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An anisotropic linear Cosserat surface and linear shell theory

Z.T. KURLANDZKA (WARSZAWA)

THE AM of the paper is to show that the state of stress and strain of the middle surface of
a thin elastic shell is equivalent to the state of stress and strain of a certain anisotropic, elastic
Cosserat surface if external loads are equal. To this end, the basic definitions and equations
of the Cosserat theory in the case of the anisotropic Cosserat surface and those of the linear
shell theory are taken into consideration. It is shown then that if certain assumptions are
made, the equations of the Cosserat surface and the linear shell theory are identical.

W pracy wykazuje si¢, ze stan napre¢zenia i odksztalcenia powierzchni $rodkowej liniowej po-
wloki sprezystej jest rownowazny przy pewnych zalozeniach stanowi naprezenia i odksztalcenia
w anizotropowej powierzchni Cosseratéw, Podano definicje i podstawowe réwnania dla spre-
zystej powierzchni Cosseratéw opierajac si¢ na modelu Voigta. Przytoczono podstawowe
réwnania liniowej teorii powlok cienkich a nastepnie wykazano, Zze przy pewnych zaloze-
niach réwnania obu teorii sa identyczne.

B cratee mokasaHo, YTO HaNpsiKeHHOE M AedOpPMHPOBAHHOE COCTOAHME CPEJMHHON IOBEpX-
HOCTH JMHeiHON# ynpyro#f 00OJOYKH SKBHBANEHTHBI, IPH HEKOTOPBIX NPEITIOIOMKEHHAX,
HANPKEHHOMY M JedopMHPOBAHHOMY COCTOAHHAM aHM30TponHoM moBepxHocTH Koccepa.
HaroTcst ompefieleHHe H OCHOBHBIE YDaBHEHH#, OIMCHLIBAIOIHE YIPYTVIO IoBepxHocTs Koc-
cepa, Opu4em MCXomHoll senAercAa mofens Doiita. IIPHBOAATCA OCHOBHBIE YDABHEHHH JIH-
HeifHOit TeopMH TOHKHMX 000JI0OYEK, a 3aTeM JaeTCA JOKA3aTeNILCTBO, YTO IPH HEKOTOPBIX fIpe-
MOJIOXKEHHAX ypaBHeHHs obOMX TeopHil COBMAJAioT.

1. Introduction

THE PURPOSE of the paper is to obtain the equations of the linear elastic theory of thin
shells on the basis of the model of an anisotropic Cosserat surface.

The linear elastic shell theory has been obtained from the model of the classical elastic
continuum. Physical and geometrical assumptions used there lead to the equations de-
scribing a medium the natural model of which is the Cosserat surface. These equation
contain such quantities as stress and couple resultants, displacements and rotations — that
is, quantities the physical meaning of which is the same as the meaning of corresponding
quantities used in description of the Cosserat medium.

Throughout the paper, the basic definitions and equations of the Cosserat theory in
a case of the Cosserat surface will be used as well as those of the linear shell theory. Then
the identity of both models is shown, if proper values of the elastic tensors are chosen and
certain associations of dynamical and geometrical quantities of the micropolar elasticity
and those of the shell theory are assumed. This makes it possible to apply the results
obtained in the Cosserat theory to the linear elastic shell theory.

The problem of applying of the Cosserat theory to derivation equilibrium equations
(in stresses) of the shell theory has been considered by J. L. ERICKSEN and. C. TRUESDELL
[1]. In their paper, a generalized Cosserat medium was considered but without any consti-
tutive assumptions.



614 Z.T. KURLANDZKA

A. E. Green, P. M. Nagup! and W. L. WAINWRIGHT considered in their papers [2,
3, 4, 5] a general theory of the Cosserat surface. In paper [4], A. E. GREEN and P. M. NAGHDI
considered an isotropic Cosserat surface and indicated the possibility of obtaining certain
equations of the Kirchhoff-Love theory.

