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An anisotropic linear Cosserat surface and linear shell theory 

Z. T. KURLANDZKA (WARSZAWA) 

THE AIM of the paper is to show that the state of stress and strain of the middle surface of 
a thin elastic shell is equivalent to the state of stress and strain of a certain anisotropic, elastic 
Cosserat surface if external loads are equal. To this end, the basic definitions and equations 
of the Cossetat theory in the case of the anisotropic Cosserat surface and those of the linear 
shell theory are taken into consideration. It is shown then that if certain assumptions are 
made, the equations of the Cosserat surface and the linear sheJI theory are identical. 

W pracy wykazuje SiC(, ze stan naprl(zenia i odksztalcenia powierzchni srodkowej liniowej po­
wloki sprl(zystej jest r6wnowai:ny przy pewnych zalozeniach stanowi napr~zenia i odksztalcenia 
w anizotropowej powierzchni Cosserat6w. Podano definicj(( i podstawowe r6wnania dla spr~­
zystej powierzchni Cosserat6w opierajctc si~ na modelu Voigta. Przytoczono podstawowe 
r6wnania liniowej teorii powlok cienkich a nast((pnie wykazano, ze przy pewnych zaloze­
niach r6wnania obu teorii set identyczne. 

B CTaTbe llOKa3aHO, 'liTO Hanp.H>KeHHOe H ~e<flopMHpOB8HHOe COCTO.HHHC cpe~HHOH llOBepx­
HOCTH JIHHCHHOH ynpyrOH 06oJIO'liKH 3KBHBaJICHTHbi, llpH; HCKOTOpbiX npe~OJIO>KCHHHX, 
Hanp.H>KeHHoMy H ~e<PopMilpOBaHHOMY cocroHHH;.HM aHH30TponHOH noaepXHoCTH Koccepa. 
)laroTc.H onpe~eJieHHe ll ocHOBHbie ypaaHeHH;.H, OIIHChiBaiOI.QHe ynpyry10 noaepXHoCTL Koc­
cepa, llpll'liCM HCXO~OH .HBJI.HeTC.H MO~eJIL <l>OHTa. llpHBO~TC.H OCHOBHblC ypaBHCHH.H JIH­

HeHHOH TCOpH;Il TOHKH;X o6oJIO'lleK, a 3aTeM ~aeTC.H ~OKa3aTCJILCTBO, 'liTO npH HCKOTOpblX npe~­
llOJIO>KeHH.HX ypaBHCHH.H o6oHX TeOpHH COBll~aJOT. 

1. Introduction 

THE PURPOSE of the paper is to obtain the equations of the linear elastic theory of thin 
shells on the basis of the model of an anisotropic Cosserat surface. 

The linear elastic shell theory has been obtained from the model of the classical elastic 
continuum. Physical and geometrical assumptions used there lead to the equations de­
scribing a medium the natural model of which is the Cosserat surface. These equation 
contain such quantities as stress and couple resultants, displacements and rotations - that 
is, quantities the physical meaning of which is the same as the meaning of corresponding 
quantities used in description of the Cosserat medium. 

Throughout the paper, the basic definitions and equations of the Cosserat theory in 
a case of the Cosserat surface will be used as well as those of the linear shell theory. Then 
the identity of both models is shown, if proper values of the elastic tensors are chosen and 
certain associations of dynamical and geometrical quantities of the micropolar elasticity 
and those of the shell theory are assumed. This makes it possible to apply the results 
obtained in the Cosserat theory to the linear elastic shell theory. 

The problem of applying of the Cosserat theory to derivation equilibrium equations 
(in stresses) of the shell theory has been considered by J. L. ERICKSEN and. C. TRUESDELL 
[1]. In their paper, a generalized Cosserat medium was considered but without any consti­
tutive assumptions. 
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A. E. GREEN, P. M. NAGHDI and W. L. WAINWRIGHT considered in their papers [2, 
3, 4, 5] a general theory of the Cosserat surface. In paper [4], A. E. GREEN and P. M. NAGHDI 
considered an isotropic Cosserat surface and indicated the possibility of obtaining certain 
equations of the Kirchhoff-Love theory. 

