CHAPTER XXXIIL

ELLIPTIC FUNCTIONS (Continued). REDUCTION
TO STANDARD FORMS.

1446. Preliminary Considerations.
Taking the general integral r%‘g, where P is any rational

algebraic function of z, and @ the quartic function
ayzt+4a, 23+ 6a,2°+dazz+a,,

we now proceed to show how it may be reduced either to the

Legendrian form or to the Weierstrassian form, as may be

desired.

1447. We shall assume that the several coefficients occurring,
viz. @y, @,, a,, a4, a,, are all real constants.

The roots of a biquadratic Q=0 with real coefficients must
be either (1) all real, (2) two real, two imaginary, or (3) all
imaginary.

The roots of a cubic equation with real coeflicients must be
either (1) all real, or (2) one real, two imaginary.

Further imaginary roots occur “in pairs,” and are conjugate,
ie. of form a3, where a, 8 are real and =+ —1.

Hence when @50, @ must factorise, at the least, into two
real quadratic factors, and it may further factorise into two
linear factors and one irreducible quadratic factor, or into
four linear factors, the coefficients of such factors being all
real.

And when a,=0, @ must factorise, at the least, into one
real linear factor and one irreducible quadratic factor, or it
may be into three real linear factors.

For the present we shall consider a,=0.
. 567



568 CHAPTER XXXIIIL

1448. The Invariants.

Now when any binary quartic
Q=0a,7*+4a,2%y + 61,2%+ day vy +ay' =(ay, a;, ay, a5, a,) (z,7)*
is subjected to a linear transformation

z=lX+mY, y=LX+m,Y,
so that the modulus of the transformation being
A=, m

ly, my

=lm,—l,m,,

@ takes the form
Q=ayX*+4a,/X?Y 4 6a, XY %+ 40,/ XY3}a,'YV*
=(a¢’ ¢/, &), a5, a,)(X, Y)},
the quadrinvariant I=aya,—4a,a,+ 3a,? is of order 2 and
weight 4 ;

the cubinvariant J=a,a,a,+ 2a,a,0,—a,0,.>—a,a,’*—a,® is

of order 3 and weight 6 ;
and if I, J’ be the same functions of the new coefficients in
@, we have I'=A*l,J'=A®%, so that I'3/J?=1I3/J2; and this
is an absolute invariant, being independent of the letters of
the transformation formulae.

Now amongst the four letters I, m,, l,, m,, there are three
ratios at our choice, and sufficient, if they can be determined,
to make either a," and @," both vanish, or @," and @, both
vanish, and in either case we shall have a third choice
between the three ratios still available for any other purpose
of simplification which we may desire. The choice making
a,” and a; vanish is the Legendrian plan of attacking the
problem of reduction. The choice making @,” and a,” vanish
is the Weierstrassian method. The latter is the more modern
and the simpler. We shall therefore consider it first. :

1449. REDUCTION TO THE WEIERSTRASSIAN FORM.
If ay =a,’ =0, the invariants become

" ST T Losrest b At
=—da,)a,, J'=—a,%a,,
i J’
@’ becomes ¥ <4a1’X3—67 XYZ—a - Y3>,
| 1

and a,’ still remains at our disposal.
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REDUCTION TO WEIERSTRASSIAN FORM. 569

We could make it unity by a proper final choice amongst
the transformation letters. For the moment we reserve the
choice. In any case we have seen that it is possible to trans-
form @ to the form

Q=KY(4X*—g,XV*—g,¥%,
where K, g,, g, are certain constants which are functions of
Qys @y, Ay, U3, Q4; ll’ my, ll: M.
1450. Now let
f@)=a,2'+4a,23+ 6a,2*+ da,c+a,,
and let the roots of f(z)=0 be ay, a,, a,, a,, so that

f(@)=a,(z—ap) (z— a;) (z— a,) (z—ay).

From what precedes it appears that by a proper choice
amongst the letters 1, m, l,, m,, in the homographic sub-
stitution z=(l,z2+m,)/(l,z+m,), f(x) may be reduced to a form
in which the term in 2z* is absent in the numerator.

____(l aol2)2+(m1—aom2)

Now z— Latm,

and f we make our first choice amongst the three disposable ratios
I, :my 1, :my to be l,=ayl,, we shall have

my— =+ my

ll
| i TR Y, b
Totm, lz+m2’ 2.e. xlao-{-z—_—”, say,

and the two quantities u, » are still at our disposal.
We now have
M )
—a

x—ao=

ag—a
T—a,=ag— a1+z__" : nl(z—H_ao

ap—a
T—ay= == 2 z—r,+
2 %—n az
ap—a “
T—ag= oy o 3(2—71-}- = ),
n Ao~ ag

and

f($)= gl (ag—ay) (ap— ay) (ag— ay)

(z—n)*
x( -

xo-‘:al) (z_”+ao
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570 CHAPTER XXXIIL

In order to arrange that the term in 2% in this numerator
shall be absent, we shall make the choice of a relation between »
and p, viz. that

bt B i

a, ag—ay Up—ag

and we sl have one choice left amongst the constants at our

disposal.
Moreover, since do= —u dz/(z — )%, we have
dx —udz

JF@)  aos(aq - ar)(ap — ag)(ao—as)

1
X
\/<z_”+aoia

L i |1 A A
D U e
Let us now make our final choice amongst the disposable trans-
Jformation constants, such that
pw="1ag(ap — a,)(ap—u,) (ag— as).

Then, since f(z)=ay(z— ap)(x— a;)(— a,)(z—ay), we have

al f' (@)= (2 - a,) (t—ay) (¢ — az)+terms containing (z—ay) ;
o

-

whence
(e = (a0~ ) to—a)aa - a)= g5 . w=1f (e
Again
—f" (@)= (z— ag) (x—a,)+ (% — ap) (T—a5) + (T —ao) (T—ay)
+(@—a) (T—az)+ (z—a,) (@—ay)
+(@—a)(x—ag) ;

whence
| G818 8
270 (ag)=(ao— az) (ap— ag)+(ap—ag) (ag—ay) +(ag—a,) (ag—ay);
: g B
and gincq s (“o" a1+ ag—ay +—ao—a3>’
2 N f 2" f”(“o) -
this gives 1=%.1f (ap) -1—, v.6. n==2¢f"(ag)
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Thus w and » are now found, viz. w=21f (ao); 1==cf"(ao)

dx —dz
, where g,, g; remain to be expressed.
~/f(w) Vi —ge—g, % h
And seeing that the relation m—ao—!-”“ gives an infinite

value to z when x=gq,, we have

I.t I dz T (Z ) 3
@ ) Jhi—gg=g, | I
and if this integral be called u, we have z=gp(u).

1451, If e}, e,, e, be the roots of 42°—g,2—g,=0, we have
e,+e,4e,=0, ee,tee.tee,= —gf, e,e2e3=%.

Moreover, regarding 42®—g,z—g, as the form assumed by
the transformed quartic function (o, a,, a,, ay, a,)(z, %), viz.
0.2*4+4a,2°4+6.0.22+4a,2+a,’, we have a/'=1, a/=—1g,,
a,/=—g,; so that I'=g,, J'=g¢,.

