
CHAPTER XXXIV.

CALCULUS OF VARIATIONS. (Section I.)1482. To ascertain the greatest or least values of which a given function is susceptible under specific conditions, it has been found necessary in the Differential Calculus to allow it 
to grow, and then to find the magnitude attained when the rate of growth stops. And methods have been formulated by which this rate of variation can be ascertained and tests constructed for the discrimination of maxima values from minima values and from other stationary values which the method may discover.The functions considered in the Differential Calculus have all been expressed directly or indirectly in terms of a set of one or more independent «variables not usually involving signs of integration, and if any dependent variables have occurred in the functions under discussion their connection with the independent ones has always been specified and known.We now have a problem of different nature. We are to consider the maximum or minimum value of a function usually expressed by an integration, in which the integrand contains not only an independent variable or set of inde­pendent variables, but also one or more dependent variables and their differential coefficients, for which the relationship 
between the dependent ones with the independent ones is not 
specified, but remains to be discovered, in order that a stationary value of the integral may result under any conditions with regard to the limits of the integration which may be imposed.1483. Preliminary Ideas as to the Mode of Procedure.As before, it will be necessary to allow the function to grow and to ascertain the rate of its growth under the imposed 604 
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CALCULUS OF VARIATIONS. 605conditions when the variables it contains are made to vary in an arbitrary and independent manner consistent with the retention of the continuity of the function and consistent with the imposed conditions.We shall first take the case of one independent variable only, viz. x, and we shall suppose that the form of the relation­ship between x and the dependent variable y is required which shall be such that the integral with respect to x of a 
given, function V of x, y, , viz.∫ Vdx, acquires astationary value. For amongst the stationary values the maxima and minima values lie. To fix the ideas we may regard x and y as the Cartesian coordinates of a point. And here it will be observed that y is to be regarded as a function of x, but that the form of this functional connecting relation is unknown and is to be the subject of investigation.The form of V is supposed known. The limits of the integration may be regarded as being from a point P, (x0, y0) to a point P1,(x1, y1), which will be referred to as the terminal points or terminals, and which may be specified either as 
fixed points, or as points which lie on specific loci.It is then our object to discover the relationship between 
x and y which will compass the object of making ∫F dx assume a stationary value with such terminal conditions.1484. For instance, if we require to find the shortest path in the plane 
χ-y from the given line x+y = 2a to the circle x2+y2=a2, we have to make ∫ ds, or what is the same thing ∫ √1+y'2dx, assume a minimum value, where the things at our choice are (i) the positions of the terminal points on their respective loci, (ii) the nature of the path from one terminal to the other. And the solution we should expect will be that there is a linear relation y = mx + n between x and y, and that the values of m and n will be such that the line cuts both the terminal loci at right angles ; which we shall presently find to be the case.1485. The Symbol 8 of Arbitrary Variation.When a known and definite relation exists between x and y, say y=f(x), and when we pass from a definite point P1, (x, y), on the graph to an adjacent point P2, (x+dx, y+dy), travelling along the curve, there is a relation between the differentials dx, dy, 
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606 CHAPTER XXXIV.viz. dy=f' (x)dx, to the first order of infinitesimals, where f'(x) represents the differential coefficient of f(x) with regard to x.We may, however, assign quite arbitrary independent infinitesimal variations to x and y, and thus pass from the point P1 to a point Q1, not necessarily upon the curve y=f(x), but indefinitely close to P1, and we shall denote such inde­pendent and unconnected arbitrary variations by δx and δy. Thus, in Fig. 431, P1P2P being the graph of y=f(x) and P1N1, 
P2N2, Q1M1 perpendiculars upon the axis and P1SR a parallel to the x-axis cutting Q1M1 and P2N2 at S and R respectively, we have dx=N1N2, dy=RP2, δx=N1M1, δy=SQ1.

1486. Arbitrary Variation of a Path.If every point of the P-path be thus treated and the variations of the several P-points are such as to give a series of Q-points which lie upon a continuous curve, we may regard the P-path as being deformed in an arbitrary manner from point to point into an indefinitely close Q-path, and the arbitrariness in the deformation is such that the deformation at P1 from P1 to Q1 does not in any way fix the law by which the position of P2 is deformed into the position Q2, the only restriction upon the removals of the various points P1, P2,... P upon the P-path to the corresponding points Q1, Q2, ...Q upon the Q-path being that each such removal shall be through an infinitesimal distance, and that the aggregate of the Q-points shall form a continuous curve. This deformation of the P-path, whatever that path may be, whether f(x) be a function of known form or not, is therefore entirely, point by point, 
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CALCULUS OF VARIATIONS. 607at our choice along the whole path of P, with the exception of the terminals, which in any particular case may have definite loci assigned to them, where there will be definite relations between the terminal values of δx and δy at each end, but the variations at one terminal being quite inde­pendent of those at the other.The processes of the Calculus of Variations are essentially conducted by means of the consideration of such arbitrary differential variations as the δx, δy here defined.1487. Results of the Differential Calculus which do not involve the nature of the connection between the variables occurring remain the same with the one set of variations dx, 
dy,... as with the other δx, δy,.... Thus, if V be a function of any set of variables x1, x2 x3, ... , say, V=ϕ(x1, x2, x3,...), and if these variables receive two sets of variations,

(dx1, dx2, dx3,...) and (δx1, δx2, δx3....), then, if dV and δV be to the first order the corresponding changes in V, we have, whether the variables be connected in any way or not, 

points upon it, viz. (x, y) and (x+dx, y+dy) respectively. Let the curve AA1 be deformed to a contiguous curve BB1 

1488. δ and d Commutative.We shall now prove that d(δx)=δ(dx).Let AA1 be any curve y=ϕ(x), and let P, P1 be contiguous
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608 CHAPTER XXXIV.so that the arbitrary point to point deformation displaces 
P to Q, P1 to Q1, etc. Let the ordinates NP, N1P1, MQ, M1Q1 be drawn, and PST parallel to the x-axis cutting the ordinates of Q and P1 at S and T, and let PU, the tangent at P, cut the ordinate of Q at U, and let V be the point in which the ordinate of Q cuts the curve AA1. Then NN1=dx, NM=δx. The change in NM due to a change from x to x+dx is d(NM), 
i.e. d(δx). But d(NM)=N1M1-NM=MM1-NN1, which is the arbitrary change in NN1 due to the deformation of the curve, and is therefore δ(dx). Hence d(δx)=δ(dx).1489. It follows that δd(dx) = dδ(dx) = dd(δx), etc., and generally 
δdn V= dmδdn-m V=dnδV; and so on. (See Lacroix, Calc. Diff., ii., p. 658.)1490. 8 Commutative with regard to the Sign of Integration.Let Then andTherefore integratingThat is1491. The Quantity ω.Again, where y' stands for orthe tangent of the slope of the curve at P. We shall call this quantity ω. It is the amount by which Q is raised by the variation δy above the tangent line at P, and the distance UV is a second-order infinitesimal. Thus, to the first order, ω or 
δy-y'δx is the amount by which Q is raised above the curve 
y=ϕ(x) at the point V.1492. Differential Coefficients of ω.Supposing consider the variation in where
x and y are arbitrarily changed to x+δx and y+δy respec­tively. We have at once 

to the first order of infinitesimals.
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CALCULUS OF VARIATIONS. 609Hence say.Similarly, and so on.1493. Geometrical Proof.Let be a curve such that represents the areabounded by the curve AP (Fig. 433), the ordinates AL, PN, viz. X=a and X=x, and the x-axis.Let the curve APP1 be displaced by an arbitrary infinitesimal point to point deformation to the curve BQQ1, A going to B, P to Q, P1 to Q1, etc.

Fig. 433.Let (x, η), (x + δx, η+ δη), (x + dx, η + dη) be the coordinates of P, Q, P1 respectively, and draw the ordinates AL, BL', etc., and PH, P1H1 parallel to the x-axis.Then area areaand area area (1)Also η δx = area NMRP to the first order ;=area area ∙(2)Hence area area-area area = area
i.e.and to the first order and
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610 CHAPTER XXX1V.So that to the second order, area and
andThis geometrical proof appears to be due to the late Dr. E. J. Routh.

