CHAPTER XXXII

ELLIPTIC INTEGRALS (continued). THE
WEIERSTRASSIAN FORMS.

1380. It was stated in Chapter XI. that the integration of
j 70 , where @ is a rational quartic funiction of z, could be made
to depend by a suitable homographic substitution upon the

J—(l—zz()l(l et where k is real and <1,
and the properties of z when expressed as a function of w, as
also those of ~/1—2% and /1 —k%2% have been discussed in the
last chapter. This is the Legendrian and Jacobian mode of
procedure.

A more modern method is due to Weierstrass. In this

r4
integration u= j

method the same integral, viz. j\/—@’ is shown to be also

reducible by a suitable homographic transformation to the
form u= J- 0 iy oy dzlz i where I, J are certain constants,
viz. functions of the coefficients of @, and of the constants of
the homographic transformation formulae. The function w,
regarded as dependent upon z, is considered as the inverse
function, and z expressed as a function of # as the direct
function. It is usual to write z=p(u), or p(u, I, J) if it be
desired to put into evidence the values of I and J. g(u) is
called the Weierstrassian Function.

The letters g,, g, are very commonly used instead of I and
J, but as powers of these letters occur very frequently there
appears to be less risk of error in practice if we use the I, J

notation.
530
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1381. The modes of reduction of the general integral I 70

to the respective Legendrian and Weierstrassian forms will
be discussed at length in the next chapter. For the present
we shall be occupied with an examination of the nature and
properties of the function @(x) and the allied functions {(u)
and o(u), respectively defined by the equations

(u)=— jp (u)du =% log o (u).

These are respectively referred to as the Weierstrassian Zeta
and Sigma functions.

1382. Preliminary Remarks.
The general binary quartic
Q = agrt+ da,xdy + 6a,x’y®+ daxy + ayt
possesses two invariants for a linear transformation
=l X4+mY, y=LX+m,Y,
viz. I=aq0,—4da,0,43a.?,
the quadratic invariant, or quadrinvariant,
J = Aoty + 20, Qg — Aglls® — A0, % — a®
=) dgy | By, 10y ) the cubic invariant, or cubin-
5\, Gy, . Oy L variant.
g, g, Q|
If a transformation of this kind has reduced the original
quartic to the form
0.X*4-4X3Y 46.0X2Y% 44,/ X Y34, Y4,

then for this new form

I'=0.a,/—4.1a4+3.0*=—4a/and J'=| 0, 1, 0 |=—a,,
Lo . 1@y
0, a0, 0,

and the form has become

Y(4X:—-I'XY2—-J'Y?),
or if ¥ be unity, 4X*—IX—J, the accents being dropped as
the meanings of I and J will be obvious.

1383. If e, e,, €, be the roots of the equation 42°—Iz—J=0,
so that 42*—Iz—J=4(z2—e))(2—e,)(2—e,;), we shall lose no
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532 CHAPTER XXXII.

generality in assuming for the present that e, e,, e, are all real.
For it will be shown that if two of these quantities be
complementary imaginaries, say e, e;, then a substitution of
the form {— »,=(2—e,)(2—e,)/(2—e,) will reduce the integration

r dz
2 N 4(2—e;)(z—e5)(z—¢5)

to the similar form

|

¢ VAE—m)E—n) (C—ny)

where #,, 5,, 5, are all real constants such that 4,4 5,=0
(Art. 1456). We therefore assume for the present that e, e,,
e, are all real, e, +-e,+¢,=0 and e, > e, >e¢,. We also have

I
1=—-—(6263+e3e1+6162)
CH
e’+e,"+e,
LSOO PO e gl e e
= 9 T 0T 6y €36 = €,"— €6y,
3%

1384. The Differential Coefficients of @ (u).
|, 7y
NiB—Iz—J

the upper limit, the integrand vanishing when z is infinite.

The integral p—l(z)=1: is made definite at

Differentiating, Z—f‘ = V&P T:—J, ie @ (u)= —N¥Pu)—Ip(u)—J,
e 2(u)=4¢*(uw) - Ip(u)—J. Hence also
9" (u)=60%u) -3 =622 -1, " (u)=120(u)p'(v)=1222,
() =12{9(0) +p (0 ()] =12 [ 109 -3 2 7],
@ () =[3600%(u) — 181’ (u) = (36022 — 18I)7, etc.;

whence it appears that the successive differential coefficients
of p(u) with regard to w are alternately irrational and
rational functions of p(u).