2. The coordinate system

The considerations presented here will involve the curvilinear coordinate system (x%)
referred to a fixed right-handed Cartesian system (z°), (i = 1,2, 3) by
i
2.1) x' = xi(z}, 22, 2%, det [___axi ] > 0.
0z
Let us consider a surface x* = 0 and identify x' as convected coordinates with x*
(x = 1,2) and x* along the normal to the surface.
Throughout the paper, Latin indices will range over the values (1, 2, 3) while the Greek
ones will be required to have the values (1, 2).
For the base vectors g; of the system (x'), we have:

2.2) 8 8 =&upr B8 =0, gg=1 g =8

The base vectors g;, when evaluated on the surface x; = 0, are g, = a,, g3 = a; and
the metric tensor of (x') when evaluated on x; = 0 is:

ayg] 0
@3) Suba-o = [[ 3 1]’

where [a,] is the surface metric tensor.
In the coordinate system considered here, the only non-vanishing Christoffel symbols
are I'g;, I'gs, I'ss, and on the surface x* = 0 we have:

(2-4) Fgﬁlﬂ:o o bap, I‘é,ﬂ]x:.:o = —bS,

where b,; is the second fundamental form of the surface.

The covariant derivative will be designated by a stroke (]). The covariant differentiation
with respect to the surface metric will be designated by double strokes (||) and when applied
to a surface tensor reads:

@3) A%lly = A%, + T3, A%~ T3, 4%,
where I_‘g, = I'§ |:s-o. Note that the covariant derivative of the surface tensor is:

2.6) A%ly = A%lly— b5 4% —bgy A’s.

3. An anisotropic Cosserat surface

Analogously as in three-dimensional case, definition of the Cosserat surface is assumed
here according to the Voigt model [7]. A surface such that actions between its two parts
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are defined by the stress vector and couple stress vector will be called the Cosserat surface.
A stress vector and a couple stress vector are defined by:
. AT . AM

3.1 = lim—.,-, m=lim-= ,
& P = o T
where AT is a force acting on the line element A/ of the surface and 4 11is a couple acting
on the element A/,

Let us consider a surface x* = 0. Over a curve with unit normal vector n = n,a%
there acts the force vector p. If the stress (physical), vectors acting over each coordinate
line are p*? (Fig. 1), we have:

(32) p= Y np®@ = pn,

Fic, 1.

Since p”* transforms as a contravariant surface vector, we can introduce the definition of
the stress tensor:

(3.3) p* = o¥a;,

where ¢*' are components of the stress tensor [o*].
Analogously, for the couple force vector m, we obtain:

3.4) m= ¥ nm®@)? = mn,, w* =,
where u* are the components of the couple stress tensor.

If the surface element dS = dx'dx? is loaded by an external force XdS and an
external moment YdS, then the equations of motion are:

[ (@i-X)ds— [pdl =0,
(3.5) s ‘
J U —(exX+Y))dS— [ (exp+m)dl = 0,
Y 1

where u(x% t) = w;a’ is a displacement vector, ¢ = ¢@(x% ¢) is rotation, ¢ is the mass
density, I — the inertia term due to rotation ¢, dots denote differentiation with respect
to time, r = Zfi;.
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Using Stokes theorem to the line integral, from vanishing of the integrands the local
equations of motion follow, which in component form are:
0| —bBo™ + XP—puf = 0,
3 <SR o
(3.6) bap 0™+ 0%||+ X3 —pui® = 0,
euﬁaﬁs +F‘o'8a“ﬁ_baﬁ#?3 +¥,— I‘}[;u =0,
E@Uﬁ+#?3“¢+bdﬂws+ Y3—1653 = 0,

where &4 is the surface Ricci tensor.
The equation of balance of energy has the form:

(3.7 —ﬁ?sf (—;—ebz+I¢Z+U)dS= J(X- u+Y: @)dsS+ ,f (p-u+m-q)dl,

where U is the internal energy (elastic potential).
After applying the Stokes theorem and taking into considerations the equations of
motion, we obtain the local form of (3.7), which written in component form is:

(3.8) U = 0™ (ilpu— 253 9°) + 0% (i3 10+ £0s P) + 1 Pife-

From the above equation, the definition of the strain tensors for the Cosserat surface
follows:

(3.9 Vob = Upa—Eap®®s  Vas = UsatEp®’s  Hai = Pias

and the constitutive equations are

ou . AU

i _
(3‘10) oll - a}’ui’ xu - axat .