1494. Notation.We shall use accents to denote differentiations with regard to the independent variable x, and when accents become inconvenient by their number, we shall replace them as elsewhere by an index in brackets. ThusWe shall represent by V any known function of x, y, y', 
y", ..., y(n); the independent variable being x, and y a function of x of unknown form, and therefore, also, its several differential coefficients being of unknown form.For the present it is also assumed that V is independent of the limits of integration. We shall adopt the notation and follow the method of De Morgan (Diff. and Int. Calc., p. 449, etc.). In this notation Capitals denote partial differentiations of V. Thus etc.,the suffixes indicating the particular differential coefficient of y with regard to which the partial differentiation of V is effected. Also accents will be used in these cases also to denote total differentiations with regard to x. Thusetc.Lagrange, to whom this Calculus is in the first place due, uses a different notation, convenient when no differential coefficients of y beyond the second order occur, but not so convenient otherwise. In Lagrange’s notation p stands for y', 
q for y", etc., and etc.
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CALCULUS OF VARIATIONS. 611

1495. Variation of ∫V dx.Supposing V≡φ{x, y, y', y", ..., y(n)}, where the relationship of y and x is unassigned and held in abeyance, remaining to be chosen to suit circumstances which may arise, let us take 
AA1 (Fig. 434) as the graph of a supposititious case of such

relationship, and let us suppose it subjected to a point to point deformation to a contiguous position BB1 of the kind described. Then we shall find the consequent variation in the integral 
u≡∫Vdx, where the integration is taken from one terminal point A to another terminal point A1, which, like other points on the curve, may be subject to small variations of position, which may, however, in these terminal cases be partially pre­scribed by the terminal circumstances, A going to B, P to Q, 
P1 to Q1, etc. Then, since δ is commutative with regard to an integral sign, 

the integral being taken throughout the whole length of the curve from A to A1, and the square brackets or roundthe integrated portion indicating that the included portion is to be taken between the same limits, viz. (x0, y0) the coordi-
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612 CHAPTER XXX1V.nates of A to (x1, y1) the coordinates of A1. Now to the first order,
and

to the second order.Hence to the first order
1496. The integrand admits of a considerable amount of integration. We have

Now make a further abbreviation, and write
etc.; we then have

which may be written for short as 
which gives the variation of the integral to the first order.Terms of the second and higher orders of the variation are not needed for the present. We shall recur to a consideration
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CALCULUS OF VARIATIONS. 613of such terms later when we come to formulate an analytical test for the discrimination between maxima and minima values. But in a large number of cases the nature of the stationary result found will be obvious from the circumstances of the problem without any formal analytical discriminatory test.1497. We shall now count up the number of first-order variations involved at the terminals. Written at full length to exhibit all these variations, we have, to the first order, 

the suffixes to the square brackets having their usual signifi­cance. There are in each square bracket n+1 variations, viz. 
δx, δy, δy', ... δy(n-1); but these are not necessarily all inde­pendent.(i) If the terminals be fixed we have four equations of condition, viz. δx=0 and δy = O at each end, and n—1 arbitrary variations are left in each bracket, viz. δy', δy", ..., δy(n-1), depending upon the direction of the tangent to the path, the curvature, etc., at each terminal.(ii) If the terminals be not fixed but constrained to lie upon assigned curves, say y=χ0(x), y=χ1(a), then δy0=χ0'(x0) δx0, 
δy1=χ1'(x1) δx1; so that two conditions are imposed and two variations, viz. δy0 and δy1, cease to be arbitrary, which leaves 
n independent arbitrary terminal variations in each bracket.(iii) Other terminal stipulations may be made. For instance, if the end x0, y0 is to be fixed, and also the direction of de­parture from that point and the curvature at that point also fixed, this will entail δx0=O, δy0=O, δy0'=0, δy0''=0, and the number of arbitrary variations left in that bracket is n—3. Similarly, any specific data may be assigned for the other extremity.Thus, on the whole, there are in the two brackets 2n+2 terminal variations. Every imposed terminal condition ex-
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614 CHAPTER XXXIV.pressible by one equation, such as x0=α, y0''=c, etc., which is to hold at a terminal, reduces the number of independent terminal variations by unity. Hence, if there be p equations of condition, there are 2n+2-p independent terminal varia­tions. E.g. if the terminal (x0, y0) be given, and the abscissa of x1, and the direction and curvature of the direction of approach to (x1, y1) be given, there are 5 equations of condition and 2n— 3 independent terminal variations.1498. In the remaining part of the total variation, viz.orthere are an infinite number of variations, each pair δx, δy indicating the displacement of a point (x, y) of the curve to be found to a hypothetical adjacent position. The function 
Y or K is a linear function of the total differential coefficients with regard to x of the partial differential coefficients of V,standing forIn general Y(n) itself contains y(n), and therefore in general 
Y contains a term y(2n). Hence, if Y be equated to zero, as we shall see will be necessary in a search for a stationary value of ∫V dx, Y=0 is in general a differential equation of order 2n, 
i.e. of double the order of the highest order differential coefficient occurring in V. The solution of such a differential equation will contain 2n arbitrary constants. This is less by 2 than the number of terminal conditions + the number of independent terminal variations, which is 2(n+l).

1499. Conditions for a Stationary Value ofThe same line of argument as that employed in the Differential 
Calculus (Art. 496), in searching for the maxima and minima values of a function of several variables, will now apply in asearch for the stationary values of It follows thatthe first order terms of the variation of this integral, viz.must vanish, and further that the coefficients
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CALCULUS OF VARIATIONS. 615of the several independent arbitrary variations contained in it must separately vanish.Now one system of choices of these independent variations will be that in which all variations at each terminal are fixed so that H is made zero at each end. Therefore we must havein all cases Moreover, as δy-y'δx isarbitrary at every point of the path, it follows that K must vanish as a primary condition. Hence the aggregate of the terms in [H]10 must also vanish in any case. And further, since it has been seen that if the number of prescribed terminal conditions be p, the number of independent terminal variations is 2n+2-p, there will be 2n+2-p relations arising from equating to zero the coefficients of these independent terminal variations.It has been seen that the solution of the differential equation 
K=0 contains in general 2n arbitrary constants (Art. 1498).It then appears that as the conditions for a stationaryvalue of we have(1) Y or K=0, the solution containing 2n arbitrary constants,(2) 2n+2-p independent equations arising from [H]10=O,(3) p terminal equations.Thus we have 2n+2 terminal equations in all to find the 
2n constants, which fix the nature of the path and two other quantities, usually the abscissae of the terminals. The pro­blem is therefore in general completely determinate, as will be seen when we come to discuss examples of the method.

1500. Cases of Integrability of K=0.The chief difficulty in this problem lies in the solution of the differential equation K=0, and often this cannot be obtained.(1) There is one case in which at least a first integration can be effected in general terms, viz. when V does not ex­plicitly contain x; i.e. V=ϕ(y, y', y",... y(n)).For now and
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616 CHAPTER XXXIV.But

Hence for the coefficient of y' in the integrand of the unintegrated part is K, which vanishes.(2) Another case of integrability (to a first integral) of the equation K=0 is obvious, viz. when V does not contain y, so that Y does not appear. For K=0 then becomesof which a first integral isconst., i.e.(3) If V contains neither x nor y explicitly, we have also
1501. A very Common Case.If V=ϕ(y, y'), in which x does not explicitly occur, and no differential coefficients of y beyond the first, we have V=Y, y'+C, with the condition V δx+ Y,(δy-y' δx)=0 at each terminal, i.e. and(1) If the terminal points be fixed, the terminal conditions are identically satisfied, and the two constants which will be present in the final integration of V=Y,y'+C will be de­termined by making the curve obtained pass through the specified points, whose coordinates are in that case known.(2) If the terminal points are to lie on specific loci 

we have and therefore
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CASES OF INTEGRABILITY. 617And supposing y=F(x, C, C'), the solution of the equation K=0, the substitutions of this value of y in the above equations, together with the equations 
suffice to determine the values of the two constants of the differential equation and the abscissae of the terminals of the path. (See Art. 1499.)1502. Illustrative Examples.1. Let us apply the rule to find the nature of the shortest distance between 
two given points (x0, y0), (x1, yl), the result to be expected being of course obvious. (See Art. 1484.)Here is to be a minimum.We have

Thus or y' = const. = m, say.Then y=mx+n, m and n to be determined so that the straight-line path indicated shall pass through the terminals, i.e.

2. Suppose we require the shortest distance from the curve y = x0(x) to the 
curve y = χ1 (x).Then, in addition to the above, we have terminal conditions at eachend, viz. i.e. or ateach end, i.e. the straight line is to cut the terminal curves at right angles at each endAlso the equationsdetermine the four quantities m, n, x0, x1.It will be noted that maxima as well as minima distances are included in the solution. The discrimination depends upon the nature of the terminal curves, but in particular cases the nature of the result will usually be obvious without formal test.3. Let us enquire next the nature of the curve for which, with specific ter­

minal conditions, attains a minimum value. [Lacroix, Calc. D.,p. 7O4.] Here etc.gives
i.e. or ∙(1)
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618 CHAPTER XXXIV.The terminal variation conditions are for each end ∙(2)If we impose the condition that the curve is to pass through (0, 0), (α, 0) and its tangent to make with the x-axis angles tan-1α, tan-1 α' at these points, equation (2) is satisfied and
whenceand we haveIf α'= — α, this becomes the parabola ay = αx(α-x), in which case 
y'' = -2α∕α, and is constant throughout the curve.4. In the case of a bead sliding freely on a smooth wire in a vertical plane 
under the action of gravity, to find the form of the wire so that the time of 
descent from one point of the wire to another is the least possible. This curve 
is called a brachistochrone.The energy equation is v2=2gy, where y is the vertical distance of the bead at time t from the horizontal line of zero velocity. This gives
which is to be a minimum.