2. The coordinate system 

The considerations presented here will involve the curvilinear coordinate system (xi) 

referred to a fixed right-handed Cartesian system (i), (i = I , 2, 3) by 

2.1) x; = x;(z1
, z', z3

), det [ ~~: J > 0. 

Let us consider a surface x3 = 0 and identify xi as convected coordinates with xa 

(ex = I , 2) and x 3 along the normal to the surface. 
Throughout the paper, Latin indices will range over the values (1, 2, 3) while the Greek 

ones will be required to have the values (1, 2). 
For the base vectors g; of the system (xi), we have: 

(2.2) 

The base vectors gi, when evaluated on the surface x3 = 0, are gcx = aa, g3 = a3 and 
the metric tensor of (xi) when evaluated on x 3 = 0 is: 

(2.3) 

where [aap] is the surface metric tensor. 
In the coordinate system considered here, the only non-vanishing Christoffel symbols 

are r;~, rrp3, r:p, and on the surface x 3 = 0 we have: 

(2.4) 

where bap is the second fundamental form of the surface. 
The covariant derivative will be designated by a stroke (1). The covariant differentiation 

with respect to the surface metric will be designated by double strokes CID and when applied 
to a surface tensor reads: 

(2.5) 

where fit:.,= T:.,lx3=0· Note that the covariant derivative of the surface tensor is: 

(2.6) 

3. An anisotropic Cosserat surface 

Analogously as in three-dimensional case, definition of the Cosserat surface is assumed 
here according to the Voigt model [7]. A surface such that actions between its two parts 
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are defined by the stress vector and couple stress vector will be called the Cosserat surface. 
A stress vector and a couple stress vector are defined by: 

(3.1) 
. LIT 

p = hm-- -, 
A/~0 Ll/ 

. LIM 
m= hm ---­

At~o Lll ' 

where LIT is a force acting on the line element Ll/ of the surface and Ll 1 is a couple acting 
on the element Ll/. 

Let us consider a surface x 3 = 0. Over a curve with unit normal vector n = na.aa., 
there acts the force vector p. If the stress (physical), vectors acting over each coordinate 
line are p<rx> (Fig. 1), we have: 

(3.2) P = .2; na.p<a.>(aa.a.)ttz = pa.na. 
Ot 

FIG.l. 

Since prx transforms as a contravariant surface vector, we can introduce the definition of 
the stress tensor: 

(3.3) 

where acxi are components of the stress tensor [cfli]. 

Analogously, for the couple force vector m, we obtain: 

(3.4) m= .J; na.m<rx>(aa.rx)lfl = ma.noc, ma. = ftocia;, 
r:1. 

where fta.i are the components of the couple stress tensor. 
If the surface element dS = dx 1 dx2 is loaded by an external force XdS and an 

external moment Y dS, then the equations of motion are: 

f (eii-X)dS- f pd/ = 0, 

(3.5) 
S I 

J [/cp-(rxX+Y)]dS- J (rxp+m)d/ = 0, 
S I 

where u(xrx, t) = u; ai is a displacement vector, c.p = c.p(xrx, t) is rotation, e is the mass 
density, I- the inertia term due to rotation c.p, dots denote differentiation with respect 
to time, r = zii;. 
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Using Stokes theorem to the line integral, from vanishing of the integrands the local 
equations of motion follow, which in component form are: 

acxPIIot-~ <ft3 + X 11 - eu11 = 0, 

botPa«P+<fX311ot+X3-eu3 = o, 
(3.6) 

eotpa113 + ft~otiiP-botPft~ 3 + Yot- lcpot = 0, 

EccpO'ClP+p,~311ot+botPftotP+Y3-Jcp3 = 0, 

where Eccp is the surface Ricci tensor. 
The equation of balance of energy has the form: 

(3.7) %1 J U eit2 +l<P2 + u)as = J (X· oi+Y · ip)dS+ J (p · iJ+m· <j>)dl, 
s s l 

where U is the internal energy (elastic potential). 
After applying the Stokes theorem and taking into considerations the equations of 

motion, we obtain the local form of (3. 7), which written in component form is: 

(3 .8) • p • • 3 3 • • p oti. 
U =a« (up 1a.-Ea.p(/J )+a« (u31ot+eccPq; )+p, q;;1a.· 

From the above equation, the definition of the strain tensors for the Cosserat surface 
follows: 

(3.9) 

and the constitutive equations are 

(3.10) a«i = au , "a.' = au 
ayoti axa.l. 