The general form of the constitutive equations for the anisotropic Cosserat surface
may be written [10]:
(3'11) aak = CT‘?‘??I"-C%’WI"?I!
,“'u = Cg‘“??l"'mkﬂxﬂ'

From the existence of the elastic potential U, the following symmetries of the elastic
tensors C,, C,, D; result:

(3.12) CEkM = Oyl %l = cyak  pEkl — pylak
For further considerations, the following form of (3.11) will be assumed:
o = C‘F”}’w‘*‘ CF%,s,
(3.13) 0" = CP"%,,,
= Ot Do, % = 0.
In the case of an isotropic Cosserat surface, the constitutive relations have the form:
(3.14) = Ci™y,, u™ = Di"x,

resulting from the isotropy of the elastic potential U, where the coefficients C§™, D}
are homogeneous, linear functions of products of components of the metric tensor.
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4. Linear, elastic shell theory

On the basis of [6] the fundamental definitions and equations of the linear, elastic
shell theory will be given.

The components of the displacement of a point placed at a distance x> = z from the
middle surface are assumed to be of the form:

Eﬂ-(xi)ix-‘ =g T !;“(xa) +zﬁ“(x“),
ﬁS(xi}|x3=z = ﬁi(xu)'!

where #;(x%) are components of the displacement of the point of the middle surface, f.(x")
is rotation of the normal to the middle surface.
Definitions of the strain tensors are:

@.1)

4.2) Vap = talp,  Vaz = Us,a+Puatbiils, Hap = Palls-

Action of the classical elastic stress tensor on the surfaces of the shell element is replaced
by the stress and couple resultants acting on the middle surface. Then, the state of stress
of the middle surface is characterized by the following stress and couple resultants (Fig. 2):

Mrzﬂ
S
M2 w
x! 2
FiG. 2.
hi2 hi2
@.3) NP = [ #ede, 0 = [ §°@)axn,
—i2 —hj2
k2
MP(m) = [ FPEdx,
—hj2

where A is a shell thickness, and ¢*, ¢** are the components of the classical elastic stress
tensor.
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The constitutive equations for the anisotropic shell, resulting from (4.3) are:
N = AP0+ AP "%, Q' = AP,
M = A5 4+ BP 75

The components of the tensors 4,, 4,, B, have the properties:
“4.5) AP = AT, APV = A7,  BY” = BY.

The equilibrium equations have the form:
Ne||,—bEQ*+XP = 0,  buN*P+Q%[,+X3 = 0,

-+ M|, =0, ep(NP—-bfM¥) =0,

(4.4)

(4.6)

where X is the component of the external, surface load of the shell. It is assumed in the
shell theory that it acts on the middle surface.

A particular case of linear shell theory is the Kirchhoff-Love theory. This results from
the general theory if it is assumed that

4.7 Yas = 0.
This assumption leads to the following connections:
(48) ﬁa = _ﬁa,u—bgﬁﬁ:

and the constitutive equation for 0% is missing.

In the general theory, a number of quantities which are to be obtained from the
equilibrium equations, taking into consideration the constitutive relations is five #;, 8,
while the number of equations is six. It has been shown that the last of the equations
(4.6) is satisfied identically [9]. This results from certain properties of the elastic tensors of
the shell theory.

In the Kirchhoff-Love theory, also five quantities are to be evaluated from the equi-
librium equations, #; and B,.