Line of zero velocity

Fig. 435.Here
or, writingandor (1)which indicates an arc of a cycloid with cusps on y = 0, i.e. on the line of zero velocity. (D.C., Art. 395.)

www.rcin.org.pl



CALCULUS OF VARIATIONS. 619At each terminal i.e.
or ∙(2)(i) If the terminal points be fixed, equation (2) is identically satisfied. Equation (1) is only a first integral, but sufficient to determine the nature of the curve.To proceed with it,and putting y = α(l+cos0), we have

i.e.So the equations of the curve are
Moreover, as y = α(l+cos0) and also =α(l+cos2ψ), we have 0 = 2ψ. If the curve is to pass through (x0, y0) and (x1, y1), both supposed fixed, we have two equations to determine C' and α, i.e. the position of the cusp and the magnitude of the curve.If the bead is to start from rest at (x0, y0) this point must lie on the line of zero velocity, i.e, y0=O, and this point is then a cusp of the cycloid.But if the end (x0, y0) be fixed, and the other end (x1, y1) is a point only known to lie on a definite locus y = χ(x), we have δx0 = δy0 = 0, δy1 = X'(x1)δx1 and the terminal equation at (x1, y1) gives δx+y'δy = O at that point, i.e.and the path cuts y= χ(x) orthogonally, and the same is trueif (x1,y1) be fixed and (x0, y0) lies on a fixed locus y= χ(x), viz. the path must be such as to cut orthogonally the line from which it starts.If both ends are to lie on fixed curves, viz. y=χ0(x), y = X1(x), we havethe conditions at each end, and therefore each terminal curveis to be cut orthogonally.If, for instance, the terminal curves be (1) the line of zero velocity, (2) a vertical line at a distance b from the starting point, the startingpoint is the cusp of the cycloid, and the other terminal is the vertex. The value of a is then found from the equation b = πa, i.e. a = b∣π, and the constant C is √π/2b. It will be noted that the starting velocity from (x0,y0) on the first curve must be that due to a fall to that point from the line of zero velocity, i.e. 

√2gy0. Paths starting from any other given horizontal line, and Fig. 436.therefore with the same velocity, and describing paths in the least time to a given curve cut the curve at right angles, but not the straight line, except in the case when the line is the line of zero velocity itself.
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620 CHAPTER XXXIV.The problem just discussed is the celebrated problem of John Bernoulli which gave rise to the Calculus of Variations. It was proposed in the Acta Eruditorum, 1696 (see Cajori, Hist. of Math., p. 234). The general problem of brachistochronism for any conservative system of forces will be considered later (Arts. 1537 to 1544).5. Taking two given points A, B as terminals to find a curve connecting 
them such that the area bounded by the arc AB, the radii of curvature at A 
and B and the intercepted arc of the evolute is least. [De Morgan.]Here is to be a minimum.
andor, putting say.The curve is therefore a cycloid.The terminal conditions are ateach end, and since δx=δy=O at each end, this reduces to Y,,δy'=0 at each end.Also and the values of δy' at each end arearbitrary. Hence y'' must be ∞ at each end, and the radii of curvaturemust therefore vanish. The ter­minals must therefore be cusps of the cycloid.If a condition be added that these are consecutive cusps the cycloid is then determinate, the length of the chord AB being given, say l, the radius of the rolling circle must be 

l∣2π. If the cusps be not neces­sarily consecutive the area might be that contained between a set of such cycloidal arcs as shown in Fig. 438, and their cycloidal evo­lutes, and it will be obvious thatFig. 437.if the number of these arcs be infinite, the area thus bounded becomes ultimately zero, the radius of the rolling circle having become infinitesi­mally small.
Fig. 438.If the terminals A, B be not fixed but constrained to move on given curves, there is a relation between δx and δy at each end, but the values of 

δy' are still independent and arbitrary ; therefore Y„ still vanishes at
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CALCULUS OF VARIATIONS. 621each end, which are cusps of the cycloidal path, which may or may not be consecutive ; and other relations also arise by equating to zero the coefficients of for each end after substitution of the terminal conditions which give δy in terms of δx.

1503. The Case when V depends upon the Terminals.If V contains the coordinates x0, y0 and x1, y1 of the ter­minals and differential coefficients of y0 and y1 in addition to 
x, y, y', etc., i.e.

the variation δV will include terms in addition to those of Art. 1495, and now

and these additional terms in the variation give rise to

the variations δx0, δx1, δy0, etc., not being functions of x but only of the limiting values of x, and the integrations being from x0 to x1 as before. These extra terms are all to be added to the terminal variation portion of the total variationThe differential equation will be unaltered, and thegeneral value of y in terms of x thence derived may be sub­stituted in the several additional integrals above, and their values may then be found and treated as part of the ter­minal variation [H].
1504. Relative Maxima and Minima. Lagrange’s Rule.Many problems occur in which is to be madea maximum or a minimum with the condition that at thesame time a second integral is to acquire a given value

a, where W, like V, is also a function of x, y, y', y", etc. For
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622 CHAPTER XXXIV.instance, we might require the curve joining two specified points, such that with the x-axis and the terminal ordinates a maximum area is to be enclosed whilst the length of the arc 
between the terminals is given.Lagrange solves this relative species of maxima and minimaproblems by making unconditionally, whereλ is some constant to be determined.For clearly this gives i.e.vanishes for all such relations between y and x as make 
any constant quantity. Now, upon solving this unconditional problem in the way described in the preceding articles, we shall get a relation involving λ as well as the constants of integra­tion, say y=ϕ(λ, x, C1, C2, C3,...). Then substituting for y inand integrating, we are to make such a choice of λ aswill give the integral ; the stipulated value a.We then have i.e. and thevariation of is zero, and the integral has a stationaryvalue for such a relation between x and y as gives tothe prescribed constant value a. The constants of integration are to be determined as described before from the terminal conditions.1505. Illustrative Examples.1. To two points A, B given in position, whose distance apart is 2c, an 
inextensible thread is attached by its ends, whose length is 2cα cosec a. To 
examine in what curve the thread must be arranged so that the area enclosed 
by the thread and the chord AB shall be as great as possible.Taking the mid-point of AB as origin and 0A as x-axis, we are tomake a maximum with a conditionBy Lagrange’s rule we are to make maximum, i.e.in Cartesians is to be a maximum.

www.rcin.org.pl



LAGRANGE’S RULE. 623Hereetc. Along the path we are to have
Hence

Fig. 439.Thus the thread must lie on a circular arc of radius ± λ of which AB is a chord. Therefore the centre lies upon the y-axis and α = 0.
ALet D be the centre and A DO = β. Then λ = ± c cosec β, and the length of the arc = 2(π - β)c cosec β, which is to be 2cα cosec α ; whence 

β=π - α, λ=±c cosec α and b = ± λ cos β=- c cot α.The equation of the arc is therefore x2+(y+ ccot α)2 = c2cosec2α.In the limiting case when c = 0, a=π, and if r be the radius
Lt c cot α=Lt r cos α = — r and Ltc2(cosec2α-cot2α) = c2=0,and the equation becomes x2+y2= 2ry, where 

2πr=l, the length of the thread. The thread then forms a complete circle x2+y2= ly∣π.Incidentally this shows that the closed 
curve of given perimeter and greatest area is a circle. The process is the same if we require the curve of least perimeter with a 
given area, which is therefore also a circle.Note also that if the length of the thread exceeds ire, the curve will cut the ordinates drawn at A and B and lie partly outside Fig. 440.them. For this reason we did not express the area as for inthat case the limits — c to +c for x would not contain the whole area bounded, but only so much of it as lies between the ordinates at A and 
B, and there would be the difficulty of assigning such limits for the integration as would give the whole area.
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624 CHAPTER XXXIV.

A Case of Discontinuity.If the condition be superimposed that the thread in the above example 
is not allowed to extend beyond the ordinates at A and B, we should preferto begin by expressing the area as But when l>πc a discon­tinuity will be introduced by the imposition of the new condition. Westill have the condition the given length = l. Hence
is to be an unconditional maximum, where λ is a constant to be determined.Here etc.;where b is a constant. (1)Hence

i.e. andSo long as l πc this will lead to the same solution as before. But the arc is now, by the new condition, precluded from lying outside the ordinates at A and B, and therefore, for the case where λ > πc, we must re-examine the problem. Now, it has been assumed in the reduction of equation (1) and in integrating, that y' is finite throughout.But equation (1) can be satisfied by making y’ infinite, which indicates that part of the boundary of the area may be a straight line perpendicular to AB. Examine next the limiting conditions along the ordinates AL, BM at the extremities of the chord ; is to be zero, but δy is arbitrary. Now, for the terms involving the terminal variations
Fig. 441.and if the thread be arranged as AL and BM, straight portions, with an arc of a circle LM, which satisfies equation (1), we have at A, L, Μ, B, 

i.e. at the terminals and at the points where the thread leaves the ordinates, δx=0 ; whilst at A and B, 8y is also zero. This reduces the conditions to [ Y δy] = 0.That is ( Y, δy at A — Y, δy at L) for the line AL + (Y,δy at L- Y, δy at M)for the circular arc +(Y, 8y at M— Y,δy at B) for the line MB=0, and
8y at L is independent of 8y at M.Hence Y, for the line AL at Z = Y, for the circle at L )and Y, for the line BM at M= Y, for the circle at M. 
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LAGRANGE’S RULE. 625But in each case becomes 1 for the lines, y' being infinite.Hence for the circle also, both at L and at M. Therefore
y' = ∞ for the circle at L and M, and the circle touches both the ordinates. The area in question is therefore that of a rectangle surmounted by a semicircle, and is such that l= AL + AiB + 1/2πAB, which gives the lengths of the straight portions as 1/2(l-πc), when l > πc.