Also we have

LN B O 1 1
aus ao—al-'i(ao-—al ag—ay ao—as)
1
=_2ao[ 2(ap— a5) (ap— ay)+(ag— a,)(ap— ag)
+(ao_‘11)(“o az)]

L.e. e1=‘1a_‘; [(@o— ag)(ag— a;)—(ao— ag)(a;—ay)].
Similarly
[(ao (13) ag) e (ao“ al) (az g as)]:

=;‘—;[(ao—alxaz—a,>—(ao—a2>(as—a1>],

thus expressing the roots of the cubic 42*—g,z—g,=0 in
terms of the roots of the quartic Q=0; and therefore g,, g,
or what is the same thing, I’ and J’, are now known in terms
of Qag, @y, Ay, Ag and (179

We shall now for convenience drop the accents from I and
J as being no longer necessary, and these letters will therefore
be for the future understood to refer to the new form of the
quartic function 0.2*442%+6.022—I2—J, and henceforth use
I and J, as in the previous chapter, instead of the letters
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9. and g, respectively as may be desirable, and the accents
can be restored whenever we wish to institute a comparison
with the corresponding symbols belonging to the original
quartic Q. |

1452. Our transformation is now complete, and we have

ety J" da J‘ i dz
a0/ (g, Ay, Uy, g, @) (@, Y)t Jz NEB—T2—J
§ dz :
— = (3, I; J )
I 0y e ey i Al
the transformation to effect the reduction being
1/ (a0)
&= S —.
a°+z_?‘7f (ao)
1453. To find the Legendrian Moduli, the Roots of ¢)=0 being
known.
The transformation formula may be written

n
z:
"+x—ao
we have also ;;+
'_‘(lo
w__
and .o L 4,

T—ayg ay—ag Gyg—a; T—ay
(l/o f ﬂo) x~01
4 gg—a, T—ap’
similarly z—e,=%2 f(—a“)w, 2—eg="20 Sl o7 ds
* 4 agg—ay,T—ay 4 gg—az T—ay
Also the Legendrian moduli %, &’ may be readily expressed
in terms of ay, a,, a,, a;. For since (Art. 1414)

kP=(e,—e5)/(e,—¢e5),  KP=(e;—e,)/(e,—¢ep),

.6 z—e =

we have
PN
2% 0y do—dy (ag—a)(ag—ay)
k I 1 " (ag—a)(az—ay) fags ayo Q3 g
ap—ag OGg—a;
B FARIIR T
2 __ % dp ao“a1=(“o."03)(al—a2)=
k L_L (ap— a,) (a, — ag) {aq, a3, a;, a,}

ag—ag ag—a,
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1454. Cubic to find the Legendrian Moduli, available when the
Roots of ¢)=0 are unknown.

We may obtain an equation for the determination of the
moduli £ and %" for the case in which none of the roots of
Q=0 are known and are not readily obtainable.

Since k*=(e,—¢,)/(e,—¢€5) and k*=1—Fk% we have

k%, —e,+1%e,=0 }

and e +e+e,=0;
whence
6 bt it LMY e ~/el"'s_"'zz
—(I+F%) 2= 1+ J3(k2—1)
- Je,e.eq
J—=AF+R) (142 (2 —k?)’
and ees—et=—1I, ee.eq=1J.
ny I =)8J J
Therefore «/12(1—]6’]6’2) —-4(2-{-/02]0'2) (k”—k’)'
Lo I3 J? 3 —-21J2
. Gt = .
Writing k**=P, 4(1_p)a—27 (2+Pr(1—4P) 2TP °
p2 4 J?
whence (_I—P)s=§7 (1—27 T’)’
and s is an absolute invariant, free from the modulus of

JE
transformation, viz.
do, @y, Ay [*(agay—4a a5+ 3ay®).
Uy, Uy, dg
Ay, Qg Q4
when expressed in terms of the coefficients of the quartic Q.
This cubic for P may be solved by Cardan’s method, and
thus the product k*t can be found; and as k%4 k?=1, both
k and &’ can be found.
1455. ILLUSTRATIVE EXAMPLES.
< % L dx
Ex. 1. Consider the integral uejil W v g 7 e ey
Here there are obvious roots of f(2)=0, viz. =0 and 2= -1,
F()=122%4 51224182 =5, f"(r)=3622+1022+ 18,
Taking the root x= —1 as a,,

S (=1)=16, f'(-1)=-48, p=}f(-1)=4, =S (-1)=-2

WWW.IrCIN.or
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Hence the proper reduction formula is

Loiguis sy il dhninted
TP 7 Sl

Then f(a:):-:»x(x+l)(3t’+ 142 —-5)=z(x+1)(z+5)(3x—-1)

=64(z—-2)(z—-1 5
and dr= —4dz/(2+2)%; it bbb

1)k Ui dz dz
" @) Ji-2)(e-1)(z+3) iP_28:+24
Also = —1 gives z=w
dz
- Jaz - 282+ 24
In this case e,=2, e;=1, ;= — 3, k?=(e,—¢;)/(e, —e5)=4/5, k'*=1/5,
L Y

adgp B
’(us/ﬁ) sn?(uv/5)

% sn(us/_) '\/5212, u-——-sn“\/5ii§

=@ 1(z, 28, —24) and z=g(u).

P(u)=e+

Ex. 2. Take the same example, and start with the root #=0.
Here a,=0, f(0)=-5, f"(0)=18, p=-5/4, n=3/4,
x=—5/(42—3), dr=20dz/(4z-3)?,
S(x)=1600(z - 2)(z— 1)(:+3) /(42 - 3)",

' [u/sz):[- \/4:’—(fzzﬁz+24’
“=f,Jf(z) [[ f]Jf(,) (f f ) _'_”2'8z+24
o | m%ﬁ g =

s x f Vi - 98+ 94 2sz+24
Hence z= (20, —u)=§(u), as before.

Ex. 3. Examine the same integral with the substitution v = 5;’ :,.
4s? 20 45 -5
Then dx—(,, a‘)”‘ x+1=5——:,, a,+5=5_8.4, r-1= 4W'
’ ds = 2
= | E . . s=sn(uvb); mod. —
Hence u ;/5.[) BT sn(uv5); m N
which agrees with the former result (Ex. 1), in which
4s? -1
p(u)——3+82 and 2= - l+?(“)+2 l-{-:‘,)—_—‘-,-.=55__8Z

www.rcin.org.pl



REDUCTION TO WEIERSTRASSIAN FORM. 575

1456. Transformation for the Case of Unreal Values of the ¢s.
So far e, e,, e; have been considered real. Now suppose e,
real and e,, e, to be complementary imaginaries. Take the
(x—e,)(x—e,)
T e
our choice. Since ¢,+e,+¢,=0, we have
ol extee, €925+ 2¢,*
z—e, kgt z—e,

hyperbolic transformation y—»,= , where 5, is at

S

Let us choose n,=—2e,, i.e. choose the hyperbola so that the
oblique asymptote passes through the origin. Then the graph
of this transformation is a hyperbola with asymptotes z=e,,
y=a and centre (e, ¢,). Let (&, 5,), (&, n5) be the points at
which the tangent is parallel to the z-axis. These points are
the ends of a diameter, and n,+ 7, =2¢,=—n, ; .". n;+n,+n,=0

Moreover, £ and £,, which are the roots of 8g=0, must be
repeated roots of the equations y=n», and y=y, respectively,

1.e. o £ )2 Beiemal b

i Sfagimdty e+ 2e
(x— )" y
_1/ (x— fz)(a:—g :
dz=  (z—e)?
Clearly the values of £, & are e, +vee,+2e%
. dx
Ll e
[ dy (x—e,)? 1
J (w—fz)(w £) Va(e—e)(z—e,)(z—ey)
(z—e) dy
IV (@—e,)(y —ne) V(@ —€,) (y — ) V(4 (@ —e,)* (y—m,)
s dy ;
JJay—m)y—ndy—n)’
in which n+ny+n;=0.
The nature of the transformation graph, in which the

branches of the hyperbola cannot cut the line y=y,, since e,
and e, are imaginary, and which must therefore lie in the com-

whilst %’ which is must take the form
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partments between the asymptotes as shown in Fig. 427,
establishes the fact that y,, »,, n, ave essentially real quantities ;
y=n, and Y=y, are the maximum and minimum ordinates of

4

Fig. 427.

the graph, and the line y=y = —2¢, is a line parallel to the
x-axis at a distance twice as far below that axis as the centre
is above it.

1457. Analytical Examination of the same Transformation.

If the roots of any cubic aer®+ 32,22+ 3ayr+as=0 be a,, a,, a;, we
have a*(as — a3)*(ag — ay)*(ay — ag)*= — 27a,*A, where A is the discriminant,
viz. A=agas® — 6aga, a3+ 4aa,® + 4a,3ay — 3a,%as?,

(Burnside and Panton, Th. of Eq., p. 83.)
and the roots are all real or one real and two imaginary, according as
A is = of +™.