The linear shell theory is approximate and applicable to thin shells—that is, to shells
of small thickness 4 as compared with other dimensions of the shell. Usually, as a small
parameter is chosen A/R,, where R, is the radius of curvature of the middle surface. The
form of the coefficients of the constitutive equations depends on the order of approxima-
tion and is differently assumed by different authors.

5. The anisotropic Cosserat surface and the shell theory

It will be shown now that the state of strain and stress of the anisotropic Cosserat sur-
face loaded by surface forces X is, with some assumptions, equivalent to the state of strain
and stress of the middle surface of the linear, elastic shell loaded by surface forces X=X

From physical interpretation of the dynamical quantities of the two theories, it results
that the stresses and couple stresses of the Cosserat theory are equivalent to the proper
stress and couple resultants of the shell theory (Fig. 2, 3). This equivalence is as follows:

61 NO = o, Qe g, MY = P,
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3)
S o ) 5
6!21 6(12) 5 1)

(23)
22) f13)
ut ¥

p{zf} p[fh‘ )

=

FiG. 3.

The above relations produce identity of a static case of the equations (3.6) and (4.6),
ifY=0and X = X.

If it is assumed that the components of the displacement of the Cosserat surface u;
are equivalent to the displacement components #; of the middle surface of the shell
(5.2) Ui (x%) = U(x%),
and that between rotations of the Cosserat theory ¢, and rotations of the shell theory §,
the following correspondence holds

(5-3) ﬁa = 3«.89’5’
then, with the additional assumption @; = 0 from (3.9) and (4.2), we obtain
(54) ?ﬁﬂ = VBa> ?al = Va3» ’-‘:aﬁ — eurx.ﬂ?'
It can be observed that (5.1) and (5.4) lead to the identities:
NGy = 0%Pyps, Qa3 = Pyas,  M%Hgy = pPry.

It will be shown further that if the values of the elastic tensors C,, C;, D, in the
constitutive equations (3.13), are properly chosen identity of the Egs. (3.13) and (4.4)
can be obtained.

Let us assume the following equalities:

‘s CPm = AP™,  CPY = 5,0 AL™,
¢ DI = apendVa B, CFY = AP,
Substituting (5.5) into (3.13), and taking into account (5.4), the following connections
hold:
0% = CP"py+ C¥npy = AP Pyst AF"%y = N¥,
(5.6) o™ = Ofayafya = f‘!“ys'pys = 0%
#WB == C'i'”""?;-a"‘ D‘;ﬂwxy = A?“?ﬂy“"ﬂﬂoidy)sﬁaw = Eﬂa'ﬁM”'
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It is easy to show, taking into account (4.5), that the correspondence (5.5) does not disturb
the symmetries (3.12).

It is proved then, that all basic equations of the linear shell theory are equivalent to
the corresponding equations of the anisotropic Cosserat surface, assuming ¢; = 0. This
means that the state of stress and strain of the Cosserat surface and of the middle surface
of the shell are equivalent if exterior loads are equal X = X

The Kirchhoff-Love theory can be obtained from the Cosserat theory with the above
assumptions, analogously as it is obtained in the shell theory — that is, putting y,; = 0.

It can be observed that the constitutive equations of the isotropic shell theory are
equivalent to the constitutive equations of the anisotropic Cosserat surface. For example,
the constitutive equations obtained by Koiter for isotropic shells [6] include non-vanishing
components of the tensor A4,. Taking into consideration (5.5) and (3.14), the tensor A4,
should vanish if the equivalent Cosserat surface has to be isotropic.

6. Conclusions

From above considerations, it results that the natural model applicable in description
of the linear theory of thin shells, where the state of stress and strain is determined by the
state of stress and strain of the middle surface, is the theory of the Cosserat surface.

The linear shell theory starts from the equations of classical elasticity but by certain
manipulations the equations obtained there describe a certain model of an anisotropic
Cosserat medium.
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