1385. Periodicity of g (u).

It has already been seen that the function w defined by
w?=1/4(z—¢,)(z2—¢,)(2—¢,) is a two-branched function having
branch-points at z=e,, 2=e¢,, 2=¢;, and at z=00 (Art. 1295),
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and that in consequence j - has three
. JHe—e)e—e)(z—ey)

periods 2w,, 20,, 2w;, Where

00

»n o
wl:j wdz, w2=j wdz, w3=j wdz,
€2 L]

e
these periods being not independent but connected by a
linear relation, viz. w,—w,+w;=0. Of the three we shall
consider 2w, and 2w, to be the independent periods.
We have also shown that if %, be any definite value of the

integral I wdz, say that obtained by integrating along any
z

straight-line path extending from z to o, which does not pass
through any of the points z=e,, z=¢,, z=¢,, then all other
values are comprised in the system,

w=2Aw, + 2uw,+ Uy,

u=2\"0, 4+ 21 wg+ 20, —u,,

In consequence we have @(2mw,+2nw;+u)=gp(u), where
m, n are integers, an equation which expresses the double
periodicity of the function. And this is equivalent to the
statement that the most general solution of the equation

} where A, u, X', u” are integers.

p(u)=p(uy) is w=2mw,+ 2nw;=+1uy, m, n being integers.
Further, it follows that
# (2meo+2negtu)=p" (w), ¢ Cmo,+2n0;—u)=—p" (u),
" (2me, +2nw, £ u) =" (u),
#”(2mo, +2ney+u)=p"(w), " (2me,+ 2nwy—u)=—p" (u),
and so on.
And in the special cases when m=n=0, we get
P (—u)=p (u), ¢ (—0)=—¢ (v),
P (—u)=p"(u), ¢ (—u)=—p"(u), etc.
1386. These results are obvious from another consideration ; viz. if we

consider (-Iz’—‘Iz—J)_} as expanded in a convergent series of negative

powers of z, that expansion will begin with the term Lﬁ}+ .... Integrat-
22
ing between z and «, we have u=%+... ; and squaring, u2=£+...,and
2

‘s p 1 ; :
therefore by reversion of series z=-;+even powers of u, i.e. 9(u) is an
u
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even function of . [This expansion will be found carried out in Art.
1416.]
Thus @ (u), P (u), 9’ (u)... are alternately odd and even functions of
u, whence §(—u)=P(u), §'( ~u)= — '(w), §" (—u)=p" (), etc., as stated.
Further,, since these series for @(u), ¢’(u), 9”(%),... all start with a
negative power of u, it will be clear that ¢(0), 9’(0), $”’(0),... are all
infinite, and the orders of these infinities are respectively those of

SR i |
3

3 oyl ot (4

u—)Op/g(u) u—>0(_§)

ud

, o that, for instance,

1387. THE ADDITION FORMULA FOR THE FUNCTION g:(u)

¢X+ﬁ

Consider the solution of the Eulerian Equation
for the case when

X=d4P—Ix—J, Y=4y*—Iy—J.

Let u=J i"l, v=j d_g’ 1.e. x=gp(u), y=@(@). Then

z VX y VY
de i - dy__ = i da y
=X, Y=Y and dutdv=— (\/X jy)

Thus, one form of the integral is u4+v=C, a constant. ...(1)
We can obtain another form of the integral as follows:
Introduce another variable ¢ such that

dx dy _

and let z+y=P.

Then ————dP =—~dL 1.e ilf:——\/——X—JY
VEGWE LRl e (S ery

Differentiating with regard to ¢,
&P 1[1 dX —JX 1 4y JY

@ " a—yl3JX do o=y 2JY dy 2—y
VXY —vX_JY
ey [w~y —97:?/]

“ewbEt a5
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Now

‘fif+‘fl—y—12<xﬂ+y2) oI, and 3‘5—3,’”=4(x2+xy+y2>—1;
e (@d—lt’) —4(P+C) or P=i(fl—€’)z—o',
where (' is a constant.| (... g s L B (2)

Now this equation having been obtained on the supposition

that -—=+ —0, 7.e. that u+v==a constant C, it appears that

VY
¢ is a constant, provided that C is a constant; de C is a
function of C, say ¢(C). We thus have the equation

1/dP\?
P=;(G) —#tuto),
and we have to identify the form of the function ¢.

Now of Mo ol :

s.e. ¢ (u+tv)= [W] —z—y

=[p*(u)—2¢' (w) p'(0) + 9" () — 4 (z+y) (@—y)*) 4 (2—y)*

=[p?(w)+ 20" (WP —Ty—J —Iy—J —4a®
+daty+ day?) 4 @— ).

Now let v diminish indefinitely. Then @(v) or y becomes

infinitely great, and we have ¢(u)= 4—x‘L—-x ©(u), and the

form of ¢ is now identified as that of the Weierstrassian
function p.

Hence P=1 ((fl—lt);— @ (u+v).
That is g (u+v)+p(W)+e )= %]

which, as it expresses @(u+v) in terms of @ (u), ¢ (v) and their
differential coefficients, forms the addition formula for this
function.
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1388. Symmetrical Form. 4
Taking a third function w, such that u+v+w=0, then
 (u+0v)=p(—w)=pw).
Therefore we have t,he symmetrical form
© (w)— ()
PUTRRREI=] o)
®(v)— 9(w)] [rrv’(w)—(@’(u)]2
4  (v)—p(w) o (w)—p (u)
by symmetry, and therefore
@ () — ' (v)__¢' () — 9" (w) " (w) —p(u)
pu)—p@) e@)—pw) pw)—pe@)’

whence

@ () [¢'(v)— " (w) ]+ ¢ (v) [¢"(w) — ¢’ (w)]+p () [¢(u) — ¢’ ()]=0,
and we have the symmetrical relation

L pw), ¢ =

L p(), ¢
L, p(w), ¢(w)
1389. Various Results derived.

