formulae for coefficients of intensity K(a) and
K(b), substituting these equations into the expressions (3.11).

The formula for the displacement jump u(s) is obtained by integration of the Eq. (3.8),
using the expression (4.9), which gives

@12)  u(s) = — "211 (Z v(s,,.)) arccosz—‘;—faﬁ

m=1

n-1 n e
%+l 3(2?}@“)1,*(%))&_1(22 aa b) 4G bS)E: a)

2# k=1 k m=0

Owing to the condition (4.8), the first term vanishes, and for the case of internal crack
with which we are dealing, we have finally:

@13) u)=-2F1 Z (2 g(s,,)n(x,.))m_ (2‘ == ”)‘/(" o E
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4.2, Surface crack

It is rather difficult to achieve a good numerical approximation for the behaviour
of the solution as described by the Eq. (3.15). We choose here a somewhat simplified way.
As may be seen from the asymptotic representation of the solution near the point s = 0,
u'(s) is finite and even u’(s) = 0 at the point s = 0; thus it could be expanded into Fourier
series by means of Tschebyscheff polynomials.

Now, after replacing v(s) by the part of this expansion and then using interpolation
formulae, we obtain the same set of equations (4.7) as for the inner crack. Instead of the
Eq. (4.8) there must remain the following equation, obtained from the Eq. (4.11) and
the condition that u'(s) tends to zero as s — 0:

(4.14) % Zﬂ(s,,,) (1 +(=D"*"(1 +x,..}“T,,_1(x,,.)) = 0.
m=0

With this equation we obtain, of course, K(0) = 0. Physically speaking this condition
means that there exist no bonds between the crack sides at the point s = 0 —i.e., on the
free surface.

Note that to calculate the displacement jump the Eq. (4.12) must be used — not the
Eq. (4.13).

The numerical solution of the surface crack problem so obtained should be convergent
with the exact one with n — co. In the next section, we shall consider numerical solutions
for some particular examples which would suggest that sufficient accuracy may be reached
with not very large n.

5. Computational results

As an example of the mathematical method presented above, we computed numerically
the displacement jump dependence and stress-intensity factors for a number of surface

u

o

0 05 1

LINE 4 2 3 4
n 10 20 30 40
KB 1a | 147 | 449 | 450

FiG. 3.

and internal cracks with different lengths, in a field of given constant shear stress acting
along a crack line. Qur main object was to study the convergence of the numerical solution
to the exact one with # — co. We have restricted ourselves here to the mathematical problem
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mentioned above, leaving for future research such physical questions as the dependence
of the displacement jump and stress-intensity factors on the length and position of the
crack, stress field and material constants,

Comparison of the numerical results obtained for n = 10, 20, 30 and 40 with all the
other parameters — such as stress field, length and position of the crack and material
constants being fixed (Fig. 3) — clearly shows their convergence. It is obvious that the
higher is n, the better the coincidence between the results obtained and the exact solu-
tion with n — co. But let us recall here that in increasing the number of equations n we
increase above all the number of points near the crack ends (see our definition of x,, 4.3).
It can be seen from our results that n = 40 gives sufficient accuracy of the solution and
there is no use in further increasing this value.

6. Conclusions

The solution presented above for an arbitrarily situated shearing crack in a semi-space
under plane strain conditions opens up a prospect, for future applications of the results
in different branches of science. It would be particularly valuable in the physics of the
earth’s interior, and, especially, in earthquakes mechanics. In this last application, how-
ever, one should probably consider a crack with some kind of friction between its surfaces,
so that it is necessary to take in mind that in such a case the kernel K(s, 5s,) described
by the Eq. (3.2) must be replaced by the Eq. (3.6). In this case, the essential properties of
the integral equations will be the same as for the case without friction, which we have
solved above.

Appendix

Investigation of the asymptotic behaviour of the displacement jump derivative for
a surface crack

Here, we shall study the asymptotic behaviour (for small s) of the solution for the case
of surface crack when the integral equation has the form:

b
(A.1) jlt f u'(si)[sll_s +K(s,s,)] ds, = J(s) "2:1 :

Consider a number 0 <& < b and rewrite the equation for 0 < 5 <¢ as follows:

x+1
2

a2y —f u'(a)[;f;%(aa)} ds, = fis)

b
—— [t [—~Sl’_s +K(s,s1)]ds1-
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Assume that for s < e the function f(s) may be expanded into a power series —i.e.,

a3) )2 Zf,. ,

n=0

and suppose that for the same values of s there exists an asymptotic expansion for the
solution

o) Wis) = ) siun(si),
n=0

where A, are real numbers such as

(A.5) -1<4<0
and
(A.6) u,(s,) =0(1) as s, -0,

This expansion is consistent with the additional condition (4.8).
Now, for s < & < s5,, we have the expansions

o0

==
A sims T 4T
n=0
and
sﬂ
(A.8) K(s,s,) = 2 Cn T
n=0

The last equation is easily obtained from the expression (3.11) for K(s, s,).
Introducing the expansions (A.3) to (A.8) into the Eq. (A.2), we have