2. The ends of a uniform heavy chain of given length l slide freely upon two 
smooth curves which lie in the same vertical plane. Let us investigate its 
form on the supposition from the energy condition of stability that the 
centroid of the arc will assume the lowest possible position.Let the chain assume a position such as indicated by AB in Fig. 442, the terminal curves being y = f0(x), y=f1(x), We assume it as obvious

Fig. 442.that the chain will hang in the vertical plane of the terminal curves. Take any horizontal line in that plane as x-axis. For the position ofthis x-axis shown in the figure we are to make a minimumwith condition Therefore, by Lagrange’s rule we are to makea minimum.The equation gives
i.e. where y' = tan ψ. This is enough toindicate that the chain is to lie in the arc of a certain catenary curve. Proceeding further with the integration,

i.e.
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626 CHAPTER XXXIV.where C' is a new constant. The catenary is therefore one with its vertex at ( — C", — λ + C) and with parameter C.As to the terminals, we are to have [ Vδx + Y,(δy-y'δx)] = O.But δy1 =f1'(x1) δx1, δy0=f0'(x0) δx0, so that only two of the four variations at the terminals are independent, and we have Cδx + Cy'δy = 0 at each end, i.e. l+y'δy/δx=0 at each end, and therefore each of the terminal curves is cut at right angles by the curve of the chain.The seven quantities .r0, y0, x1, y1, C, C' and λ are determinable from the seven equations

3. A vessel which is in the form of a surface of revolution with parallel 
circular ends of given diameters is just filled with an inelastic fluid. The

capacity of the vessel is given and the whole 
fluid is made to revolve about the axis at a 
definite angular velocity ω. It is required 
to find the shape of the vessel so that the 
“ whole pressure” upon the curved surface 
is a minimum, neglecting the effect of 
gravity.Take the origin at the centre of one end and the axis of figure as x-axis. Let the radii of the ends be a and b and the length of the axis x1. Taking the density as unity the hydrostatic pressure equation gives dp = ω2ydy, where p is the pressure at any point; whence p = 1/2ω2y2, for p vanishes along the axis by the condition of the vessel being just full.Fig. 443.Now, the quantity known as “whole pressure” is given by ∫pdS, where iS is an element of surface.Thus is to be a minimum with conditiongiven quantity.Hence is to be an unconditional minimum.So i.e. and forthe terminals and at the end through theorigin δx and δy both vanish, whilst at the other end δy = 0, for the radius is fixed, i.e. Cδx=0, and therefore as δx is not necessarily zero, C= 0.
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CALCULUS OF VARIATIONS. 627Hence or , where This indicatesthat the arc of the generating curve is a catenary with parameter — λ, and directrix along the axis of revolution.The constants of the catenary and the value of λ are determinable from the facts that the curve is to pass through (0, α), (x1, b), and that the vessel is to have a given capacity U.If the abscissa of the vertex be ξ we have for the equation of thecurveHence threeequations to determine ξ,xl and λ.4. If the assumption be adopted that the pressure upon a small element 
dS moving with uniform velocity u in a still fluid is normal to dS, and 
proportional to the square of the normal velocity, it is required to find the 
form of a surface of revolution with a flat base which, when it moves in 
the direction of its axis, will experience the least resistance upon its curved 
surface. (Lacroix, Calc. Diff., ii., p. 698.)Let ψ be the inclination of the tangent to the axis of figure. Theresolved pressure is then which

Fig. 444. Fig. 445.

HereTherefore for a minimum const. yieldsconst. orThat is, the generating curve must be such that the projection of the ordinate upon the normal varies as the cube of the secant of the inclination of the normal to the axis
If we add the condition that the flat base is to be of given area, and that 

the volume of the solid is to be given, we have the conditional equation= a given constant.
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628 CHAPTER XXXIV.Then whencei.e. (1)For the terminals The origin being taken at the centre of the flat base (Fig. 446), and the base being given, we have 8x and δy both zero for the terminal of the generating curve which lies on the y-axis. Also C δx + Y, δy must vanish at the other terminal. Re­jecting the supposition of a discontinuous flat-nosed surface, this other terminal must be on the x-axis and δy=0. But 8x is arbitrary. Hence C=0. Rejecting also the solution of an end-on straight line experiencing zero resistance, we have
Fig. 446.

It follows thatandwhich indicates that the generating curve is part of a three-cusped hypocycloid, and the values of λ and the constant may be found from the given data.1506. The Case where Vdx is a Perfect Differential.We have assumed so far that is not directly integrable. Ifhowever this be so, the function is free from an integral sign and merely depends upon the terminal values of x, y and the differential coefficients, and is independent of the path of integration from the one terminal to the other. We are therefore not much concerned with this case. Sucha case would occur if, for instance, , for then
1507. Tests of Integrability.Our method of procedure, however, yields a test of integrability. For supposing V to be the differential coefficient of some function of form

and assuming the variation to be one which does not affect the terminal values of the variables, this vanishes independently of any assigned
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CALCULUS OF VARIATIONS. 629relation between x and y. That is, the relation Y=0 is identically satisfied. And the converse is also true, and the condition is sufficient as well as necessary.For the demonstration of this converse the student may be referred to Todhunter, Int. Calc., p. 365.
1508. Two or more Dependent Variables.Let V be a function of one independent variable x and two or more dependent variables y, z with their differential coefficients with regard to x, and suppose we are to search for the nature of this dependence which will give a stationaryvalue toHere We may proceed to find thefirst order variation of the integral exactly as before, but it is necessary to extend our notation.Let
Then, just as before, the first order variation of is

ora result similar to that of Art. 1496.Obviously, a similar form will hold however many dependent variables there may be.
1509. The Subsequent Procedure.As in the case of one dependent variable, in a search forthe forms of the functions y and z which will give astationary value, we are to put and now two casesarise, viz.(i) When y and z are independent functional forms;(ii) when they are connected by an equation L=0.
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630 CHAPTER XXXIV.(i) In the first case, η=δy-y'δx and ζ≡δz-z' δx are inde­pendent variations, and we get Y=0 and Z=0 separately, which form two differential equations to determine y and z in terms of x.(ii) In the second case, η and ξ are not independent varia­tions, but we have Yη+Zξ=0, together with L = 0.We shall consider these cases in detail.1510. Case I. y and z independentHereY≡ Y- Y',+Y''''-...=0, Z=Z-Z',+Z''''-...=0.Besides these equations, in the event of V not explicitly containing x, we have, as in Art. 1500,V=(Y,y'+Y,,y''+...)+(Z,z'+Z,,z"+...)+C.And further special cases arise. For instance, if y and z are also absent from V, we haveY',-Y''''-...=0 and Z,'-z''''+...=0,whence Y,=C1 and Z,=C2;
... V=C1y'+C2z'+C+Y,,y''+ ...+Z,,z"+...;and similarly in other cases.Also, if other dependent variables be present, a corresponding modification of these results will obviously hold.1511. Case II. The Case when the Path lies on a Specified Surface.Before considering Case II. in detail, viz. y and z inde­pendent, we may point out one very useful case which follows immediately from what has been said, viz. the case where the equation L=0 is a relation between x, y and z alone. This equation is that of a surface on which the path to be discovered must necessarily lie. And the case is useful for the very large class of problems dealing with maxima or minima conditions for lines drawn upon a given surface.In addition to Yη+Zξ=0, we have

Lxdx+Lydy-Lzdz=0 and Lxdx+LyδyY-Lzδz=0.Multiplying the first by 8x∣dx and subtracting, we have 
Lyη+Lzζ=0; whence, eliminating η and ξ, Y∕Ly=Z∕Lz and 
L=0 for all such cases.
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CURVES ON A GIVEN SURFACE. 6311512. Next suppose the equation of condition to contain 
x, y, z and differential coefficients of y and z with regard to x,viz.

Lagrange adopts a method similar to that of Art. 1504, and makes without condition, (1)
where he regards λ as a function of x only.It is clear that this will make vanish for all suchvalues of the variables as make L=0, which is what we require. Now

The first term is a function of the variables and variations at the terminals only, and vanishes with L.The third term is the only one in which variations of λ appear. And it will be noticed that if λ be regarded as a function of x only, say λ=χ(x), then since dλ=χ'(x)dx and 
δλ=χ'(x) δx, we have δλdx— δxdλ=O, so that the suppositions (i) L = 0, (ii) λ=χ(x) produce in that term the same result.Therefore, in finding the variation withoutcondition, it is unnecessary to consider variations of λ when we consider λ to be a function of x alone. The variationof therefore produces in the unintegrated part ofthe additional term

1513. Regarding λ therefore as a function of x alone, and writing V+λL instead of V, let us put etc.,
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632 CHAPTER XXXIV.the square brackets indicating that the substitution of V+λL for V has been made therein. Thus

and as the variation is unconditional, we have η and ξ inde­pendent and [Y]=0, [Z] = 0; that is
and
i.e. λ being a function of x alone,
andwhich, withgive three equations to determine y, z and λ as functions of x.1514. It will be observed that the terms after the first in the first and second of these equations, are those which accrue from the treatment of the term
in the variaton of after the manner of Art. 1496.We may note further that when L does not contain differ­ential coefficients of y or z with respect to x, these equationsreduce toand therefore give again the result of Art. 1511, viz.and1515. Illustrative Examples.1. As an example of Case I. of Art. 1509, let us find the shortest distance 
from the surface F(x, y,z) = 0 to the surface f(x, y,z) = Q without any further 
condition as to the path. This should obviously be a straight line cutting both surfaces perpendicularly.
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CALCULUS OF VARIATIONS. 633

We are to make a minimum, with specific ter­minal conditions. Here
The equations give i.e.and thereforeThat is, the tangent to the path is in a constant direction, and the path itself is a straight line.At the terminals we have

i.e.and the variations at one end are independent of those at the other, 
i.e. δx+y' δu+z' δz must be zero at each end, i.e.