In the formula

pluto)+p() )=

@ (w)— L(v):r
p(u)—p(v)

change the sign of v». Then, remembering that @(—v)=gp(v)
and g'(—v)=—g’(v) (Art. 1385), we have

s"(u—v)+P(u)+?(v)=}I s:,——gz;tg(%) E

1 9% (u)+p*(v)
2 {pu)—p©)}*

i s e P
p(utv)—p(u—v) {p(w)—p(v)}*

1390. Take a function of z, y, viz. F (z, y), such that

whence

P(u+v)+p(u—0v)+2p(u)+20(v)=

F(s, y)=2ay(o+y)— 12—,
so that F(z, x)=4a°—Iz—J =p"(u),
and F(y, yy=4y—Iy—J =p"%(v).
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Then

1 4 I 498 —Jy—
P (u-+o)+p(u—v)=5 A i i

)

(@—y)?
={2zy(@+y)— H (@+y)—J}/(a—y)=F (z, y)/(x—y)?;
also @ (u—v)—p(u-+v)= (“)?(”)

{S’J(u) p)}*
1 F{p(u), p(v)} — ' (u) @' (v)
{p(u)—p()}* )

p(uto)=

1391. In the formula,
by, tﬂ"(u)—?’(v)]2
pluto)+o+o)=, [ ZE=E0T,

let v approach to ultimate coincidence with w. Then

?(2u)+2?(u)=i Lt,,_,u[p———'(“)_"’(”) ; { (“)}

P (u)—p(v) @' (u)
2
=% {d%logso(u)} .
_ 1 {6p%(u)—31}*
bo 1 4pd(w)—Ip(u)—J°
1392. Hence
p(2u)—t {082 (W)— 3132 ()_{«a“’(u)+%1}2+2~79(u)

F I ey s g e e
which is a rational function of @ (u).
1393. Moreover

4p*(u)—Ip(w)—dJ

B d () g () e (=" (w)
o L T 7 R )

=[12p"(u) p (u) — 40" (w){p (2u) + 20 (u) } ]/p"*(u) =4 (u) — 4p(2u);

1 a
p(2u)=p(u)— 4 dup 108 ().
1394. Another form is ) - 3158 u)
_ 30 (w) - 319 (u) — 3TP(u) - Fy I
P(2u) —p(w)= - 463(,‘)_1{,(“)_'] Loy
s o OO LBOLAT, 1
ey i 3I% (u)+9J P (u) + 112
) =P = o) - et P(w) - &) (P(w) —e5)
A B C
IOR so(u) e S’-’(u) e’
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538 CHAPTER XXXII.

where A =(3Ie*+9Je +}11%)/4(e1—e,) (e, —€5)

=[ -3 (eses — €,%) &22 4 9e,%es05 1 (€205 — €1%)*] /(€1 — €3) (€1 — €3)

=[(eass — €1%) (€265 — 4€,%) + e %es64]/(e1 — €3) (€1 — €5)

= (ese5 + 26,%)%/(€se3 + 2€,%) = €65+ 2¢,% = (e, — ;) (€1 — €3) ;
—es)(e; —eg) + (ea—e5)(ea—¢) 3 (es—e))(es—€s)
(u)—e P(u)—e, Pu)—e
1395. Put v=2u in the formula
Fip(w) p()}
{p(w)—p@)}*
F{p(2u), p(u)}
{p(u)—p(u)}*
expressed rationally in terms of @ (u).

- ap(u)-p(u) =2

pot+u)+pv—u)=

Then ¢ (3u)+p(u)= so that p(3u) can be

1396. Now put v=nu. Then

—1yu=T g (nu), p(u)}
pintlu P e T o ()

which expresses p(n+1)w in terms of p(nu), p(n—1)u and
@(u) in rational form, whence @ (n-+1)u is a rational function
of p(u). Thus it appears that p(2u), p(3u), p(4u), ete., can all
be expressed as rational algebraic functions of @(u). But the
expressions for these “successive forms rapidly increase in
complexity.
1397._ Again, using the formula
¥ (v) 9 (u)
vtu)—pv—u)=—- o,

PO+ PO —U=" o))

and putting v=2u, 3u, etc.,

ol P Cu)e ()
PEI—P =" o ru—p

R A C.OF ()
@ (4u)—p (2u)=— (PGB —p@) "

e P (W) ()
pr+1l)u—pn—1)u= ) —p )}’

from which @(8u), p(4u), ... may be successively calculated ;
and it is noticeable that

PRu) W), ¢Bu)pw), ¢(du)p'), ...
are all rational algebraic functions of p(u).