A9) 2 f“*«u..(sl)[

n=0

+K(s, soil ds,
< F o ds
= Z g_%(1+c,)fu‘(sx);,i.+—’1+fn}3'
n=0 €

Qo(s, 51)
P(s,s,)’

where Qo(s, 5;) and P(s, s,) are the homogeneous polynomials of orders five and six,
respectively:

Now observe that K(s, s,) has the form:

(A.10) K(s,s1) =

5
Qo(s, s,) = 2“&0}3?45&,
k=0

A.11) !
P(s, 5;) = 2 bys§—ks*

k=0
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It is easy to prove the following identity:

n - Q,,(S Sl) Z m—1
(A.12) S1K(s, 5,) = 5" PG5 + CusT ™
where
5
(A.13) 0u(s, 51) = D, afPsi~ksk
k=0
and
_ o
(A.14) en =
(A.15) a™ = g —cubrpr, k=0,1,..,4,
(A.16) a™tV = —¢,b¢.

Observing that for s < 5;
8" On(s, 81) _
pow 51 PGS, 50

and comparing (A.12) with (A.8), we conclude that c,, as defined by (A.14) is the same
as in the expansion (A.8).
Now, defining the kernel K, (s, s,) by

Qn(s! 51)
P(s,s,)’

it is easy to see, that K,(s, s,) has the same properties as K(s, 5;), and that there exists
for s < s, the following expansion:

(Avl?) K, (s, 51) =

(- +]
Sﬂ

(A.18) K(s, s1) = ZC"H'"STT.

m=0
Using (A.12), (A.17) and the obwious identity
n-1
S: = n—m=1.m s
EAst) S~ 23" ol $;—$

and changing the summation order, we obtain from (A.9):

o Y| sf»u..(sl)[s—'—ﬁxu(s,s;)]dsl
0 A

n=0

+s" 2 (1+¢,) fs"“‘* a5 ‘u,,(s,)dsl} ‘f;.—-—(l+c,,)fu (sl)s‘"‘lds'i}.

m=n+1 n=0
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Now, using the expansion (A.4) we can obtain the obvious identity

(A.21) Z f Tty (s,)ds, + Zf p. f -1y (s,)ds,

m=n+10 m=0

=f. p. f u'(sy) sy 'ds,,
0

where f.p. denotes the finite part of a diverging integral in the sense of HADAMARD [Cou-
RANT and HILBERT).
Substracting (A.21) multiplied by (1+¢,) from each term of (A.20), we obtain:

(A.22) —s t f stnuy(s,) [-——— + K, (s, sl)] ds,
=0

n

Z (1+e)f. p. fs"""m‘“ ‘u..(sl)dsl} Z ‘ﬂ.«-——(l+c,)fpf ’(sl)s‘"""ds',}.

m=0

Let us change the summation order in the left side of the Eq. (A.22). Then,

(A.23) 2 % ‘S- f ;;m,,(sl)[}i? +K,(s, s,)] ds,

n=0 0
Z (14 ¢,)s™f. p. f e u,,(sl)dsi} = \ lf;
nna

- —(l+c,,)f p. fu (s.)s""'id'.'l}.

Introducing new variables by

s=ef, s =en,
we have

(A24) Zlaﬂln{e"lw.fen)[ +K(E, n)]dﬂ

=0
- 2(l+c,,}f’f p. frj"*"m m-1ly (sn)dn} je"f"{ﬁ.

m=n m=0

..._xl_(l-}-c,,)f. p.Ju'(s,)s;’“‘dvl}.
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Since the powers of ¢ are linearly independent, we conclude that if 2, # 0, then

1
asa) n‘»u,.(sn)[?‘f +K m]dﬂ
0

© 1
1O d
_;Z (1+cuen) L. p-ofn‘"u.(sn)n.—i =5

m=0

b
(A.24b) ?lz-f. p.!u'(sl}sf""‘ds', = ful(1+cy).

In the case, if 4, = 0, we obtain only one equation:

m=0

;lt"&f H.(m)[n—‘_ls" +Ku(5, ﬂ)]dfi— %Z(I'}‘Cuq,n)é“f. paf u”(en) %

b
=f;—% (1+¢p)f. p.!u'(sl)s;"“dsl.