In the case of the cubic 42? — Iz — J =0, with roots e,, e,, €5, we have
do=4, ;=0, ay= ~ 3], ay= —J ; A=43144.4(~}IP=—13(D-21Y),
and (es—€3)%(e5— €))% (e, — ;) = (12 — 27J3).

The roots are then all real or one real and two imaginary, according as
I3—-27J%is +™ or --™. 1In the case we are considering, viz. one real, say
e,, and two imaginary, viz. e,=p+tq, e;=p—tg, p and ¢ being real, and
e, = —2p, so that e, +e,+e;=0, we have

I3 -27J2=16(2:9)*(9p*+ ¢*)* = — 64¢*(9p*+ ¢*)*= - .

where

But when we transform by the equation ok e s
e
Ri=epe;+2¢2=5p*+¢*=+",
we have £,=¢€,+ R, {3=€,— R, ny=e,+2R, ns=6,-2R, 7,= —2¢;;
and in the new cubic, 4y~ I’y — J'=0, we have
I3 —27J" =161z — 13)* (s — 11)° (1 — 12)* =16 (4R)* (3¢, — 2R)*( — 3¢, — 2R)?
— 9256 R2(e,? — 4R?)* =256 (5p® +¢?) (16p% — 4¢%)? = +™.
Hence all the roots of the new cubic are real.

I v
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1458. ILLUSTRATIVE EXAMPLE.
1 dx
U= 4
= a2t =123+ 54x% — 100 + 57
Here =1 is an obvious root of f(z)=0,
f(x)= 423 —3622+1082—-100, f'(1)=— 24,}

Integrate

S ()=124 = 722 + 108, Fr(1)=48;
=)= -6, n=5f'(1)=2
The transformation formula is 2= u.o+-__L7’ = —z—f—z-

We also have
S(@)=(2—1)(23 - 1122+ 432 - 57) = (2 — 1) (z — 3)[(x — 4)2+ 3] ;
hence two roots for , and therefore also for 7, in the transformed equation
will be imaginary.
The transformation is

- g~ D+ DADE -2+ D= (+1);

- 64 dlein IR hodbnt e, 7
also dx—(z_z)z, whence];,\/m [‘Jm @ (2, 0, —4).

Transform further by the rule of Art. 1456.
zz—z+l_zﬂ+z+3_z+__3__
PR AR W i T iy

e=-1, n=-2¢=2 y=n+

dy _
anda—z—l (z_‘_———l—)‘—Oglvesz—:l:\/— 1
Therefore 7,=243-1, 7= —-2V3-1 and 7 +n+n;=0,

(z—V3+41)? 8 (z+~/3+1)1

B, Sl 7 e 241
Toray (z+1)*
. va)| Jiztd v GH=8 JaGrg )
_/"” dy ]
v N+ D)y -m)VE+Dy-n) ~Nay-m)

" dy 27 dy
v Nay-m)y -y -y v Vay-2@+2-11)
[ d J—_——#—’w% =p~(y, 60, —88).
In order of magnitude the values of the 1)’s are
1)2=2s/§— 1, ;=2 my=-23-1;
3+2V3_ 4+2V3

7, Sl =gin?76°
43

whence =

Thus y=p(u)= 2+4~/—dn 2:/:_37‘, mod. sin 75° ; whence we can express
zand 2 in terms of w.

www.rcin.org.pl
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E —24/3+1

1945y« E{¥)—Iv3+1

We have cn' w p(u)+2~/3+1
1 y+1-2V3
d ] = "J——_
WE RSl Vyii+al

L 200 =Buta?) - V31 -2) (3~ 2) in 75"
_2':/5011 lJ2(7—5x+x’)+~/§(1_z)(s__,)’(m()d'sm'] )7

1459. REpucTION TO THE LEGENDRIAN FoRM.
We next turn to the other method of reduction referred to

in Art. 1448, which endeavours to express J@:—v— directly in the

dx o
Legendrian fo j——:, k<)
gendrian form T =) (2 <1)
1460. Preliminary Geometrical Considerations.
It will be convenient to consider the expression @ made
homogeneous by the introduction of the proper power of y
where necessary, and written with binomial coefficients, as

Q=agpt+4a,x%y + 6a.2%y2 + da 2y + ayt,
and to imagine it to have been factorised into two quadratic
factors with real coefficients, as

Q= (ax®+ 2hzy - by?) (a'z*+ 2k zy + b'y?).

Consider the two concentric conics whose equations are
ax® 4 2hay+byP=F, o'x?+20'2y+byi=@;

F and G being at our choice, we may select them so as to
give real intersections P, @, R, S, which will always be
possible if one of the conics be an ellipse. Then it is plain
that. PQRS is a parallelogram concentric with the conics, and
that, as PQ, QR form a pair of supplemental chords of both
conics, the lines through the centre drawn parallel to the
sides of the parallelogram form a common pair of conjugate
diameters, viz. 0X, OY It is therefore possible by a change
of axes, to the axes 0X, 0OY, to remove the term in XY in
each of the two conics simultaneously by the same linear
transformation, viz. (x=AX+uY, y=NX+u'Y), say; A, u,
A, u” being all real when one of the two conics is an ellipse,
or when both of them are ellipses; and the conics becoming

AX*+BY*=F, A'X*4+B'Y*=Q,

www.rcin.org.pl



REDUCTION TO LEGENDRIAN FORM. 579
@ can thus be reduced to the form
Q' =(4X*+BY})(4'X*+ BYY),
or, as we may write it,
Q=4,X*164,X2Y2A4,Y*

We may obviously make a further reduction by putting
XJA4,=¢ YJA,=» thus reducing the quartic Q to the
canonical form

Q=£*+6NE 4"

Fig. 428.

If both conices be hyperbolae, the common conjugate diameters
may be imaginary lines. But in any case their equations are

o ay, Y |=0.
b, —h, a
v, =k, &

(Smith, Conic Sections, p. 196.)

We may, however, readily avoid an imaginary transforma-
tion. For, as has been seen, the only case in which it could
occur would be that in which both conics are hyperbolae, as in
the case shown in Fig. 429, where there are no real inter-
sections. In this case the factors of @ are all linear. Call
them (1), (2), (3), (4). Then, instead of taking the hyperbolae
(1)(2)=F, (3)(4)==G, we might take the hyperbolae (1)(4)=F,
(2)(8)=@ (Fig. 430), and with a proper choice of F and G we
can ensure real intersections and real common conjugate axes

www.rcin.org.pl
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to which we can refer the system. We infer therefore from
these considerations that it is always possible to remove from

Fig. 430.

Q the terms containing #®y and xy® simultaneously by a real
linear transformation.
1461, If in the transformation formulae
e=AX+u¥, y=NX+u'Y,
we write N'X =§ u'¥V=y, the formulae take the simpler shape
e=NE+um y=E+n It follows, therefore, that it is always
possible, by a real substitution z=(p+qz)/(14-2), to reduce
@ from the general quartic form
Q=ax*+4a,2*+6a.2*+4ax+a,,
to the form  Q=(4,2%4 B,)(4,2%+ B,)/(1+2)*;
and since da=(q—p)dz/(1+2)?, we have
& (g—p) o
NN W E ATV W A
and the values of p, q are in all cases real.
1462. Outline of the Process of Transformation.
As the whole discussion is necessarily somewhat lengthy,
we may with advantage stop for a moment to outline what is
to be done.

www.rcin.org.pl
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I. It has been shown that when «,#0, we can always, by
the transformation x=(p+¢z)/(1+2), remove odd powers
of the variable from the radical, p and g being real.

It remains to show how the necessary values of p and q are
to be found.