at each end. But the variations δr, δy, δz must refer to displacements in the tangent planes of the terminal surfaces, for whichandHence the path sought must cut each surface orthogonally.2. As an example of Case II. of Art. 1509, examine by aid of these 
equations Lagrange's first rule. Art. 1504, where we have to find a function y

such that under condition constant a.Putting we may write this as L = z' - W=O.Then we make being a function of x alone.We haveandBut etc.
Hence these equations become and
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634 CHAPTER XXXIV.The second shows that λ does not contain x, and is a constant; and the first may then be written
i.e.where [Y] refers to the operation

upon V — λW, regarding λ as a constant, which is the rule of Art. 1504.3. Consider the stationary value of Comparison of the twocases. [Ohm. Todhunter, Hist., p. 35.]Let Then We may either(i) consider unconditionally,or (ii) with condition z'-y=0.(i) HereThe equation gives i.e. (1)a first integral of the equation to find z as a function of x.(ii) Or make [Y] = 0, [Z] = 0, with condition L≡z'-y = 0,

Eliminating y and λ, we have ∙(2)If (1) be differentiated to eliminate C, we find a result identical with (2), and equation (1) is a first integral of equation (2). The first method has therefore carried us one step onward in the integration, whilst the second has produced the original differential equation itself.1516. If s (or t) denote the independent variable, and x, y, 
z, viz. the Cartesian or other coordinates, be the dependent variables, it will be desirable to alter our notation a little in conformity with such requirements.We take the case of three dependent variables. It will make no difference in the investigation however many there may be. Accents will denote differentiations with regard to the independent variable.
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CALCULUS OF VARIATIONS. 635

Let
and we shall write etc.

etc.,with similar meanings for Y, Y,, etc., Z, Z,, etc. Then we have, to the first order,

say, as in earlier cases.1517. As before, if it be desired to discover the functionalforms of x, y, z which will be required to give astationary value, we have to make the above first order variation vanish.There are two cases to consider, (i) when x, y, z are inde­pendent of each other; (ii) when some relation L=0, or some set of such relations exists between them.1518. In Case (i), in the absence of any such relation, the arbitrary variations from point to point of the path, ξ, η, ξ, are independent of each other, and we have
three differential equations, whose orders are, in general, double the order of the highest respective differential co­efficients contained in V, and whose solutions severally con­tain the same number of arbitrary constants as their order. Secondly, there are as many equations arising from [H] = O, by equating to zero the independent terminal variations therein contained, as there are independent terminal variations.
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636 CHAPTER XXXIV.Also, as in Art. 1500 (i), if V does not contain s explicitly, so that S=0, we have
Other special cases may arise. For example, if

the independent variable being absent, we have
If we have

and alsoviz. the solutions of AΓ≡ — Ar'+A7=0, etc.,so thatana so on wιtn otner cases.1519. In Case (ii), when there is a connecting equation L=0, we make <>j (V-}-λL) ds—0, according to Lagrange’s rule, and consider λ a function of s only.Thenwhich, with the two similar equations in y and z and the connecting equation L=0, give four equations from which 
x, y, z, λ are to be determined as functions of s.When L contains only x, y and z, so that L — 0 is the equa­tion of a surface on which the path lies, these equations reduce to
i.e.These equations could be derived otherwise, as in Art. 1511; for we have andand, since we getan equation which constitutes a linear relation amongst the otherwise arbitrary variations ξ, η, ξ, which involve the four variations ⅛, fix, fiy, fiz.
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CALCULUS OF VARIATIONS. 637We also have Xξ+Yη+Zξ=O. Let one of these variations be taken such that ξ=O, then X∣Lx=Y ∣Ly. Similarly taking another variation in which η=0, then X∣Lx=Z∣Lz. Thus we get 
X∣Lx=Y∣Ly=Z∣Lz, with L=0, as before.1520. When z and its differential coefficients are absent from V and L, we obtain over again the relations of Art. 1511, viz. X∣Lx=Y∣Ly and L = 0.1521. In any case, where we are to make a maximumor a minimum and s is an arc of the path and x, y, z, Cartesian coordinates of a point upon it, we have the relation

and we may make an uncon­ditional maximum or minimum. Here has been written instead of λ for later convenience. If V be a function of 
x, y, z alone, not containing s explicitly, we have

=etc., =etc.,and
i.e.

i.e. (1)1522. Again the terminal equations give
i.e.

oror
i.e.
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638 CHAPTER XXXIV.

and therefore andfor the terminal variations of s are independent of the terminal variations of x, y, z.In isoperimetric problems, i.e. those concerned with an arc of specific length, δs1-δs0 vanishes; but in other cases δs1 and δs0 are not necessarily equal, and then C=0. Thus, for isoperimetric cases, V=λ+C, and the value of C is to be determined by the length of the arc; for non-isoperi- metric cases with an undefined length of arc C=0 andIn either case, provided λ be not such as to vanish at either terminal, we must have x'δx+y'δy+z'δz=0 at each terminal. That is, if the terminals are to be on specific terminal curves the path must cut each orthogonally. But if the terminals be fixed points this expression will vanish identically by virtue of the vanishing of δx, δy, δz.Since in non-isometric problems V=λ, we may writeasat once. (See Williamson, I.C., Art. 296.)1523. If V be any function of x, y, z alone, and is tobe made of stationary value for curves to be discovered lying upon a given surface ϕ(x, y, z)=0, and with fixed terminalsor fixed terminal curves, we have and we maytreat the variation ab initio as follows.We haveBut andso that
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CALCULUS OF VARIATIONS. 639So that we must have as theterminal condition and
along the path.We also have ϕxδx+ϕyδy+ϕzδz=O, a linear connection between the otherwise arbitrary point to point variations 
δx, δy, δz. Hence

Now, two of the variations are arbitrary, and λ is at our choice.Take δz=0, and choose δx not equal to 0 andThen it follows that and similarly wemay show, by taking that
ThusThe terminal condition [V(x'δx+y'δy +z'δz)]=0 shows that, provided V be not zero at the terminals, the path must cut 

each of the terminal curves orthogonally.

IMPORTANT APPLICATIONS.

1524. Geodesics.
To find the shortest line, or geodesic, on a given surface 

δ(x, y, z) = 0, from one given terminal curve to another drawn 
upon the surface.Here i.e.Then
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640 CHAPTER XXXIV.Thus, by Art. 1519, x"∣ϕx=y''ϕy=z"∣ϕx, i.e. the osculating plane at each point of the curve must contain the normal to the surface at that point.The terminal condition is
i.e.
i.e.Now fix one end, then x'δx+y'δy+z'δz=O at the other end, so that the line sought must cut the terminal curve at that end orthogonally. Similarly for the other end of the path. Thus the path must be such that(1) the osculating plane at each point contains the normalto the surface at that point;(2) it must cut both terminal curves orthogonally.1525. We might, without quoting the general theorem of Art. 1519, proceed as follows, a course which is usually preferable.Since we are to make we have
and along the path we'have with condition
i.eNow of the three 8.v, 8y, 8z, two are independent, say 8y and 8z.Let δz = 0, and take δy ≠0 ; λ is at our choice ; take it = x"∣ϕx. Then 
y" = λϕy.Thus x"∣ϕx=y"∣ϕy, and similarly = z"∣ϕz.We also have the terminal condition x'δx+y'δy+z'δz = 0 at each end, and the path cuts the terminal curves orthogonally.

1526. Geodesic on a Surface of Revolution.Let the surface be, say, x2+y2=f(z), the z-axis being the axis of revolution. Then x" ∣x=y''∣y, i.e. xy"-yx"=0, or 
xy'—yx' =const.=h, say. Referring to cylindrical coordinates (p, ϕ, z), p2ϕ'=h, i.e. psinχ=h, where χ is the angle between the path and a meridian at any point of the curve. This is the leading property of such geodesics.

1527. Geodesics on a Quadric.For geodesics upon an ellipsoid we have the relation 
pd=const., where p is the perpendicular on the tangent plane
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GEODESICS. 641to the ellipsoid at any point on the curve and d is the semi­diameter parallel to the tangent to the curve at that point. For proof of this and for the general properties of geodesics on a quadric, see Smith, Solid Georn., ch. xii.1528. Required the nature of the projection upon the z-plane of geodesics 
upon the helicoidal surface z = atan-1y∣x.Here ϕ=x sin z∣a-y cos z∣a=O, ϕz = sin z∣a, ϕy= -cos z∣a.The geodesic equations give i.e.changing to cylindrical x=p cos θ, y=ρ sin θ, z=aθ, ds2 = dρ2 + p2dθ2+dz2. Then indicating differentiations with regard to θ by suffixes, and those with regard to s by accents, s12=p12 + p2 + α2, i.e. s1s2=p1ρ2+pp1.NowHence and i.e. orwhence i.e.
i.e. orLet then where is a constant > 1 ;and where α is a second arbitrary constant. Hence the projection of the geodesics on the z-plane has anequation of the form r=a ctn mod. k, k and α being constantsdepending upon the position of the terminals.The reader will have no difficulty in showing that if φ be the angle which the tangent at any point of the geodesic makes with the generator at this point, and ψ the angle the normal to the surface makes with the axis of the helicoid, then sin ϕ =ksin ψ ; and hence that if A1A2A3 ... be any closed geodesic polygon drawn upon the surface, and ϕr, ϕr' be the angles which ArAr-1, ArAr+1 make with the generator through Ar, then ∏ sin ϕr = ∏ sin ϕr'.1529. Suppose we are to obtain the stationary value of 
where E, F, G are known f unctions of the variables x and y.Here where suffixes denote partial differentiations.
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642 CHAPTER XXXIV.The differential equation to be satisfied is Y≡Y- Y,'=0,
i.e.After differentiation and considerable reduction, this leads to an equation ∙(1)where
for the terms in y'4, y'y", y'2y'' all cancel out.The equation (1) is incapable of general solution, but many cases arise in which at least a first integration may be effected, and sometimes the complete integration.1530. (i) For instance, if E, F and G be constants, A=B = C = D = 0, and the solution is that of yn = 0, i.e. a straight line.(ii) If E=G=L-M where L is a function of x alone and M a function of y alone, and if F = 0,
and equation (1) becomes
or
i.e.or putting whenceHence a first integral is i.e,