However, because ¢ is an arbitrary constant, it may be proved that a solution of the
last equation may be obtained only if the right-hand term is equal to zero. So for 4, = 0,
we return to the pair of equations (A.24a), (A.24b).

Next, we shall solve the Eq. (A.24a). At this point let us observe first that the equation
is homogeneous, and consequently it permits the trivial solution u, = 0. It is understood
that a nontrivial solution may exist only for certain discrete values of 4,. Later, we shall
construct an equation the roots of which will be equal to 4,.

Let us demonstrate here that in the Eq. (A.24a) an arbitrary number R > 1.
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may be chosen for the upper limit of integration. In fact, we consider the
integral

R
1 1
| whaten [ he +xEn ]

for & < 1. Here, the expression in brackets may be expanded into the power series in terms
of &/n, which gives

= fﬂ‘"u,(en)[——+K(E 7?)] dn = Z (1+Cusm) ™ f N mtim(en) — n,,,ﬂ ;

m=0

We can now easily obtain the conclusion desired.

With this fact we begin from defining a function U,(n) of the complex variable #,
which is regular everywhere outside the cut along the positive real axis, and such that
(A.29) Un(1+i0)— Up(n—i0) = n*U,(n)
for all positive . Then, the integrals in the appropriately prepared Eq. (A.24a) may be

reduced to contour integrals along a loop (Fig. 4) around the part of the real axis from
0 to 7, and the equation can then be rewritten in the form:

(A26) - V.P. fU(sn)[ L] Y et

m=0
d
X f U,,(sq)n—;;?_-l- =0
Lo

Now, in each term of the series, the contour of the integration may be deformed into
the circular path Cg of radius R. On Cy the modulus of # is equal to unity and for £ < R
we can exchange the order of integration and summation, which in view of the expansions
(A.18) and (A.7) gives in place of (A.26) the following expression:

(A.27) V. P JU(&;)[ LK, n)]dn

where Zy, is a closed contour consxstmg of the loop & together with the path Cg.
From (A.17), (A.12) and (A.19) we have the following identity-

) 2/ (1+cp)sT s,

m=1
Introducing this into the Eq. (A.27), and observing that the last sum is regular within
Fr, We obtain:

1
(A.29) -V P f(en)”U,.(ag) [1?—1_&_- +K(, ??)] dn=0
Zr

1 _ st
(A.28) I:;-!—K,.(s, §) = o (

Using the fact that the solution must be a homogeneous function, it is easy to prove
that the solution of this equation may have only the power form:

(A.30) (en)"Un(en) = C(eny’,
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where C is an arbitrary constant and f# is some complex number to be determined later.
From (A.27), (A.30) we observe that the real part of £ is equal to n+4,.
Now, the kernel K(&, ) as determined in the Eq. (3.2) may be represented as follows:
e g 1ia dncosa(E—mn)
ettt + 7+ Ee 2 +e T+ Eetyp
e |
It is seen that K(£, %) is a regular function of % everywhere except the poles at
n = —&e* and = —&e~?%, Thus, introducing (A.24) and (A.31) into (A.29), the left
side of this equation is reduced to the sum of residues at = &, 5 = —&e** and 7 =
= —£e~2%_ After some rearangement, we obtain:

(A32) iCe™[2cosnf—pB(B+1)cos2af—28(8+2)cos2a(f+1)
— B+ 1) (B+2)cos2a(B+2)1(e&)f = 0.

Since the equation must be satisfied for any &, the expression in brackets ought to
be zero —i.e.,

@3 KEn=+|

+e

(A.33) [2cosmf—B(B+ 1)cos2af —2B8(B +2)cos2a(f+1)

—(B+1)(f+2)cos2a(f+2)] =0,
where the factor (sinzf)~! is introduced to accent the fact that integer roots of the equa-

tion are unsatisfactory. This is the equation determining A,. Now, the asymptotic ex-
pansion may be rewritten in more convenient form:

(A.34) u'(s) = ReZu,s®, Ref, > 1,

where u, are arbitrary constants and f, are the roots of the Eq. (A.33).

The Eqs. (A.33), (A.34) and (A.35) complete the result sought for.

For the sake of completeness we note here that the Eq. (A.24) with the Eq. (A.1),
rewritten for the interval < ¢, b > only

1
sinzf

x+1
2p

b
A3 — [ [ﬁ +KG, sl)]dsl e

1\ [
S Relu, | sir + K(s,s5,) |ds;), Refl,> -1, e<s<b,
7T J Sy —35

may be used for determination of the constants u,,.
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