II. We shall show that the same transformation will also
reduce the integral to the desired form in the case when
a,=0.

III. That by a further transformation

2= (A + Bs%)/(C+ Ds?),

or, which is the same thing, z?=(4+ Bsin?6)/(C+ D sin?6),
the form now arrived at can be still further reduced so that

J'd_ac becomes a constant multiple of

vQ

ds do
J = i @<V
The ratios 4 : B: C': D are at our choice.
da
vQ
are rational integral algebraic functions of @, we obtain after
the transformation z=(p-+¢2)/(1+2) a result of form

[ et
'\/(A 1zz+ Bl) (A4 g22+ Bz)

IV. That starting with the integral J‘% , where M, N

: 2y, (2%) dz
and that whilst .‘-v'(Alz”—i— B) (A7 1B) can be reduced by
$(2) dz
2+ B)) (42 + B,)
expressed by means of Legendre’s Integrals, and that there-
M dx
NJQ
system of algebraic, logarithmie, circular or hyperbolic
functions together with one or more of the three standard
Legendrian forms F, £ or II.
4+BJQ

Hence, as in Art. 318, the integral j C’+D,\/Q dx, where

4, B, C, D are rational algebraic functions of z, and @ is now

earlier rules, the portion _‘- @ can be

can in all cases be reduced to a

fore by these means ".
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a rational quartic expression, can be reduced to the sum of
a similar set of terms by aid of the elliptic functions now
described.

1463. 1. First consider @,=0 and imagine @ to be factorised
into two quadratic factors with real coefficients, as
Q=0y (242224 u) (2> + 2Nz + ).
Then putting z=(p+q2)/(1+2),
@*+ 2+ u=[(p+q2)*+2A(p+q2) (1 +2)+u (1+2)*]/(1+2)
=H (2°4+2f2+9)/(14+2)%, where H=q¢*+2\q+u,
1 F§ g

d —_—— = .
g H pg+Ap+9)+u p*+22p+p

Similarly, 2?4+ 2\ 2+ u'=H' (22 +2f'2+¢)[(1+2)%,
where H', f’, g’ are the same functions of p, ¢, X', ', as H, f, ¢
are of p, q, A, u.

Hence Q=a,HH ' (2®+2f2+g)(2*+2f"2+g')[(1+2)%

We shall be able to make f and f* zero by taking p and q
so that

Pg+A(p+9g)+u=0 and pg+N(p+g)+u'=0,

PO PR P—q i
M =Nu p—p N=X V(= P—4N =N A —Nu)

Now (u—pP—4(N'—N)(Aw'—\'p)

=(u+u' =20\ —4(u—2*) (W' —A\?)=K?, say.

So p+g=(u—wu)/N'—2) and p—g=K/(A’—A), whence
p and g are found.

This completely determines the necessary transformation,
and we shall show that K is real; so that in all cases

p and q are real.
The form of @ is now reduced to

Q=0 HH'(Z*+9)(2*+¢)(1+2)*
Also dz=(q— p)dz/(1+2)%

2.e.

Therefore d_x_= s Tt SR dz .
V@ Va,HH J@+9)(@+9)
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1464. Next, to examine the Reality of K.
(i) When the roots of @=0 are all imaginary, A\* << u and
Al ,u.'.
Let u=A2+p% uw'=A2+p2 Then
K= (u+p' =22\ — 4 (u—2%) (u'— 1)
=(A2+p2+>\'2+p12—2>\x)2—4‘p2p'2
=[A=AP+(p—pP]. [A—=X)P+(p+p )]
and is essentially positive. Hence K is real and p, q¢ both real.
(i) When Q=0 has two real roots and two imaginary,
A?— u and \?— .’ have opposite signs, and
K?=(p+p' —2A\)P— 4 (u—N*)(u'—N")
=(u+u'—2A\")?+ a positive quantity =",
Hence K is real, and therefore also p, g are both real.
(iii) When the roots of @=0 are all real, say a,, ay, ag, a,
arranged in descending order of magnitude, we may take
A=—(a;+ap), pu=ayay, 2\'=—(ag+a,), u'=aza,;
S K= (p ' — 20N ) = 4 (e — A7) (W — )
=[a,a,+aya,— } (a,+ ay) (a3 +a,)J?
—1[4a,a,— (o, + a,)’] . [4aya,—(a3+a,)*]
=(a,—a,)(a,—ag)(a,— ag)(ay—a,),
which is again positive, and therefore K, p, q are all real.
In the case f=f’, we may put z+4f=u.
Then Q=a,HH'(u*+g—f?)(u®+9—f?), and the required
form is taken without further reduction.

1465. 11. Case when @,=0.

In this case  Q=4a,2°+ 6a,2°+4ax+a,.

The case a,=0 need not be considered, as the integral would
then reduce to a standard form.

One factor of Q must now be real. Let ¢ be the real root of

Q9=0.
Then Q=4a,(z—¢)(2*+ 2 \x+ p), say. Then, putting

x=(p +¢2)/(1+2), as before,
z—e=[(p—e)+(g—e) 2](1+2)/(1+2)=H'(22+2f2+9)/(1+2)
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say, and 2?42 o+ u=H (2*+2fz-+¢)/(1+2)%, as before. Then
proceeding as in Art. 1463,
H=q—e 2Hf =p+q—2, Hg=p—c¢;

and making f=f'=0, p+¢=2¢ and pg+A(p+q)+u=0

Therefore p-+g=2¢, pg=—2eA— y, whence

P—g=2(e+ AP+ pu— N2

Thus, (i) if the factors of 2®+42\z+u be imaginary,
A2 <, p—q is real, and therefore p, ¢ are both real ;

(ii) if the factors of 22+ 2X\z4u be real, let the roots of
Q=0 be e, ¢, e, arranged in descending order of magnitude.

Then we may take e=e;, A= —el-'z_—e", u=¢e,e,, and

p—g=2[{e;—1(es+€))}2+e0,— 1 ey + ) ] =24/(e,—e5) (e, —¢3),
which is real, since e¢,>>e,>>e,; and p, q are real in this case
also. And the rest of Art. 1463 still applies, and the reduction
to the Legendrian form is effected as before, @ becoming

da, HH (2" +9)(2*+¢)/(1+2)*

and Lo L
VO ViaHH J(Z+g)(P+g)
1466 We have therefore in all cases reduced the differential

2 to one_of the forms €~ ___jz..._ where C may be

~/Q Vx(2+a?) (2 + 6
taken a real constant function of @, a,, a,, a;, a, of known
value and «, B both real. For if Ja,HH or «/4a,HH be of
unreal form, we may replace them by «/—a,HH' or v/—4da,HH
carrying the negative sign into the other radical.

The case v/— (24 a?) (224 3?%) is obviously unreal and need
not be discussed, as we are now dealing with real functions.

1467. III. We have therefore only to consider the reduction
of the five cases:

W) VFE=aE=F; @) /==Y
3) VHE+AE-BY); () V=)
() V+ @+ o) @+ 7).
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The final substitutions to reduce these five cases are all of
the form 22=(4 - Bsin?60)/(C+ Dsin%6), where the values of
the ratios 4 :B:C: D are to be suitably chosen. We consider

each case in detail.
1468. Case (1), V(22— a?)(2—?); a®> B2 Thisis unreal if
2% lies between o? and (2%
(i) a> B>z Putz=Bsin6, k=p/a
__:."’ o oo o ge L1E o Beos8dd
oN(Z2—a?)(22—B%) BJov(a®— B?sin?0) cos?O
1 J" de 1

ol TPag o™ P

Hence z==8sn au; mod. B/a.

(ii) z>a>B. Put z=acosech, k=0/a.
_r’ dz lr —a cosec 0 cot 6 dO

z V(22— a?) (z“—ﬁ’)—— TR Ncot?0 (a2 cosec?d— 82)

== lr_————— L——-l&m‘l&
alon/1—Ek2sin20 a
Hence z=a/sn au; mod. B/a.

e . J(zz—az)(z’;ﬁ’)*_; A 1—Ek?sin®0

Tzt r do 1y
SR i y WSIETL ELTR ) R
a<Jo o>d1—k’sin29 a( e 0)’
where K is the complete elliptic integral.
Hence z=a/sn(K— auw’)=a dn(au’)/en (aw’).

1469. Case (2), v—(22—a®) (22— f?); a®> 8% This is un-
real if 2% does not lie between a® and (3%
Put 22=a®— (a®— ?)sin?6, i.e. a®cos?f - 3*sin?6.
Then a?—z2*=(a®—3?)sin%0, 22— B2=(a®— [3?)cos?0,
1 sin @ cos 6 dO
» gl )\/az—(a“‘—ﬁ“)sin’()’

_r dz =3j‘_ A B
), T r—® =B alovI—isini0 a ;
.

k==
at ’ a®

where k2=
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Hence
2*=a’cn®(au)+ B%sn?(au), e z=aqdn(aw), mod. 1—@—:.
a
1470. Case (3), (2°+a?)(z2—B?. This is unreal unless
22> 3% Put z=fsecé.