V.IrCin.or



WEIERSTRASSIAN FUNCTIONS. 539

1398. General Value of @ (nu)—p(u). SCHWARZ.
We shall show later that the general form of p(nu) is given
by the formula
p(nu)_ K"(u)= b g \an—;;\!/n+l

where v, is expressed in terms of Sigma Functions.
Schwarz has shown that

1 a2
p(nu)—p(u)=— 5 Wlog Vs

A (—1r1A, "
wl.xere ‘/’"*{112331 =D and A, stands for the deter
minant

©'(w), W), @MW), .. @ (w)
s’J”(u)’ "’(u) K,;iv (u), ... o) (u)

Pr(u), P(u), PUH(u), ... P (u) |,

The method of establishing this result is pointed out by
Greenhill (Z.F., p. 300, etc.), but the proof lies outside the
scope of the present account.

For immediate purposes we may establish a difference
equation which will suffice to give us the values of the
function @(nu)—@(u) in terms of p(u) for low values of =,
such as n=3, 4, 5, 6, ete., which is all that we shall require.

1399. A Difference Equation.
From the formula
pv+u)+p(v—u)={2zy(@+y)— i (x+y)—JI}/(a—y)
where z=gp(u), y==p(v), we have, by putting
v=nu and @(nu)—pu)=R,,
Ro+R _1=2x(x+R,,) (2:1:-{—153,)'2 %I(2av;+R,,)~J__2aE
_ (4a®—Iz—J)+(62®—4I)R,+ 2z R, 2
£ o
={p"(w)+R,p" (w)}/R,?

és R (“)+‘1"E“i)—-1e,,_l. ........................... M

n+1= R 2

\

-2z

Putting  x,=@"(u)=622-31, x;=@%u)=42-Iz-J,
o= 3ot § Lt i — g =39 (1) 92 (1) 1920
=P (u) "' (w) — ()},
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where the suffixes of x denote the degree in « in each case, the difference

equation is R, +R,,_I=Z(L'-RX—?1-&, with the starting equations R,=0,

Ry= —% whence R;= X"(-——XLX‘—) x—;—)?, say, where Xg= X3Xs— Xs>
0

The suffix notation will suffice until the case of R;, when a second
factor of degree 12 occurs after X;, has been used. We may denote this
second factor by ¢,,.

1400. Other forms of the difference equation may be convenient, and
may be used, now we have found R,, for we may eliminate X, or X3, or
both of them.

Since
R, R, +R,R, 1=, +§§ and R, R+ R Ru=Xy+ RXB
n nt+1
1 1

we have B3 Ropi— BBy 1= — X3 ( E Ru+l>

i R, Xatifid 1

ie. Bupa=32 R, “m(JT % Rn+1) .................. (11)
or again, (Rn+2 +Rn) Rn+l Ty (Rn+l 3 Rn—l) an = Xz(Rn+l o Rn)- """ (I[I)

From either of these equations or by another application of (I), B, can
be found ; after which we may eliminate both X, and x3, and form an
equation connecting the R’s of any five consecutive suffixes, viz.

Rein (Ba+tBats), Ruyy, 1|=0;
Rﬂz (}zﬂ~1 A Rn-H)r Rn, 1
O e R el

(Rﬂ-l'l iz Rn) (Bngs—~ n—l)(Rn+l - n—l)
n+1
g (Rn—l —R.)(Ruy — Boi ) (Boy — Rn+l)= 0, i.(IW)
n-1
in which a factor has been inserted for symmetry.
Now, putting n=2 in (1I), we may readily show that

whence

Ry=- )>§4 XIzzi where x15= x5 Xs— X4 5
3 Xe

putting n=3 in (IV), we similarly get

- X8 X;(lXo s , where ¢3= 15— Xo*;
and putting n=4,
6 T -X:(%ﬁ‘%l—;“ where 4= X3% X P12 — X1

and so on.
From the several connecting equations,

Xo=Xa Xa— Xsh  X12=Xa' Xs— Xab  P12= Xuz2— X
Pas= Xs® Xo P12 — X1 ete.,
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we can readily express Xg, X1z, P12, €tc., in terms of the original quan-
tities Xs, X3, Xs, SO that the successive values of @(mu)—g(u) may be
obtained in terms of #. Collecting the results, we have
pEV-pa)=-X, p@Eu)-pe)= -2, () -p)= - X1 X3,
X3 Xs X3 Xe

Xs Xs* $r”’
and the notation shows the nature of the factorisation of the several
numerators and denominators.
If we change the notation, and write

Xs=¥h Xe=Va Xe=Val¥ss Xu=Vs Pu=voVat¥s Pu=vi,

ete., with ¥, =1, we get

P(5u)—?(u)=—m;(—lx23—ﬁz, P6u)—plu)= — XuPu oo

pen-p=-41, peu-pw= -4,

plan-p= -4, pu-pw=-Y1,

@ (6u)—@(u)= — ‘h , ete.
1401. Factorisation of v, etc.
If we consider the solution of p(2u)=gp(u), we may infer

the factorisation of y,, i.e. ;.
The equation gives 2u——2mwl+2nw3:tu. Therefore

u_—S—w‘+ wa or 2mw,+2nw,.