i.e. const., a second integral,for by supposition L is a function of x alone and M a function of y alone, so that the variables are “ separable ” in such cases.1531. The case of Art. 1529 is an important one, for it will be remembered that if the coordinates of a point upon a surface be expressed in terms of two parameters u and v, the element of arc may be expressed in the form ds2=E du2+2F du dυ+Gdv2.
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LEAST ACTION. 643Hence the determination of a geodesic upon the surface depends upon the possibility of integrating the differential equation (1).1532. The direct investigation of the geodesic may be sometimes effected by a transformation. For example, if the square of the linear element on a surface be given by let us take a third variable w such that u2 + v2 + w2 = 1, whence
Then 

so That is, the arc of the curve on the original surface is the same length as the corresponding arc of a corresponding curve on the unit sphere in a system of rectangular coordinates u, v, w. And the geodesics on the sphere are given by the great circles, i.e. by equations of the form 
au+bv+cw + 0 ; hence the geodesics on the original surface are given by 
au + bυ+c√1-u2- v2 = 0, where a, b, c are constants.

1533. Principle of Least Action.
Suppose a particle of mass m to be in motion under the action of any 

conservative system of forces and either to be moving freely or under com­
pulsion to remain on a smooth surface from any one point to any other 
point. Then, if v be the velocity at any time t, and ds an element of the 
path, we shall show that the integral m has a stationary value.The quantity A defined as is called the Action, or theCharacteristic Function, by Sir W. R. Hamilton, and the principle is known as the Principle of Least Action.1534. If X, Y, Z be the force components per unit mass, R the normal pressure exerted by the surface, if any pressure exist, and λ, μ, v the direction cosines of the normal, the ordinary equations of motion are 
and the energy equation is say,for the expression X dx+Y dy + Z dz satisfies the condition of integrability, since the forces form a conservative system, i.e. are such as occur in nature.Hence, we have
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644 CHAPTER XXXIV.But we also have so thatand the variation in  i.e.

and since the direction defined by λ, μ, v, i.e. the normal to the surface, is necessarily perpendicular to any displacement δx, δy, δz on the surface, λ δx+μ δy + v δz vanishes, as also does each of the terminal values ofSo that the variation of A is zero and the “action” has a stationaryvalue. Conversely, if we assume that if has a stationary value, wecan establish the general equations of motion of the particle.1535. It follows of course that if X, Y, Z be all zero, i.e. if the particle be in motion on a smooth surface under the action of no forces except those due to the constraint of the surface, then v is constant, as shown bythe energy equation, and being of stationary value, so also isThat is, the particle searches out for itself and travels along a geodesic on the surface. (See Tait and Steele, Dyn. of a Particle, Art. 233, also Routh, Dyn. of a Particle.)

 536. Path of a Ray of Light in a Heterogeneous Medium.
When a ray of light travels in a medium of variable refractive index μ 

from one point to another, it does so in such a manner as to make ∫ μ ds a 
minimum. It is required to deduce the equations of the path of the ray.This case is similar to the one just discussed.We have i.e.and
andHence
and since the ray is to pass from one definite point to another, the integrated portion vanishes at each terminal, and the variations δr,
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BRACHISTOCHRONISM. 645

8y, 8z under the integral sign being arbitrary from point to point, we must have also 
which form the differential equations of the path of the ray.

1537. Brachistochronism. The General Problem.
A particle is in motion under the action of a given conservative system of 

forces. It is required to find the path along which it must be constrained to 
move so as to accomplish that path from one given point to another, or from 
one given surface to another, in the shortest time. Such constrained paths are called Brachistochrones. The case of brachistochronism under the action of gravity has already been considered.Let mϕ(x, y, z) be the potential energy of the force system, m being the mass of the particle.Then the energy equation gives 1/2v2 +ϕ(x, y, z)=const.The force-components per unit mass are -ϕx, -ϕy, -ϕz, being the rates of decrease of potential energy. By varying v, we have

AlsoNow we are to make minimum.SoTherefore 
i.e.and δr, 8y, 8z are arbitrary all along the path and independent of each other, and of the variations at the terminals. Hence

1538. The Terminal Conditions.If the terminals be fixed points, the expression in square brackets vanishes identically at each end of the path.If the path start from a fixed point (x0, y0, z0) and terminate at the surface F(.r, y, z) = 0, then δx, δy, δz vanish at the starting point, and provided the velocity be not infinite at the other terminal x'δx+y'δy + z'δz must vanish there ; that is, the path must cut the surface F(x,y, z) = 0 orthogonally, for the only admissible variations δx, δy, δz at this end are such as lie on the surface.If the path start from a point x0, y0, z0, which is only defined as lying upon a surface F0(x,y,z)=0, a similar result will hold, provided that the whole energy of the system be a given quantity, and that F0 =0 be an
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646 CHAPTER XXXIV.equipotential surface of the force system. If the surface F0=O were not an equipotential surface, terms depending on δx0, δy0, δz0 would make their appearance in the integral, and such terms if existent would have to be included with the rest of the terminal terms.If the motion terminate at a given curve instead of at a given surface, the terminal conditions may be discussed in a similar manner.
1539. The Normal Pressure in the Case of Brachistochronous 

Description.From the general equations etc., which may be writtenetc.,we have, by eliminating υ2 and vv',

so that the resultant force at any point lies in the osculating plane of the curve.Moreover, multiplying the equations v2x"-vv'x'-ϕx=O, etc, by 
px'', py", pz" respectively, p being the radius of absolute curvature, we have by addition v2∣p=ϕx px" + ϕyρy" + ϕ2ρz"= — N, where N is the normal force component.If, however, R be the pressure per unit mass upon the curve, the normal resolution gives the equation v2∣p = N+ R.Hence R= — 2N. That is, the pressure upon the curve is equal to twice the normal component of the forces, and acts in the opposite direction.Now for a free path under a conservative system of forces for which the components in the direction of the tangent and principal normal are 
T and N', there being no component in the direction of the binormal, wehave T and whilst for the same path to be brachistochronousunder frictionless constraint under the action of a corresponding set offorces whose components are T, N, 0, we have and(i.e. =N+R where R= -2N).1540. Hence we have Townsend’s theorem : “If for the same velocity of description any curve, plane or twisted, be at once a free path for one conservative system of forces and a brachistochronous path under fric­tionless constraint for another conservative system of forces, the resultants of the two force systems must at every point of the curve be reflexions of each other as regards both magnitude and direction with respect to the current tangent at the point.”1541. The principal cases are :(α) When the motion is under a single force in a given direction.(b) When the force tends to or from a fixed point.
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BRACHISTOCHRONISM. 647
1542. Case (a). Force in a Given Direction.Take the y-axis parallel to this direction. Let m be the mass of the particle, mF(y) the potential energy. The force to increase y, being the rate of decrease of potential energy, is -mF'(y). The pressure on the curve is R≡ 2mF'(y) cos ψ, ψ being the inclination of the tangent to the x-axis.

Fig. 447.Let y = a be the line of zero velocity ; then we haveandHence
i.e.whence υ = wcosψ, where u is the value of v when ψ = 0.Also the y-ψ equation of the brachistochrone is 1/2 u2cos2ψ = F(α)- F(y). It is convenient to use the angle i, the angle between the ordinate and the current tangent, in place of ψ, and ι = π/2-ψ.Then the law of force necessary for brachistochronism is given by

u2 d .
P=u2/2 d/dy(sin2i), per unit mass, repulsive from the x-axis, with a line of zero velocity found by the vanishing of i. Also the pressure upon the curve is R = 2m F' (y) cos ψ = -2mP cos ψ towards the centre of curvature.

1543. Case (b). Central Force.Take the origin at the centre of force. Let mF(r) be the potential energy. The radial force from the origin is - mF'(r) and R = 2mF'(r')sinϕ, where ϕ is the angle between the tangent and the radius vector. Let a be the radius of the circle of zero velocity.Then andHence i.e.
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648 CHAPTER XXXIV.Therefore υ∣p = const. = h, say. Whence the pedal equation of thebrachistochrone is and the law of force isrepulsive from the origin, with a circle of zero velocity whose radius is to be obtained by the vanishing of p.