:j’ dz i B sec O tan 6 dO
s (22+a®)(22—B?) Jo/B%tan®6(B%sec? 0+ a?)

i salalb g me-we A
oVB+a2cos?d VPt B2)o v1—Ksin26’ Tt g/
=’_°J' SRR, LA

aloN/1—k%sin?0 a

Hence z=/cn (%u)

am~14.

1471. Case (4), v—(+a®) (22— B3%. This is unreal unless
e gt Putz=—8 cos 0

Joi. P dz J'O —Bsin 6 d0
B e e ey oJﬁzsinﬁe(a2+ Bcos'0)

b s g
a”-i—B’J-o V1—k2sin%0 Bam & ( 02+,32)'

Hence z=8cn (ékf)' mod. \/T"?__}_—F.

1472. Case (5), V(24 a?)(22+B%); a®> B Put z=Qtané.

i I dz =r e

) @2+ (22 8% Jo/BPsin?0+acos?

Sl e . RN i o -—B‘
IJI k2sin%0 i Tt 0 (k2 a® )

Hence 2= tn(aw) (mod. N f;)

For convenience of reference we exhibit these cases in
tabular form :
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(9 ;us @+D)(zus g+ F)=:z Jo 59880 oI% SUOIINGIISNS BYJ SI8ED [ U]

gurr g =

(no) ug g == we - = =n Hfﬁ\( g<n» g
01— 1~ & & — INxg =2
ON 2 +40 gsoog=
@] oot BT | 00| o e
¢ 208§ =
A%Idv w/g =z mTEdWHmlwl\m” v\.ﬂs &.“a.e\( N%WA\:\MHN g<z (6 —2) (2 +22) .“
e » ONF » 0 zU1S ;g +§ ;800 ;o = A g <
e g ?=2L [on | B gp (IO G << g g e
I, D= e NI@I\(A o et =
(il upn=s| (g, we-3)2=L T : Vs - - e :
no)us/v=z wlu@b o i 2 <o
e g 5 S\Vls (zg —22) (70 —e2) ™ !
0 D gusg=
(no)us g/=z ?lﬂsmﬂw\%u\.uwp g xzg=2 z<g <o
U0 9931 @mm =0 Jo onfeA 94 PO ‘uonnjysqngy :o_.anawmﬂﬁ or mnmu

Ol ‘SNOILALIISEAY J0 ATV, ‘GLFI
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1474. The More General Case |5+ .20

Here M, N are any rational algebraic functions of z, and
Q’ as before, =(ao» Qy, Ay, Qg, (14)(.’5, 1)4
By a proper choice of p, ¢, the transformation

z=(p+¢2)/(1+2)

has removed terms of odd degree from @. M/N becomes a
rational algebraic function of z separable into two parts, the
one an even, the other an odd function of z, expressible as

M/N =g (@) +2x().

M dz . s 9(2) J‘ zx(z2
Hence I— ——is reducible to j =
NJQ N
By putting 22=y the second integral is immediately reduced
to a form integrable by earlier rules.
We have therefore only to consider the first integral.
Now ¢(2?) is itself separable into two parts, the first in-
tegral, the second fractional, and is expressible as
AI
2 2r
$(2) = 2Nz +2( e

But both I% dz and “-W———;—-\/?’ can, by integration by
utv2®)

parts, or the use of reduction formulae, be connected with
the integrals

22 dz dz i
\/Q & J.m (Arts. 271 to 274).

; k M dx
Accordingly all functions of form jW 70 where M, N, Q
are of the forms specified, can be reduced to a series of

known integrals, toget,her with one or more of the integrals

2* da
o/(1—2?)(1—k%a?)’

® LJ(] zz)(l (I—k2z?) @)

(iii) r 48 :
o (14120 V(1 — ) (1—F'a)

INn.ora.pl
OIrg.[



REDUCTION TO LEGENDRIAN FORM. 589

The second of these, viz.
£ olof 2 Al - ¥a) 1
‘%ZoJu 2%)(1—k2a?)
ka2

=3 x(ﬁrst integral)— kzj ,\/11 o dw

1 j’ L oeparml & J_a‘z—'
o o SR e0 L‘ 1—%2sin20d

1 i dx
Therefore any such integration as .‘-N 70 can be effected

by aid of the three standard Legendrian forms
F(6, k), E@, k), ILO, &k n); k<<l (See Art.371.)
The same is true of the more general form
A+BJQ
C+DVQ
discussed in Art. 1443.

1475. The Case when the Factorisation of ¢ is unknown.

To effect the foregoing reduction, a knowledge of the
factorisation of the quartic @ has been presupposed. When
there is a preliminary difficulty in this factorisation, we may
still obtain the desired form by a use of the invariants I and
J. Suppose the quartic made homogeneous by the intro-
duction of a suitable power of y, and expressed as

Q=a, @'+ da, 23y + ba, 22y + da, 2y +a, yt
=(ay, 4, 4y, a3, @))(, Y)*,
and let it be reduced by the linear transformation
=, X4+mY, y=L,X+4+m,Y
to the form Q@'=(ay, a,, a;, a;, a/)(X, Y)*
Let A=l,m,—1,m,, viz. the modulus of the transformation.

Then zdy—yde=A(XdY—Y dX)
dy—yde , XdY—YdX

d B e A R e,
an 70 N
i.e. writing z/y=u, X/Y=U,

du el aUu
Vi(ay, ay, ay, ay, a,)(u, 1)} Viag, a/, 0y, a3, a))(U, Y
_LU+4+m,

where Y= LU my
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Also
I=aya,—4a,a,+3a,%, J=a,a,a,+20,a,a,—aya.—a,a’—a,’
are connected with I’, J’, the same functions of the accented
letters, by the relations I'=A*I, J'=A®J, whence I3/J2=1"3/J",
in which we have an absolute invariant free from the co-
efficients of the transformation formulae.

Supposing the ratios [, : m, :1,:m, to have been so chosen as
to make a,'=0 and a,'=0, as has been shown to be possible,
with real values of these ratios, @ takes the form

ay U*+6a, U%+a/,
which can now be supposed expressed as
a,(U*+p)(U+9),
and we have to show that p, ¢ can be found in terms of the
original coefficients a,, @, a,, @, a,.
We have
ay=ay, a'=0, 6a;=ay(p+q), ay=0, a/=aypq.

’ ’ ’ 1 7 ’2
I'=aq . ay pg+7500*(p +9P =15 [(p+0)*+12pq)

’ ’8 ’8
J'=ag - & (p+9) a5 py—"g (P+0P =555 (p+0)[36p0— (p+9°1;
L B_IP 5 [(p+9P+12pgP .
CEIT T (p+9P[36pg—(p+9PT’
—210°_ _ pe(p—g)*

primonl .97 [(p+o +12pP’
or putting p=pq,
plo—1)f _P-ap_ 1
(p2+14p+1)3 4- 271a 16K’ ¥
3
where K= 4 73 127]2, and is a known function of the

original coefficients. This is a sextic equation to find p, viz.
the ratio of p:q.

1476. Solution of the Sextic.

The equation is obviously of the reciprocal class; and therefore its
solution may be reduced to that of a cubic, and the cubic may be solved
by Cardan’s method.
ot = oy

Writing the equation as m 6 K’ put (pk —p- &)ﬂ—__
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Then p+p1+14=16 — 0 i and the equation becomes

(0_1_55_1) /((%)’:1_;7{; ie. B=K(-1).

Now adopting Cardan’s method, put §=n+¢(; then
P +E+En(-K)(n+{)+K=0;
and taking n{=1K,
7+ D nla+K=0, a quadratic for 7.