The principal solutions are

20, 20, 20, +2_w3 20, 20,

LS b 8 Tagdr
and any other solutions, such for instance as

o, 20, b, By
3+3, 3.—t‘,etc,

are merely such that when added to one or other of the four
principal solutions we obtain a complete period. Hence the
factors of x, are

xe=y=3 o0 9 (%) [ oo (%)

X [p(u)—x:(?ﬂ%—")'-"ﬁ)][x?(u)—so(%‘gﬂ)],

and since x4E3gs‘(u)—%Ipé(u)—SJga(u)—T‘,I 2 we have various
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results from the consideration of various symmetrical functions
of the roots of the quartic x,=0; for instance

?(2w‘>+59<"w‘*) +sa(2(o,-:|;2w,) +s3(2m1 ; 2(03):0,

2 2 20,42 2 —-2 ’
o(%3) -9 (%) p(257) #(2157%)= -t e,
and similar results will follow from a consideration of the equations
P(3u) =g (u), (4u)=(w), etc.
1402 Let Q_,_4(.L e,)(n eq)(a: a,),.z, g)(u),ngo(v), z=@(w). Then

=(y- el)("+e12+‘2’3)+(" 91)(9 +eu+%)—é~/?2;~/§.
=ye(y+2)-H(y+2)-3J-e,(y—2)* - INQ, V@,

S AT F(y, 2)-NQNGQ,
PG, -G - ey~ 1=y (s LDl )

={p () - p(w)}¥pP(v+w)—e}. That is
VP +w)=eip(v) - P =y —eVE=e)—e) ~Va—e V(g —e)(y - &)
with two similar equations.

1403. It will be noted that @(v+w)—ey, P(w+u)—e,, P(u+v)—e; are
perfect squares.

1404. In the samne way
N T O 0 B et T A PN e e
with two similar equations.
1405. If 2w,, 20,, 2w, be the three periods, then
—w,+w;=0 and p(w)=e,, p(w,)=¢y, P(wg)=¢;,

and since ¢,+¢,+-¢,=0, we have p(w;)+ @(w,)+ @ (w;)=0.
Also

_ @)+ (w) 2 p (w) 5
?(2u) —p(w,)= o) 1 _e‘~ga'2 @’ say,

where

Q=p*(u)— 4,0 (u)+ 1 p*(u)+ (2J + €, 1) p (w)+ (YsI*+ €, ).

Then this quartic function @ is a perfect square. For the
solutions of p(2u)=gp(w,) are given by 2u=2\w,+2uws+ w,.
That is u=an odd multiple of }w,+a multiple of w,.

Now %l and u—él-{- w, are the only independent solutions,

for any others are merely such that, with one or other of
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these, they make a complete period. Therefore the only
different factors of @ are the two

z»(u)—xa(%) and P(u)—xv(%+w3)»

which must therefore be repeated. It is therefore indicated
that

?(2u)—@(wl)=[p(u) el ] [ta(u) p(5+ “’3)] / *(w),
no coefficient being requived, because in @ (2u) the coefficient
of p*(u) is to be 1/p*(u), which is so.

The actual factorisation is given in the next article, which
will show that the repetition could not be such that one
factor is repeated thrice.

1406. Since

I=-4(ee5—e?); 2J +eI=de(eest+e’) 5 Pol*+e,J=(e85+e%),
P(21) — e
= [0 (u) - e, ° (u) - 2 (e,e5 — €,%) 9% (1) + dey(ene5+€,2) 0 (1) +(eney + €,%)7]/9*(0)
= [§0%(u) — 2e,0(w) — (e,e5+ €,%)]/0" ()
=[{P (1) — e,}* — (es€5+ 2¢,%) 12/ "*(u),
which shows the actual factorisation of @.

1407. The values of p(‘—”—‘), P(—“—'H— w,) are therefore
e, Ve +2e% i e :n3ef— 1,
and since p( “—;—‘) lies between e, and « we take the positive sign for (p( ';-‘)
[See Art. 1410.]
1408. We have also the relations
d
f’( )"‘?( +"’a> 2e, =20 (wy) ; ?( 2") ( 2"*"”3) =7~ %w)

with other results. For instance

Ve == -[gea-p(2) | [pe-p(L+0s) /e,

where the negative sign is chosen, because when u is very small
1 1 2
PRu)= 5 PE)=5 P)=-5
1409. Putting z=e,, e, or ¢; in
P%(u) = 49%(w) - Ip(u) —J =4 (2 —¢)) (2 - &) (2 — &),
(@) =" (wy)="(w5) =0.
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Then Pu+o)= 4W‘u‘jﬁ—?(’b)—?(ml)$

1 p"(u) 4{ (u) + 20 (0 )HP () — P (0)}*
{9(u) - (o)}
= {4z'" Iz —J — 4(z+2¢,)(2—¢,)*} /4 (2 — ¢,)?
={(12¢,*~I)z—(J +8e/’)}/4 (s — €,)},
and 12e2— I =4(e,—e,)(e, —e3), J+8e’=4e (e, —e,)(e,—e,).
Hence Plu+w,)—P(0)=(e, —e))(e;—€3)[(z—€), wevererrinnnnnnn. (1)
ie. {P(u+o0y)—P(o)HP () - P (o)} = {2 () — P (0)} {2 (0;) - P (03)}, ...(2)

with two similar results by a cyclical change of suffixes.