Fig. 448.The pressure on the curve towards the centre of curvature is
1544. Comparison of Analogous Results.It is worth while for the student to note that (α) For parallel forces:(i) for a free path (a constant)(ii) for brachistochrone(b) For central forces :(i) for free path (constant);(ii) for brachistochroneCompare the following laws of central force for various circumstances(α) Particle in free motion
(b) Particle in brachistochronous motion(c) Equilibrium of inextensible string(d) Equilibrium of extensible string1545. Energy Condition for an Equilibrating System.If V be the potential energy of a field of force in which any system of material particles has assumed a position of equilibrium, it is known that the configurations of stability and instability are those of minimum or maximum values of V.Cases in which a stationary value of V occurs without a true maximum or minimum give neutral equilibrium, in which there may be stability
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ENERGY CONDITION OF EQUILIBRIUM. 649for some displacements, instability for others. The Calculus of Variations supplies a very powerful instrument for the discussion of such problems.1546. Ex. An inelastic string of uniform density and length l is attached to 
two fixed points A and B. Find the condition that it disposes itself in a 
curve of specified shape under the action of a central force in a field of 
potential V.Let m be the mass per unit length. Then the potential energy of the whole string is ∫mVds, and for stability we are to make ∫(V+λ)ds a minimum, V being a function of r alone. Then, with the usual notationof polars,

or
Henceϕ being the angle between the tangent and the radius vector, i.e. (1)

C being a constant.This gives the law of potential of the field of force.Thus P (viz. the repulsive force from the pole) (2)
V being supposed a known function of r, we now have a relation from (I) in terms of r, θ, λ, C, and another constant which will be introduced when we have integrated equation (1) to get that relation into the r, θ form. Two of the equations to determine the three constants will be obtained by making the curve pass through the terminal points ; the other is provided by making
If T be the tension, a resolution along the normal gives

i.e. i.e.That Tp is constant is also obvious by taking moments about the centre of force for any portion of the string. (See Art. 1544.)
Taking the more general case of a string of length l, attached to two given 

points A, B, and of variable line-density p, which is a function of s, the arcual 
distance of any point from A, and constrained to lie upon a given smooth 
surface f(x, y, z)=0, and in a field of force of which the potential is V, 
now a f unction of x, y, z, we are to make
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650 CHAPTER XXXIV.a minimum, λ and μ being functions of s alone, to be determined so thatand that,The terminals being fixed, we vary x, y, z alone, keeping s constant.ThenThe terms of the third group may be integrated by parts.etc.Hence, for a minimum, we have
with two similar equations.These three equations, combined with x'2 + + =1 and f(.r, y, z) = 0, are sufficient to determine λ, μ, x, y, z in terms of s.

PROBLEMS.1. Given that (x1, y1), (x2, y2) are two points movable in a plane, and such that their distance apart is always equal to a definite constant α, what must be the circumstances of the motion in order that we shall always have
[De Morgan, D.C., p. 455.]2. Prove that to the first order the variation of the integralwith constant limits, is where

andDetermine a curve joining the origin to the point (α, 1) for whichthe integral has a minimum value. [Math. Trip., 1896.]3. Prove that the shortest time path between two curves whichlie in one plane when the velocity varies as the distance from a line in that plane, is the arc of a circle cutting the curves orthogonally, and having its centre on the line. [Colleges γ, 1893.]4. Find the relation between y and p in a curve which makesa maximum. Obtain the polar equation of the curvewhose pole will generate this by rolling on a straight line.[Colleges, 1877. ]
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CALCULUS OF VARIATIONS. 6515. A particle is moving under the action of a force perpendicularto and proportional to the distance from the line of zero velocity. Show that the brachistochrone is a circle. [Townsend.]6. Find the law of force parallel to the y-axis for which each of the following curves is brachistochronous, stating in each case the line of zero velocity and the pressure upon the curve :
Curve. x-axis. Curve. x-axis.1. Circle, diameter. 2. Parabola, directrix.3. Parabola, axis. 4. Catenary, directrix.5. Tractrix, directrix. 6. Evolute of Para- axis.bola,7. Evolute of directrix. 8. Four-cusped hypo- line of oppo-Catenary, cycloid, site cusps.9. Rect. Hyp., asymptote. 10. Bifocal conic, axis.[Townsend.]7. Find the law of central force for which each of the following curves is brachistochronous, stating whether the force is attractive or repulsive, the radius of the circle of zero velocity, and the pressure on the curve in each case :
Curve. Pole. Curve. Pole.1. Parabola, focus. 2. Equiang. Spiral, pole.3. Cardioide, pole. 4. Circle, point oncircumf.5. Lemiscate of node. 6. Rect. Hyp., centre.Bernoulli,7. rn-ancosnθ, pole. 8. Invol. of Circle, centre.9. Epi- or hypo- cent. of fixed 10. Reciprocal Spiral, pole.cycloid, circle.11. Central Conic, centre. 12. Central Conic, focus.[Townsend.]8. Show that the curve of quickest descent under gravity from a given point to a given vertical straight line is a complete semi­cycloid with cusp at the given point.9. Determine the minimum value of having given that

andwhere y0, y1 are the values of y at the lower and upper limits respectively, and y1 is subject to variation.[St. John’s, 1883; Todhunter, Hist. of Calc. Var.]
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652 CHAPTER XXXIV.10. Find the equation of a curve such that the area between itand the x-axis has a given value, whilst the area of the surface of revolution, bounded by it when revolving about the a: axis, is a minimum. [0xf. II. P., 1880.]11. A piece of string of given length in the plane of the curve 
ax2 = y3, has its two ends movable on the two branches of the curve ; find the form of the string when the area between the string and the curve is a maximum, and when that is the case prove that the string at each of its ends is at right angles to the curve.[St. John’s, 1889.]12. A surface of revolution has a given area, and its generatingcurve intersects the axis in given points; determine the form of the surface so that its volume may be greatest. [γ, 1899.]13. Show how to connect two fixed points by a curve of given length, so that the area bounded by the curve, the ordinates of the fixed points and the axis of abscissae shall be a minimum.[Math. Trip., 1887.]14. Find the curve in which at every point
is a maximum or a minimum. Interpret this problem geometrically. [Lacroix, Calc. Diff., II., p. 689. ]15. Prove by means of the Calculus of Variations that the minimumvalue of is wherey0, y1 are the values of y corresponding respectively to the initialand final values of x, and supposing that does not becomeinfinite between the limits. [0xf. II. P., 1885.]16. Find what functions of x, satisfying the conditions y = 0, whenand when make stationary in value whenis given. [Math. Trip., 1876.]17. Show that the equation in polar coordinates to the planecurve of given length, for which is a maximum or minimum,is of one of the forms

[0xf. II. P., 1890. ]
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CALCULUS OF VARIATIONS. 65318. A lamina of given mass is symmetrical with respect to an axis, and its density at any point varies as the square of the abscissa measured from one end of its axis; if the attraction upon a particle at that point of the axis be a maximum, prove that the lamina isbounded by the oval where m is the given massand σ the density at unit distance along the axis, assuming the law of attraction to be that of the inverse square of the distance.[Math. Trip., 1875.J19. A curve passing through the point whose polar coordinatesare a, αcos-1e, is such that taken along the arc ofthe curve between the initial line and the given point, is a minimum. Prove that, provided that 2r-1 - α-1 is always finite and greater than zero, the required curve cuts the initial line at right angles in two points, the sum of whose distances from the origin is 2a; and find the equation of the curve. [Oxf. II. P., 1903. ]Interpret the result dynamically.20. If has a maximum or minimum, and λ, μ areindependent of p and of any higher differential coefficients, and the differential equation resulting is satisfied by y = ax + b for all constant values of a and b, prove that λ and μ must be mere constants. [Oxf. II. P., 1918. ]21. A swimmer who can swim at a given rate v starts from the bank of a wide straight river, and the strength of the current varies directly as the distance from the bank. He wishes to get as far down the river as he can in a given time T. Show that he must start from the bank at an angle whose tangent is proportional to T. Show also that the tangents of the angles his direction of swimming makes with the bank at equal intervals of time are in arithmetical progression, and that at the end of the time T he is swimming directly down stream. If the x-axis be taken along the river bank, μy the velocity of the stream and α his initial angle with the bank, show that he is ultimately swimmingat a distance α from the bank.22. An oval curve of given length rolls on a straight line; find itβ form when the area traced out in one revolution by a given
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654 CHAPTER XXXIV.point on the plane of the curve is a minimum, the boundaries of the area being the curve traced out by the moving point, the given straight line and two perpendiculars upon it from the extremities of the curve. [Math. Trip., 1870.]23. If the velocity of a carriage along a road be proportional to the cube of the cosine of the inclination of the road to the horizon, determine the path of quickest ascent from the bottom to the top of a hemispherical hill, and show that it consists of the spherical curve described by a point of a great circle which rolls on a small circle described about the pole with a radius π∕6, together with an arc of a great circle. How is the discontinuity introduced into this problem ? [Math. Trip., 1873.]24. If and prove, assuming such resultsof theory as may be convenient, that the curves along which frompoint to point is a maximum or minimum are rectangularhyperbolae. [0xf. II. P., 1886.]25. Find the curve of given length joining two fixed points, which is such that the distance of the centroid of the arc from the chord connecting the two points may be the greatest possible.[0xf. II. P., 1887.]26. A variable curve of given length πa√2∣4 has one extremity at a fixed point (3α, a) and the other on a fixed line x = 2α. Show that when the area enclosed by the curve, the axis of x and the lines x = 2a, x = 3a, is a maximum the curve is one-eighth of a circle.. [0xf. II. P., 1888.]27. On the surface of an ellipsoid a curve is drawn whichintersects at a constant angle all the geodesics passing through a given umbilic. Prove that its total length from umbilic to umbilic is l sec α, where l is the geodesic distance between that umbilic and the opposite one. [Math. Trip. I., 1888.]28. Find the form of the function p, in order thatmay be a maximum, subject to the condition that isconstant, and interpret the result geometrically. [0xf. II. P., 1889.]29. A man swims from a point on the bank of a straight river to a point in mid-stream, with a constant velocity relative to the water.
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CALCULUS OF VARIATIONS. 655Prove that, in order that the passage may occupy the shortest time, his actual course must be straight if the strength of the current is constant, but that if the strength of the current is proportional to the distance from the bank the path must have for its equation