Hence 7 and { can be found, and therefore also §. Suppose 6, a real
root of this equation, then p? — p~#=4/J/F, =1, and therefore
P 4pt=onB F3VEG - 1.
Thus Np=(2+~0,+3)N0,—1 and p=(7+06,+4~0;+3)/(6,-1).
Then a value of the ratio p:g has been found, say p,:q,, where p,, ¢,

are specifically known numbers, so that p/p,=g/q,=s, say, whick remains
to be found.

Thus du A av

N(ay, ay, ay, ag, ay)(u, 1)‘_\/&—0 ‘/W
Putting U=+/sU’, we have

du =A NsdU' )
\/(a\h @y, Gy, Ag, al)(“s 1) 3\/41_0 ‘\‘(U”+P1)(U’2+q1)

Fmally, A-\/— \/12,(p‘+14m+q’) ‘/121 @’ +14p0 +4,%) 5
URARCY i B
\/pl +14pg, +9,
121

whence — , and s is now known, which completes

the deter mmatlon of pand g. We therefore have

f Lo =VP12+14P171+11’ au’ j
V@, ay, ag, a3, a)(w, 1)} 121 WAV

1477. Cayley points out that if one of the roots of the sextic for p be
(p*+14p+1)*_ (a*+14a+1)° Tk
p(p—1)! a(a—1)

that the solutions of the equation may be written
1 (1-B\ (1+B8)* (1B 1_3[_3)*
B o (ﬁg)' (ﬁ) ' (n%) ’ (l—tﬁ ’
which the reader may verify. [£lliptic Functions, p. 320.]

p=a=[3% the equation is of the form

1478. When a reduction to the form
f au i aUu
Ja U+ 6a, 0% +a; J Va, (U+p)(U+q)
has been effected, then in case p and q are both real, 7.e. 9a,2>ay'a,, this
factorisation will suffice. But in a case when p and ¢ are imaginary,
i.e. 9ay < ay'a,’, we put U=AN(1+7)/(1=7), and we observe that ay’, a
could not be opposite signs, for if so 9a,>aya,”.
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g
We shall choose A= '\/ Z—‘,, which will be real. We have
0
ar
a+nia-nt
and )
ay' Ut +6ay’ U2+ a, =[ag’ A (1 + T2+ 6ay, A2 (1 — T%)+a, (1- T))(1-T)?
=2((a, - 3ay’'A?) T2+ (a, +3a,/A\D))/(1 - T)?

=2['\/§(W—3a,’)][7’2 ‘/“""‘*"”‘2]/(1 TV,

aU=A

\/a ‘a,’
and
v i 1 ar
Nag Ui+ 6a, U+ ay  J3[agay —3ay T «/—(1 _m (T2 +Jao a +3a,>
ag’'a, —3a,’

which is now of real form, since ay’a,’>9a," for the case considered.

1479. ILLUSTRATIVE EXAMPLE.
It will be instructive to consider one case from several points of view.

dx
o x| e
(a) First let us reduce it to the Legendrian form.
23— b+ dx+6=(2-3) (22— 22 -2).
Put r=(p+q)/(1+2), dw=(q-p)d:/(1+2)"
2—3=[(p—3)+(g—3)z)(1+2)/(1 +2)% (See Art. 1465.)
22— 20— 2=[(p+¢z)*— 2(p+qz)(1+2)— 2(1 +2)*]/(1 +2)%
Put p-3+¢—-3=0, pg—(P+9)-2=0, t.e. p+¢=6, pg=8.
Take the solution p=4, ¢g=2.
Then
2-3=(1—2%)/(1+2)%, a?—-20-2=2(3-2%)/(1+2)% dz= —2dz/(1+2)%
Also x=3 gives z=1;

2 2 (¢ db sy,
\/ [ ~/(1—-z3)(l =39 "‘/ﬁj; Aemg -0
=\/-5(K —sn~1z), K being the real quarter-period, mod. 1/8/3 ;
" z=sn(K —un3)=cn(un3)/dn (un3),
3 ~__1;3~_dnus/‘3/2 cnun/32 =
ie. z-3=y 7 P e mod. 1//3.

(b) Next let us reduce to the Weierstrassian form.

23— 52+ 42+ 6 being already a cubic expression, it is only necessary to
remove the term involving the square of the variable. Put x=z+§;
z=3 gives 2=4.

(z=3)[(x- 1)2 =104 B2z +4f7), I=8¢, J=-38;

f~/4z3 52,4388 (fb f” \/4&3 25::“_%3# o, —2071(2),
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and
. I 4n/3
e —€ (V3+1)

(Art. 1414),

=% \e,=vV3-3 e=-+3-3%, k“’—

¥2=tan?15°,
bie ety
Ve —e; J2+3

K not being the same as K in solution (@), the modulus being a different one.

;=

5 su"(i—\/2+~/§'—‘)= 2+J§ v s =}
2/ x—5+N3+3% (v—3)+(2+4/3)
cn®(u cos 15°) 1
* dn®*(ucos15°) (x—3)tan15°+1 WAtk Has
2 o_dn?(ucos15°) | ,,,sn®(ucos15°)
e e iy en®(ucos 15°) i cn®(u cos 15°)’
e 2 —3=tan 15° tn?(u cos 15°) ; mod. ¥3(v/3—1).

(c) The results arrived at by these two processes are of different form,
the moduli being different.

o
Take the integral f ___1__0____ occurring in the Legendrian reduction.
L V1= sin?g

1-sinf_ ={ ek
Put G 0—(2+\/§)"°t ¢, so that when 0——, ¢——
.5 1—cot15°cot?¢ _ 2~/eot 15°cot ¢
Then | sin =y T M S e’
d0_2~/cot 15° cosec’pd¢p
= l+4cot15°cotip
! intg=2 1+ 4 cot 15° cot? p + cot?15° cot'
and 1-3uin*f=g T+ 0ot 15° o' g)?
&= cot?15°. cosect ( cos 30° <t 4,)
“3 (1+cot15° cot¢h)? cos?15°
Hence
5 \[ / J‘ P d ( /\_Jcos 30°)
i Ji-3sin?0 %sm‘@ \/cotlb"\/l Xsinl cos 15°
; d¢
K-am™?
" cos 15[¢ V1-AZsin?¢p cosl”[ e
e ~cos 30°
Ll £ o .
Thus ¢=am (K —ucos 15°), (mod. o8 15° ),
2 o cn (%cos 15 ~cos 30°
whence sin ¢p=sn (K —ucos 15 )=ﬁ&;ﬁ?), mod. cos15°’

sn (u cos 15°)

e - L Vil ot b st i el 4
cos p=cn (K —ucos 15°)=tan 15 Fn(wooa1F’)

(Art. 1352).

Hence cot ¢=tan 15° tn(ucos 15°),
and & —3=cot 15° cot?p = tan 15° tn?(u cos 157),
which is the same result as that obtained in solution (b).
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1480. LANDEN'S TRANSFORMATION.

From the above example it appears that the reduction of
an elliptic integral to the Legendrian form is not unique.

The transformations

1—sin 6
1+4sin @
both succeeded in such a reduction, but the moduli in the
two cases were different.

For the general theory of such transformations the reader
is referred to[Cayley (£. Functions) or Greenhill (E. Functions).

One well-known transformation, however, must be noticed
before leaving the matter, viz. that due to Landen.

Taking two variables 6,, 0, connected by the equation
sin (20,—6,)=usin 6,, so that 6, and 6, vanish together,
we have cot (20, —6,)(2d0, —df,)=cot 6, df, ; whence

=38} and z=3-cot 15° cot? ¢

248),. cot (20,-8,)— 8, {cot, (20,—8,)+cot 6} =%?
2sin 0,d0, do, de,

sin 20, " cos (26,—6,) ~/1—~,u qm’()
Also sin 20, . cot ,—cos 20, =pu, cot 8,=(u--cos 26,)/sin 29, ;
", cosec? 0,=(1+ ,ﬂ+2,‘ cos 26,)/sin? 26,

sin®20,
and 0, (1+M)’[ (1+ )2sm OJ
2+ [ del r' g
1+,U- \/1 sin?6, o vV1—,2sin?6, £
(1+ -u)?
Y, w=am"™ 1(&,,;;)——— &m“(@l, 1—+—)

or, what is the same thing,

4 2V ;
sin 0 —sn—-ggu ( odl—_T_—’:;), sin 6,=snu, (mod. u),

or putting z,=sin@,, w,=sin 6,

da, i J‘ dr,
oN(A—zH)(1—pz?) 14pu) | s |’
2 2 | V(l-xl){ (1+l‘)’}
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so that w=sn-(z,, ,u)=i-—_?_—l: sn—‘(acl, %), and therefore

w is expressible in either of these ways as an inverse elliptic
function.