Th~ general form of the constitutive equations for the anisotropic Cosserat surface 
may be written [I 0]: 

(3.11) a«k = Cf'Y'yy, + c~kyl"y" 

"a.k = c~ky'r yl + n~kyl "y' . 

From the existence of the elastic potential U, the following symmetries of the elastic 
tensors C1 , C2 , D 1 result: 

(3.12) 

For further considerations, the following form of (3.11) will be assumed: 

(3.13) 

aC(P = c~Prby yb + CfJyb"Yb' 

aC(3 = c~3"3r i'3 , 

fta.p = qPYhyy.,+D~Prb"rch p,ot3 = 0. 

In the case of an isotropic Cosserat surface, the constitutive relations have the form: 

(3.14) 

resulting from the isotropy of the elastic potential U, where the coefficients C~iyk, D~iyk 
are homogeneous, linear functions of products of components of the metric tensor. 
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4. Linear, elastic shell theory 

On the basis of [6] the fundamental definitions and equations of the linear, elastic 
shell theory will be given. 

The components of the displacement of a point placed at a distance x3 = z from the 
middle surface are assumed to be of the form: 

(4.1) 
uiX(xj)lx3=z = riiX(x~+zfJixrx), 

u3(xi)lx3=z = u3(xiX), 

where ui(xo:) are components of the displacement of the point of the middle surface, flo:(xf1) 
is rotation of the normal to the middle surface. 

Definitions of the strain tensors are: 

(4.2) 

Action of the classical elastic stress tensor on the surfaces of the shell element is replaced 
by the stress and couple resultants acting on the middle surface. Then, the state of stress 
of the middle surface is characterized by the following stress and couple resultants (Fig. 2): 

(4.3) 

Mr21J 

M~ Mr11) 

V' 
x1 

h/2 

Na.fl(xo:) = ( (fiXP(xi) dx3 , 

-h/2 

x2 

FIG. 2. 

h/2 

QIX(XIX) = f G0:3(Xi)dX3' 
-h/2 

h/2 

Ma.fl(x~ = J ?f1(x1)x3dx3
, 

-h/2 

where h is a shell thickness, and ~fJ, ? 3 are the components of the classical elastic stress 
tensor. 
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The constitutive equations for the anisotropic shell, resulting from (4.3) are: 

Nr41 = Af.s"Y,<J+A~~x,cf, Q;. = A;.3cx3Ycx3, 

MaP= A~/1cf"y,cf+B'tlf"x,.s. 
(4.4) 

The components of the tensors A 1 , A 2 , B 1 have the properties: 

(4.5) 

The equilibrium equations have the form: 

(4.6) 
Ncxf111cx-b!Qa.+Xf1 = 0, br41Ncxf1+Qcxllcx+X3 = 0, 

-QA+Mcx).llcx = 0, Epa.(Ncxf1_b~MAf1) = 0, 

where Xi is the component of the external, surface load of the shell. It is assumed in the 
shell theory that it acts on the middle surface. 

A particular case of linear shell theory is the Kirchhoff-Love theory. This results from 
the general theory if it is assumed that 

(4.7) Ycx3 = 0. 

This assumption leads to the following connections: 

(4.8) 

and the constitutive equation for Qcx is missing. 
In the general theory, a number of quantities which are to be obtained from the 

equilibrium equations, taking into consideration the constitutive relations is five ui, Pcx, 
while the number of equations is six. It has been shown that the last of the equations 
(4.6) is satisfied identically [9]. This results from certain properties of the elastic tensors of 
the shell theory. 