L P(ut o) - P(e)=

1410. We may therefore write the result of Art. 1394 as
40(2u) =P (u)+ P (u+ ;) + P (v + wy) + @ (u + wg).  [M. Trip., 1888.]...(3)
Other identities may be established. Thus, since

Pu+o,)= el+(£,M,

z—e
we have Pt )= (3(—:1)(691_&_)? W),
e @(u+o)= {2 (03) — P (e} {P (o)) — KJ(%)}?,(u).

() - P(@)?
If in (1) we put u= —}o,,

z=$0<%) and p(%) o= 2o -e)(er—e). (See Art. 1407)

iy
il A

u decreases from o, to O and passes the value w,;/2 in the interval.

and is real ; and as z increases from e, to «,

Hence the value of z corresponding to 'i that is p( ) lies between
e, and o, and is therefore > ¢;. Hence we take the positive sign, and
?(%) =e;+n/(e;— ;) (e, — &)
Also, since @'(w)= —a/4(z —€,)(z — €,)(z — €3), we have

L (gl) -v4 {N(e,—e,) (e, — 3)} {€,.— es+~/(e; — €) (&, — &)} e, — e5+~/(ey —e2) (e, — €3)}
= —2V(e;— &) (e, — €&5)[Ne, — ey +~/e, —e5).
1411. It may also be shown that

#(%)=e—Va-aE-a, #(3)=a- WE-ala-)
Sa’((%) = — (e, — e5)(e,— e5) [Ve, — eg+n/ey— €5,

50’(%—’): (e, — e5) (e, — €;) [We, — ey + enfe, — &)

www.rcin.org.pl
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1412. Again v , ) Y )
. _(e—e)(e,—e3) _(e,—e3)(es—e)
£ (u+wz)—WS"’ (), 8"”(“"‘“’3)—"2(2—1_%%?_1? (w).
Therefore

§ ()9 (u+ 0)) ' (% + W) ' (U + w3)=16(e, — €,)% (65— €,)*(e, — €,)",
[ W), e ¢ ey g ey
U Plute) @ ute) @(uto)

P(utw) e,(e,—e3)
P (uto) (e,—e5)(e;—e)(e —e,

+

1413. Also @' (u)

two similar results.

) (z—e,)*—(z—e,), with

~. adding @ (w) {%%’)%+ +}= 2 ot e
whence M.,_f’(“'*'“’l)+S”'(“+wz)+f-7(u+m3)_

) Futo) @@to) Pto)

1414. WEIERSTRASSIAN PERIODS IN TERMS OF LEGENDRIAN.

We have now to examine the relationship between the
Legendrian and Weierstrassian systems. Taking e, e,, e; as
the roots of 42°—Iz—J=0, and supposing them all real and
e, > e, > e, the period 2w, is defined as

9 j‘ i dz
L */4'(2‘“61)(2—62)(2“33)’

and is a real period (z > e, > e, > e,).

Let z—e;=(e,—eg)cot?0 and A=

€3+ €5
@6

which is positive and <1.
Then z—e,=e,—e,+(e,—e;) cot?G=(e,—e;) cosec0— (e, —e;)
=(e,—e,)(1—k?sin®0)/sin?6,
and z—e,=(e, —e,)/sin%0 ; also dz=—2(e,—e,) cosec?d cot O d6.
Again z=e, gives 0=m/2 and z=o00 gives §=0;
shgevarard “-:’;2(61—63) cosec?@ cot 0 sin®6 d0
e i 3 s R
0 (e,—ey)" cot B/1—K2sin%0
ibad I" FrO L
T Ve, —edo JI—EZSin’0 e, —e,
Again (2 real, and passing below z=e¢,, see Art. 1335),

o dz
2"’2=2L Ji(z—e)(z—e,)(o—ey)

- {I+L} J4~(z—el)((:iaz)(z—es) ;

e - (0> 2> e,>¢)

2(“’2"“’1)=I av(e,—2)(z—e;)(z2—e;)
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Let z=¢, c0s*0¢, sin®6.
Then e,—z=(¢;—e;)sin%), z—e,=(e,—e,)cos?0,
and z—e,=(e, —e,;)(1— k% sin%@),
where Y T, o MR o R §
ik S120
K being positive and << 1. Also dz=—2(e,—e,)sin 6 cos ¢ db.

Again z=e, gives 0=7§r; z=e, gives 6=0;

-2(—)—glf s e
T e i VAT Ne,—e o ~/1—k?sin%0 lN/el_ex'
o dz

2
J‘.,J4(z——e,)(2—€z)(z—es)

“{[+[ ) ey

Finally 2w,=

o dz
. 2og—u)=2| :
P o N 4(e,—2)(e,—2)(2—e,) (6>6>2>0)
Let z=e, sin’0 ¢, cos?0 ;