N
Writing A for + and 7\— +
o1,

T+u "_1+x’

is obtained from the initial formula

sin (20, - 0,)=u sin 8,, viz. 2o,/ 122 V1-22 - (1 - 22 2)wy= uw,,

e _2zV1—a?
"=z 14+u—2
Therefore

[ 1—2?® 1)
Sn“l(xl, )\)——1+A,Sn_1{(l+k) Tf;lz, m}.

This is known as Landen’s Transformation.

For many such results and other transformations, see
Greenhill, E.F., pp. 55, 56, and Chapter X. Greenhill gives
a very elegant interpretation of the above transformation
with reference to the motion of a pendulum (pages 318,
319, E.F).

In such transformations, when F(6,, k) becomes MF(6,, k'),
F representing the first Legendrian Integral, M is technically
known as the “ Multiplier,” and the relation between & and &’
is known as the “ Modular Equation.” Thus, in the foregoing
case the multiplier is }(1+u), and the modular equation is
A(p+1)=2Vp.

1481. ILLUSTRATIVE EXAMPLES.

. dx
vil-a a2 + 823 + 202 + 562 — 20

to standard Legendrian form.
We have U = 2% + 8234 202? + 562 — 20 = (2? + 2+ 10) (2* + 62 — 2).
Here, with the notation of Art. 1463, A=1, u=10; A'=3, u'= -2,

pg+(p+q)+10=0,) giving p+g=6, }

, t.e. \24-A"%=1, we have

and the connection between z, and «,

1—a?2
1—A%,?

55 whence z,=(14-\")a,

Ex. 1. Reduce »=

pg+3(p+9)-2=0, pg=-16,
e p=8, ptgz_8-2:
et and x= e g
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242+ 10=10(9+22)/(1 +2)%, 22+62—2=10(11-22)/(1+2),
dr= —10dz/(1+2)%;
B e ngdn A
VU V-@ER)E-1T)
which is Case 4, Art. 1473. Put z=~/11 cos 6.
dz _ ~/11sin 6 d6 Y a6
JU Wi1sin?6(20—11sin26) 2+/5 /1-1}sin?6’
and the limits for 2 corresponding to 0 and @ for @, are /11 -3 to 2.
55
2~/5f ~1-1}sin?f H;sm’(} “2v5 F(o’ Nio )

Then

Therefore v=

and 20Vb= cn““\/H x+2 (mod. $;+/55).

Ex. 2. Examine the same integral without factorisation. With the
notation of Art. 1475,

a=1, =2, a,=10, a3=14, a,=-20,
I=aya,—4a,a;+ 3a,?= — 248,

J=a0a,0,+ 20,2505 — agag® — aya,’ - a’ = — 47,
BP-27J% 32.5%11

10813 FT8P ¢
Hence, following the notation of Arts. 1475, 1476, our equation for ¢ is
g3r
Pwggra (0-1)
To simplify, let 0=2 5?7t :
_ 5 (2.37 s_74, 25
5 33—3-——2‘ “(—52 t—l), ne. t §§t—~9—9,
of which an obvious root is = —1.

: 74 1 16x74 . 9 11
Hence 0—-—% and p+l~)+l4- 99 “eP=—[{T 5"

Therefore %:%:s, say; p=-9, ¢,=1L

41z ]
Then A=«/l‘2—1(92—14.9.11+11?)=~/s,
Af VsdU' by au’
NUZ=9)(U?+11) JN(UZ=9)(U%+11)
Let U’=3sect. Then z=+11-3 gives @=0, U’'=3, ¢'=0

_[? 3sec@tan@dd 1 (¢ {4
_/; J9tan20’(956c”0+11)—2s/5( V113 snig 2J5F(9 /55)

which agrees with the result of Ex. 1.

and
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Ex. 3. Consider the integral u= / [Legendre, Exercices, p. 56].

This does not become infinite in the vnclmty of =0 (Art. 348).
Put 2=(1 +z’)’*, dr= —32(1 +zﬁ)'*dz, 1-22=(3+322+2%)2%/(1 +2%);

oo f" dz
; s VA+3:7+3
The factorisation of tke desired form (U2+p)(U*+q) is

(z, +3 +5~/§) (z, 43 —2:\/:§>_

Therefore p and g are complex. Following Art. 1478, put
i 4/~ 1+7T 2 N‘/ 34T

122 TSN A T)’

and z= o gives T'=1, and
A+324+3=[(6—3~3) T2+ (6+3~3))/(1 - T)?;
Jﬁdr =

R Y e

i 3t Syar
~2s8in156°Jp V(1= T2)(7% + cot?15°)
3 3 2_ 2 = YO
__3_ n'lT—a— en™ -1% ~/3 3 en— lz—‘\/?l,
2 243 2 ;EidE-1
3t _11—2Ji’_.z§cos]5°

e u=_cn —
2 1+2~/2x§sin 15°

, (mod. sin 15°).
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PROBLEMS.

1. Find the values of I and J for the quartic function
p=uxt— 6122y + o4,
and show that 4A3-IA—-J=0. Form also the Hessian of the
quartic, and the discriminant.

2. Examine the modification in the reduction to Weierstrassian
form which accrues from the quartic @ having one root «, zero,
ie. a,=0. Show that in this case

' a1a2a_3(L+1__2_)’ 0= ala?as(l_l_l_._?_),

£ i 12" Nag " &g’ a, ki 12 \a; " @, a,
_ . %050 1 l_g)
%=%"T9 <a1 ag ag)’
1/ay—1/a
and that - 8 O
1/a; = 1/ag
3. If b=0y(z - a9) (2~ agy) (& - agy) (z - a9),
and P=0y-0;, Q=04-0, R=a -a,

. ,
P=a;-aq, Qf“z_au R =oa5-a,

show that =% (P24 224 RO,

=__.(Qg RR)(RR - PP)(PP - QQ),

and A=T3- 27,]2 = ?’_5%6 P2QR2P2Q2R2,
AISO, if Sl = 20.1, 82 = Ealaz, Ss = 2!11112(13, S4 = 0,800, show that
a, a,d
I=15(128,- 38,8+ 8%, J=135| 12,  -35, 25

TR T R
925y, v 88 188, |

4. If ¢=2+6A2%2+y* and the Hessian H——2 bzzr ay "
12| duy, by
show that H — k¢ is a perfect square if k=2A, —3(A+1)or — (A -1).
22 V7
5. Show that p~1(z, 76, — 120 ——sn‘1 srmoe =,
" ) 22 JetB’ 22
1 2
=1 -94)= —-dn-1 e
6. Show that p—1(z, 28, - 24) J—d \/z+3’ '\/5'
7. Show that p~1(z, 36, 0) == -1JL. A
ow that p~1(z, ) ’Jécn qu_3,mod.\/§.
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z dz
14/ = T02* + 25323 — 32722+ 179z — 35
to Weierstrassian form, and show that u=gp! (mf 1).
that it can be expressed in a Legendrian form with a modulus
2 1 z-1

——snl./12 5

%, viz. u Jém \/1 o

9. Show that if e;>e,>¢, and e, +e,+¢,=0, the substitution

8. Reduce the integral u=

Show also

e —ey . y ;
z=ey+ lxa ’8 will convert the Weierstrassian I ntegral

j‘” dz
zNV4(2— ) (2—ep) (2 —¢y)

into the Legendrian form

3 j"" dx
Je, - e,do J(1 —22)(1 - k%2%)
where k2= e es’ and conversely that the substitution z= c gy
Bt L K
will convert the standard Legendrian form into the Weierstrassian.

e, — ¢

10. Reduce I to the Legendrian form

Jiz(Z - 9) (z“’ 9)
g ik J" da
V6o J(T-2) (T - 12
and show with the usual notation that
K=wl\/(—5 ¥4 oK =w2V’§, - «K'=m3\/g.