In the Kirchhoff-Love theory, also five quantities are to be evaluated from the equi­
librium equations, ui and Pcx· 

The linear shell theory is approximate and applicable to thin shells -that is, to shells 
of small thickness h as compared with other dimensions of the shell. Usually, as a small 
parameter is chosen h/Rcx, where Rcx is the radius of curvature of the middle surface. The 
form of the coefficients of the constitutive equations depends on the order of approxima­
tion and is differently assumed by different authors. 

5. The anisotropic Cosserat surface and the shell theory 

It will be shown now that the state of strain and stress of the anisotropic Cosserat sur­
face loaded by surface forces X is, with some assumptions, equivalent to the state of strain 
and stress of the middle surface of the linear, elastic shell loaded by surface forces X = X. 

From physical interpretation of the dynamical quantities of the two theories, it results 
that the stresses and couple stresses of the Cosserat theory are equivalent to the proper 
stress and couple resultants of the shell theory (Fig. 2, 3). This equivalence is as follows: 

(5.1) 
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FIG. 3. 

The above relations produce identity of a static case of the equations (3.6) and ( 4.6), 
if Y = 0 and X = X. 

If it is assumed that the components of the displacement of the Cosserat surface ui 
are equivalent to the displacement components ui of the middle surface of the shell 

(5.2) Ui(x«) = Ui(x<X), 

and that between rotations of the Cosserat theory CfJa. and rotations of the shell theory Pcx 

the following correspondence holds 

(5.3) 

then, with the additional assumption cp3 = 0 from (3.9) and ( 4.2), we obtain 

(5.4) YcxfJ = Ypcx, Ycx3 = Ycx3, Xa.fJ = Ecxyup': • 

It can be observed that (5.1) and (5.4) lead to the identities: 

NcxfJYfJa. = cflPycxp, Q;.y).3 = a-A3y;.3' Ma.fJi'epa. = p,a.f1ucxfJ. 

It will be shown further that if the values of the elastic tensors C1 , C2 , D1 in the 
constitutive equations (3.13), are properly chosen identity of the Eqs. (3.13) and (4.4) 
can be obtained. 

Let us assume the following equalities: 

C~fJyc'J = A~ytS' C~fJc'Jy = Evr:d''Y A~6"' 

Dr:_flc'JY = Ee).EvrtfParYB~tlv, C~3y3 = Acx3y3. 
(5.5) 

Substituting (5.5) into (3.13), and taking into account (5.4), the following connections 
hold: 

cflP = C~rc'Jyyc'J+C~Yc'Ju~ = A~fJc'Jyy,6 +A~Y"xvy = Na.P, 

(5.6) (Jf%3 = C~3y3Yy3 = Arx.3y3Yy3 = Qa.' 

p,«P = C~Yc'JYrc'J+D'fYc'Juyc'J = (A~vyc'JYc'Jr+.Bf'Yc'Ji(c'Jy)e~rarP = E-,rarfJMa.". 
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It is easy to show, taking into account (4.5), that the correspondence (5.5) does not disturb 
the symmetries (3.12). 

It is proved then, that all basic equations of the linear shell theory are equivalent to 
the corresponding equations of the anisotropic Cosserat surface, assuming cp3 = 0. This 
means that the state of stress and strain of the Cosserat surface and of the middle surface 
of the shell are equivalent if exterior loads are equal X = X. 

The Kirchhoff-Love theory can be obtained from the Cosserat theory with the above 
assumptions, analogously as it is obtained in the shell theory- that is, putting Ycx 3 = 0. 

It can be observed that the constitutive equations of the isotropic shell theory are 
equivalent to the constitutive equations of the anisotropic Cosserat surface. For example, 
the constitutive equations obtained by KOITER for isotropic shells [6] include non-vanishing 
components of the tensor A 2 • Taking into consideration (5.5) and (3.14), the tensor A 2 

should vanish if the equivalent Cosserat surface has to be isotropic. 

6. Conclusions 

From above considerations, it results that the natural model applicable in description 
of the linear theory of thin shells, where the state of stress and strain is determined by the 
state of stress and strain of the middle surface, is the theory of the Cosserat surface. 

The linear shell theory starts from the equations of classical elasticity but by certain 
manipulations the equations obtained there describe a certain model of an anisotropic 
Cosserat medium. 
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