' ej—2z=e,—¢,8in*0—¢,(1 —sin?0)=(e,— ¢,)(1—k*sin6),
e,—2=(e,—e;) 08’0, z—e,=(e,—e;)sinf,

dz=2(e,—ez)sin @ cos 0 db;

z=¢, gives 0=0, z=¢, gives =1 ;

i St f il i Ak
B S e —e Jo N I—K28in®0 e, —e,
vHence 0y .S KoK o

=‘\/81"es’ w2=\/el_es’ ws:N/el‘“es’
and &, —wy+w;=0, as it should be.
1415. CONNECTION BETWEEN THE JACOBIAN AND WEIER-
sTRASSIAN Ervieric Funcrions.
In general, taking
I & dz
u=
z Va(z—e,)(z—ey)(z—e,)
Put z=e, (e, —e,) cot?6, and we have
€3

1 J“’ de g 6=
\/61_93 0~/1—k’sin’0' vt —el—"es.

(e, > e3> €y).

u=

; 1
W.ICin.org.pi
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Then O=am Ve, —e,u,

p(u)=e,+(e,—ej) cot20=e3+zli;23‘ e+ sm2 9 ( Zi — e: sin?'O) ;

ie p(u>=e1+(el—e3>§]‘%

dn u

ol =ey(e—ey SYAZEY,
pl)=est(e—e) — \/ef__eau, ............... (A)

which may also be written as
sn? el—e3u=£5__e—"'%, cn*.»/ﬁ,;:%%z_}

dn? el—e3u=§izg:2, ...(B)

which show the connection between the Jacobian and Weier-
strassian systems.

1416. Expansion of @ (u) in Powers of 2.

Taking u=f: ﬁ—gt—i—z_hz, and z> e, > e, > ¢;, we have

g [1 ( ) dz, and a convergent expansion,
11

s T\IE . 30 Lfoleaeh
u—]: 2‘1[1+2 4( +z3)+2—4' 4—,(;24";,) +]

1 Foadl o e 80 118 :I
fd‘[ 2*4;2a4gzﬂ4s i
e ! J 1 1.3 I2
#+°+14 s 3tea 7 ;e et
We have to reverse this series, and expand z in powers of #, Squaring,

we notice that «? is a rational function of z, viz.

T AR Soa A
istagate
They T +0 +30 ZIO u}zz +28 2"8 u}zs Vg
=1 1 24 J o
=.at0+gsul+ggult.. . to the first three terms.
As z is obviously an even function of %, we may conclude that the
expansion is of the form

Ay ' § I 4 Ay
z—;,+0+2—0 ‘u+6, 10!

where 44, 4g, ... remain to be found. As the work of reversion of series

_~+o+

u"+ u5+ wo+...,

WWW.IrCiNn.orc
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is somewhat laborious, we may now use the differential equation 2’"/=12z2

(Art. 1384) to determine the coefficients from this point.
Saidiy A“u’+A Cud+t ...,

Now 2'———1—2+0+%u+7u"+ w4t
‘zm=—l%3-—4+0+0+37&’u+;—;—'u3 A91,,6+-;—‘;"1¢‘+ s
s L)t 28)
Te-1z(gee31 2?+4 ) ete,
T i 2*.31.13(2—.%“3%#)»“"-

TR Y e
gVIng §1=a 3.5 8! 20.5.7.11° 10!

Hence & N
. I J 2 . 3Rl
Plu)=g+0+ vt gguit g m vt v
I? 3Jj%
W+T.‘f)u‘9+....

1
tos 13 (
1417. It appears that sa(u)——— vanishes w1th w. That is, for very

P -5
Also Lt —!— 30’ ete.

small values of u, (%) =

Again @(u)'(u)+ 1% vanishes with u.
Moreover the expansions of '(u), ©"(u), ¥"(u), etc., are now all

known to several terms.
1418. The Expansiofis of the Weierstrassian Zeta and Sigma

Functions.
Since {(u)= —[p(u)du=‘%‘log o (u), we have
i I C S I ; i
()= +0- Gy a7 w3 7% 53,5 711"

1 B 3
~3 31, 13(5‘.'5”7)“"""‘ (4)
. o 7 il I 5
Al f((“)d“‘l°g“+°"24.3.5“ ¥ 3.5.70 F.aoh T
Tl Ll S
“FIL T I
whence
s Tu* Ju* Iy 1Ju
a(u)= e".s(")du==u. TB5 o 857, o T fSEIETT
I8 Jub ]
‘][1'23.3.5.7'"

Tut
="|:l 35t P
I® LJuto
"[‘"21.3.52.7"'][1'26.3.5*.7.11"']’
Iw Ju? I*u? IJuMt
* oe 0 AB)

5
90.3.5 25.3.6.7 2°.3%.6.7 20.3%.6%.7.11

e, o(u)=u+0-
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Equations (A) and (B) give the expansions of the Zeta and Sigma

functions.
The constants of integration are in both cases taken zero. That is,

{(u)-= and logo-(u) are taken as vanishing with w.