2
11. Show that LS
LT j Jz(z2 R IR
12. In the standard Legendrian form j = m;f(l ) discuss

the degenerate forms assumed when k=0 and when k=1, and
state to what forms sn—'2, ecn~'2, dn z and tn  ultimately degenerate
in these cases.

13. Discuss the integration of the degenerate cases of

J‘ dz ]
Viz=a)(@-B)@-7)@-9)
(i) when a=p, (ii) when a=f=y, (iii) when a=f=y=3.

14. Discuss the integration of the degenerate cases of

J‘” dz {el>e,>ea, }
l\/“(z“‘x)(z_ez)(z"‘s), e +eyt+e=0
(i) when e;=¢g, (ii) when e, =¢,, (iii) when ¢, =¢,=e¢;.
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15. Express both in Weierstrassian and in Legendrian notation
the integration ju tdt

i ¢ ﬁﬁﬁ— 672 e

16. Make 'use of the substitution #%+a3=2% to reduce the

integral u—r gu
s oV1+

it to the standard Weierstrassian form.

- to the form of an elliptic integral, and reduce
2

17. Use the substitution £ =(1+« + 22)/(1 - z)? in the integration

=r ——dL—; and show that {= ?(——, 0, 1)
1(1-a}

18. Show that if

i dz . U
=L Nz -2)(5z - 11)(11z - 21)(3z - 7) (2<z<22),

i ) =iz (mod o)

19. Show that the solutions of the sextic equation
(PP+14p+1)3 (B8+14B4+1)3

ple-1¢ — BBI-1)
i o L e i e

L+ 1-8 1+ 1-8
[CayLEy.]
1
20. Transform the integral u=j d:;‘)s into one in which z is
0. (15

the variable by the relation 42%{1 — 2% =2, and the result by putting
#2=1/(1+4?%; and lastly, by the further transformation

Y= J3 tan ;’ 5
. 3% T s
showing that sn <E u) g (mod. sin 15°).

Hence show that u=1-927622..., and verify this otherwise.
[BERTRAND, I.C., p. 687.]

21, Show by Landen’s Transformation 2 sin (2¢ — 6) =sin 6 that

r a9 4r d$
o/1-1sin?8 3JoJ/1-Esin’$
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22. Express by means of the Weierstrassian elliptic functions
(), {(u), o(u) the results of the following integrations :
e zde e dz

T gL 0 R L (B -

O [F A% a<as G | ATHET <

e e Bdz
_— (2 §
(iii) L P TN (2<?)

i P dx
(iv) _L (@-1)(@&—-2)Va® - b+ 4z + 6 B<xz);

") J'l zdx
2 Jab - 1228+ 54a? — 100z + 57

23. Express by Welerstrassian functions the second Legendrian

standard form J.o JT=kZsin?0d9.
0

(z<1).

24. Express by Weierstrassian functions the third Legendrian

z dz
tandard f :
R X J-o (1 - a22?)J(1 - 22)(1 - k2

25. If u=}/ l_lr & , prove that
oN(@+a+1)(Ba2 +a+1)
z(J1lenu—-snu)=2snw, (mod.~/{). [Ox.IL P., 1913
26. If u= 15r g , prove that
1 /11052* — 90443 — 21022 + 8z + 1
z(3cnu—2dnu)=dnw, (mod.1/5). [Ox.IL P.,1915.]
27. If u= r pwlon.... express « as a single-valued function
0 (1 +22 - 24}

of u by help of (i) Jacobi’s functions, (ii) Weierstrass’ functions.
[Mara. Trie. 11, 1914.]
Prove that /3 dn (ux/3) =sn (uv/3), (mod. v/2/3).

28. Show that the integral
x .
[ @-a)e-aa-age-dpyiaa
. @
is transformed to the integral
- y -
2 (8- a) (@, - o)) (191 - )by
by the relations %= (a, —a,)(z - a,)/(ay - a,) (x — a,),

k2 = (ay - a,) (ag - a,)/(ag - a)) (ay - a,),
and obtain an expression for the general value of the former integral.
[MaTH. Trre. II., 1913.)
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29. A heavy particle attached to a fixed point by a light thread
of length a oscillates under the action of gravity in a vertical plane.
Show that the height of the particle above the lowest point of its
path at time ¢ from the lowest position is

e g i
2a sin? 3 sn® (\/5 t>, (mod. sin §> )
where 2a is the whole angle of swing.

30. Show that the potential of a uniform thin ring at any point is
] dr
4yma-“ )
n {0 =) - )
where y is the constant of gravitation, m th® mass per unit length,

a the radius of the ring, » the distance of the point from a point of
the ring, », and 7, the least and greatest values of 7. Prove also

. K, where
117
K is the complete elliptic integral of the first kind with modulus
(rg —1)/(ry + 7). [Ox. IL. P., 1914.]

that the potential may be expressed in the form 8ym

31. A heavy elastic string which is uniform when unstretched is
passed through a smooth semicircular tube which is held in a vertical
plane with its vertex upwards. The radius of the tube is 7. The
modulus of the elastic string is equal to the weight of a length 7 of
the unstretched string. It is observed that the two equal portions
which hang vertically outside the tube are each equal in length to
the radius. Show that the unstretched length of the portion which
lies within the tube is

4r 3 2
;Edn ¥ 5 (mod. :/—_5—)
32." Assuming that the law of central attractive force under which

an orbit u=f(f) can be described is given by P/h?u?= u+f1p—(;:, show

[Ox. IL. P., 1915].

that if a particle describes an orbit r=a cn 6/3 under the action of

a central attraction pu?, the modulus of the elliptic funetion is 373,
fOx. 1L P., 1918.]

33. A particle of unit mass is projected horizontally with velocity
u, and moves under gravity in a resisting medium such that the
path is a portion of a circle of radius a. Show that the motion will

; 20 _1o-3 9~
cease after a time \/;dn 27%, (mod. 27%). [Ox. L. P., 1913.]
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34. Show that the area 4 bounded by the y-axis, the asymptote
z=1 and the curve 92z - 1)(z - 3) {(x—4)>+3} =1 is
1 114-3V3
J3 {1 Ry
35. If 4 be the area in the positive quadrant bounded by the
curve 2y%r(z*+4x+1)=3, the coordinate axes and an abscissa ,

show that (@+1)/(x—-1)=dn 4/en A, (mod. tan =/6).

(mod. sin 75°).

36. A ring is generated by the motion of a circle such that its
plane passes through the centre of an ellipse and a perpendicular to
the plane of the ellipse through the centre, and the centre of the
circle lies on the ellipse. Show that the volume of the ring is
47 Kbe?, where b is the semi-axis minor of the ellipse, K the complete
elliptic integral of the first kind with its modulus equal to the
eccentricity of the ellipse and ¢ (<) the radius of the circle.

[C.8., 1895.]

37. Prove that the equation of the osculating plane at any point
of the curve z=asnu, y=benu, 2=cdnu, (mod. k), is

2/@‘2(1 —k?) snu —%k’ endu +§dn9u= 1 -2
[Ox. IL. P., 1902.]
38. An elliptic wire of semi-axes @ and b moves so that its plane
is always parallel to a fixed plane while its centre describes in a
perpendicular plane a circle of radius ¢ which is greater than either
a or b, and the minor axis is perpendicular to the latter plane.

Prove that the ring surface formed by the circumference of the
wire cuts itself in two hyperbolic edges, and that its volume is

% b—:{(c2+a“)E—(«:“’—a2) K},

where K and E are the complete elliptic integrals of the first and
second kinds with modulus a/c. [Mars. Trie. 1886.)
39. If the modulus % and the amplitude ¢ of the elliptic integral
F(¢, k) be given by k= cos /12, cos ¢ =2 —4/3, then will
F($, b= (V=T @)}/{3%. T($)}.
[J. C. MavLET, £.7"., 9677.]
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