where the starting point is the origin, the bank is the axis of y, 
b the distance from the bank where the velocity of the stream is equal to that of the man relative to the water, and c is a constant. How is c obtained? [Colleges, 1896.]30. Apply the principle of energy to determine the equation ofequilibrium of an inextensible string under the action of a central force, its ends being fixed. [St. John’s, 1881.]31. A heavy particle moves on the surface of a smooth circular cone with a vertical axis and vertex upwards. Find the brachisto­chrone from a fixed point on the surface to a fixed generating line.[St. John’s, 1881.]32. Show that the curve, such that  between two fixed pointsin the plane of the curve may be a minimum, is [Trin. Coll., 1881.]33. A man walks up a uniform incline from a given point to reach a given height. His velocity varies as the sine of the angle between his path and the line of greatest slope on the incline. If he exhausts himself at a rate proportional to the product of the whole height ascended, and the square of the cosine of the inclination of his path to the line of greatest slope, show that he will get to the required height with least exertion along a curve whose equation is[St. John’s Coll., 1883.34. Prove that the minimum value of between thelimits x = α, y = b and x = a', y=b' is equal to35. A curve is drawn on the surface such thatis a maximum or a minimum ; prove that
c being an arbitrary constant. [St. John’s Coll., 1882.
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656 CHAPTER XXXIV.36. Show that the surface, whose superficial· area is given and which encloses the greatest possible volume between itself and a given plane, has the sum of its curvatures at every point constant.[Math. Trip., 1S88.]37. Geodesics are drawn upon the surface formed by the revolution of the curve x = 2a sec u, y = a (sec u tan u - cosh-1 sec u) about the y-axis. Show that the projections of these geodesics upon a plane perpendicular to the axis of revolution are of the forms of the inverses with regard to the origin of a certain Cotes’s spiral.38. Show that if S, H be two fixed points at distance apart 2α, and 0 the mid-point of SH, the law of repulsive force from 0 under which the curve SP. HP=c2 can be described in a brachistochronous manner is one varying as (0P4 +d4) (30 P4 - d4)∣OP3 where α4 + d4 = c4. Show also that the normal pressure upon the curve varies as
39. Find the variation, to the first order, of the integral

taken along an arc of a curve traced on a surface ϕ(x, y, z) = 0 between two given points of the surface; and show that if the integral have a maximum or minimum value the curve is found from the differential equat'ons
The line joining the centre of curvature at any point P of the above curve to the centre of curvature of the corresponding normal section of the surface meets the tangent plane at P in G; GT is perpendicular to GP, and PT is the tangent at P to that curve of the family ϕ = 0, V= const. which passes through P. Show that

Math. Trip., 1897.40. A heavy particle moves on a smooth surface of revolutionthe axis of which is vertical and vertex upwards.Find the brachistochrone from a fixed point on the surface at a depth c below the vertex to a given meridian, and prove that the brachistochrone cuts the given meridian at right angles, and that the area swept over by the radius vector on a horizontal plane is proportional to the Action. If the brachistochrone be from the
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CALCULUS OF VARIATIONS. 657fixed point to the curve defined by the equations
y + z = 2c, prove that, if r and θ be cylindrical coordinates, the lower end of the brachistochrone is given by the equations

St. John’s Coll., 1884.41. Show that is an exactdifferential.42. Show that the conditions that is integrable per se,where are
and Todhunter, I.C., p. 369.43. Show that the conditions that is integrable per seare those of Question 42, together with
and generally, that V is integrable n times per se, provided that each of the functions V, xV, x2V, ... xn-1V be so integrable once.[Todhunter, I.C., p. 369. ]44. Show how to find the relation between x and y which willmake the expression a maximumor a minimum, it being given that x1, y1 are connected by an equation, and that x0, y0 are also connected by an equation.A curve of given length l is drawn in the plane x, y so that one end is on the axis of the parabola x2 = 4αy and the other end on the arc of the parabola. If the figure revolves· round the tangent at the vertex of the parabola, show that when the surface generated by the curve iff the greatest possible the form of the curve is that of a portion of the catenary

[Math. Trip., 1886.]
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658 CHAPTER XXXIV.45. It is required to find a smooth guiding curve for a particle moving under gravity from rest, such that the horizontal space described in time t is the greatest possible. Show that the curve must be a cycloid, and that the space is gt2∣π. [Math. Trip. II., 1914. ]46. Uniform elastic wire is held bent by proper forces betweentwo points A and B so that the area between the wire and AB being given, the work expended in bending the wire may be the least possible. Show that the curvature at any point varies as r2-α2, where AB = 2a and r is the distance of the point from the middle point of AB. Show also that if the wire be bent completely round to satisfy the same conditions, the form of the wire will be given by r3 = c3cos 30 [Math. Trip., 1878.][It may be assumed that the work done in bending the wire is measured by47. A right cone is capable of revolving freely round its axis, which is vertical. A groove is to be cut in the surface of the cone such that a particle of mass m sliding down the groove without initial velocity from a given point may in the shortest time reach a given point in the horizontal plane through the base of the cone ; show that the differential equation of the particle’s path projected on the horizontal plane is
where α is the semi-vertical angle of the cone and mk2 its moment of inertia about its axis. [Math. Trip. III., 1885. ]48. A curve is drawn to touch two fixed straight lines at the fixed points P and Q. The area included by its pedal with respect to a fixed point 0 and the perpendiculars from 0 to the fixed tangents is a minimum, whilst the area included between the curve and the straight lines OP, 0Q is constant. Show that the curve is part of an epi- or hypo-cycloid.49. If a point move in a plane with velocity always proportional to the curvature of its path, show that the brachistochrone of continuous curvature between any two given points is a complete cycloid.Prove that in the ordinary gravitation brachistochrone (which is also a cycloid), the velocity is inversely as the curvature of the path, and state the connexion between the two results.[Math. Trip., 1875. ]
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CALCULUS OF VARIATIONS. 65950. Prove that the curve of a uniform chain of given length joining two fixed points is given by an equation of the form 
y = b sn K x/a, when the moment of inertia of the chain about a given fixed line, in a plane with the two given points, is a maximum;

X and by an equation of the form y cn Kx/a=b, when the moment of inertia is a minimum, the given straight line being taken as the «-axis. [Math. Trip. III., 1884.]51. Use the method of the Calculus of Variations to show thatthe general equation of the geodesics on a right circular cone, whose equation in polar coordinates is 0 = a, is r cos {(ϕ - β) sin α} = a, where β and a are arbitrary constants. [Oxf. II. P., 1914.]52. Prove that the polar equation of the projection of a geodesic on a catenoid formed by the revolution of a catenary about its directrix upon a plane perpendicular to the directrix is of one of the forms 
and distinguish the cases.[Math. Trip. III. 1884, II. 1913; Greenhill, E.F., p. 96.]53. Prove that if, from any point of a surface, geodesic lines of equal length be drawn in all directions, the curve which is the locus of their extremities cuts all the geodesics at right angles54. Prove that on the surface of revolution determined by the equations 
the equation of a geodesic line is tan ω= A sin k(ϕ + β).Prove also that the locus of the extremities of geodesic lines of length 1/2 πa drawn from the point at which ω = Ω and ϕ = 0 iscos kϕ + tan ω tan Ω = 0. [Math. Trip., 1896.]55. Prove that the projection of a geodesic on a surface of revolution on a plane perpendicular to the axis is in polar coordinates r-2 = α-2cn2μ0+ β-2sn2μ0, if the meridian curve of the surface is the roulette of the focus of an ellipse rolling upon the axis, α and β denoting the greatest and least values of the focal distances.
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660 CHAPTER XXXIV.Show that if the geodesic cuts the meridian plane at its maximum distance at an angle γ, then
[Math. Trip. III., 1885.]56. The line element of a certain surface is expressed in terms of parameters u and v by the equation

Prove that the equations of the geodesics on the surface are of the form au + bv + c = 0, where a, b, c are constants.[Math. Trip. II., 1920. ]57. Prove that a surface for which 
has its geodesics represented by straight lines on the plane of x-y and its geodesic circles by conics having double contact with x2+y2 -1=0, and the geodesic distance p between (x0, y0) and (x, y) being given by

Prove also that the specific curvature is constant and equal to - 1. [Math. Trip. II., 1919. ]58. Show that the conditions that the parametric curves may be geodesics on the surface of which the line element is given by 
ds2 = E du2+ 2F dudv+ G dv2 are respectively that (E du + Fdv)√E 
and (Fdu+ Gdv)∕√G must be complete differentials. Show also that if these conditions be satisfied, the specific curvature at apoint of the surface is 1/V , where V2=EG-F2 and ω is the angle between the parametric curves at the point.[Math. Trip. II., 1919. ]
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