1419. We note that both {(v) and o () are odd functions of
%, and that in consequence {(—u)==—{(u), o(—u)=—0a(u).
Also that {(0)=w, {'(0)==, {’(0)=w, etec,
#(0)=0, o/(0)=1, ¢”(0)=0, &”(0)=0, o&"(0)=0,
o' (0)=—1I, ete.,

and for small values of «, {‘(u)=}t, o(u)=

1420. AppitioN FORMULA FOR THE ZETA FUNCTION.

Integrating the equation
g ¢ (W)@ (v)
P =PI gy

with respect to v, {(u—v)4{(u+v)= ‘;%-{-C :
and putting v=0, p(w)=x2; .. 2{(u)=
" {u—v)+{(utv)— 28 (w) sa’(u_fa)(t?ﬁv_)' visanoa(E)

Also {(u) being an odd function, {(u—v)=— {(v—wu)
Hence, interchanging » and v in equation (1),

—f(u—v)+§(u+v)—2§(v)=—F@%. Sl
Hence adding, B o)
Eutv)—E(w)— E(v)= % o
={p(u+0)+p)+p)}},
or writing u-+v= —w and remembering that
p(—w)=pw), {(—w)=—{w),

§()+ @)+ C(w)+p ()49 (0) +p () =0,
where u4-v+4w==0. [See Greenhill, E.F., p. 205.]
Changing the sign of v in (3), ; .
§(u—v)— () +{(v )—; ‘;%;—J_rz—(g’)). e iR
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1421. By differentiating (3) and (4) with regard to u,
d d 1d ¢'(u)—gp
fotto— t=1 L EW-_F)

2 du p(u)—p(v)

a d i d ¢'(u)+¢'(v).

and %f(“—”)—az—lf( =3 du p(u)—p(v)’
whence

1d ¢'(u)—¢'(v)
plu)—p(u+v)=5 2 =)
_1d ¢+
pu)—pu—v)=5 = Po—p()
1422. AppitioN FormMurLA For THE SieémMa FuNcrtioN

b = Lipied o M G0 L o
gagt:flztlng §(u—v)+§ (u+v)—2¢ (u) i) with re

log o(u—v)+log o (u+v)—2log o (u)=log {p(u) —p(v)}+C;

and since, when u is indefinitely small,
o(u)=u and p(u)—-—~

log o (—0) +log ()= Ltu »olog u# { s —p (9} +C=0;

whence

-

loga(v—u)L]o g4 —2loga

e (W=log {(p(w)—p(v)}, (1
ia, A —p ) —p)
and ﬂ(z_)):g%—)}—v_) PO)—p(w). Tl e (2)

Putting v=nu, we have

P (1) —p (u)= —”(n;a:)"‘;(:zq:; 3

1423. If we integrate with regard to v instead of with
regard to u, we have

= o(u— o(u+tv)—2 ” o A\ e L)

log o (u—v)+log o (u+v) —2v{ (u)= j o (v)d
Laveay T (U+v) @ (u)

whence log e - 2v¢¢ )a_ o g B e (v ............ (3)
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1424. Starting with

R i . - K49
. —.§(u—.v)+§(u+'))—2s°w)——so—(u)—_m’
and integrating with regard to «,
 gor ST ARG L S e e ()
log o (v—u)+log o (u+v)—2u (v) Wi r e p(v)d

PP e i) M ()|
2u (v) T el 7 P(v)d ceeen(4)

d?log o (u) df (w) _

whence loge

1425. Since —(u), we have

du? Tdu
e D) log o) J310g o(0). e (3

1426. In the result

g(isg(%)):f(“T;rw =p(v)—p(u),

make v approach indefinitely closely to w. Then
ou)_,.  p)—pM)_ . A
V> U

ot (u) o(u—v) Y o’
for ¢’(0)=1 (Art. 1419). Hence -
o (Qu)= —o* () ¢'(u)=(— 1)1 ¥ (w) ¢’ (u).

1427. Differentiating 0(2u)—@(u)= —i- d‘u‘ log ¢’(w), we have
20’ (2u) — ' (w)= - } d,un 108 7 (w), ete.,

27 (2u) — P ()= ~1 2 log ¢ (1)
Integrating the same equation,

d
K@) +H{(W+0= -1 L logg' ()= -1 58
and taking u indefinitely small, we have in the limit
2.3, 1
! (40 N ¢ 1y etoiilge 3 2
3 wtetO=—¢ 2 b OmQs
T
whence — 32w+ (w)= -3 ©” ()

Ol
Again integrating —}log o(2u)+log o (u)+C'= -} log @’ (u),
and diminishing  indefinitely,
—}log 2u+logu+C'= -} log(— —) 3logu—1}log2-1log(-1);

—}log(-1);
oi(w) 1.e. a'(2u)= —<r"(u) @’ (u), as found before.

. log —=—<=lo Pl
C B eu) T B

www.rcin.org.pl
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1428. Putting =2 in the formula
n+Duo(n-1)u
P (nu) - p(u)= —‘%()@%)—7

we have \ (%—E"25—:3—?:5((11'1%)=§'J(u)—g’a(iu):%4 :—;log @ (u);

’ ~ 1)} 'z f \1 it
. 0@Y=1rt ) s log ¢ = hr | E0 €70 |,
1429. To find o-(4u), we have
o (4u)= —o* (2u) @’ 2u)= — [o* (u) P'(W)]} 9’ (2u)
= —o¥(u). P4 (u) ' (2u),
and by aid of these results we might proceed to find o{5u), o (6u), ete.

1430. Corresponding to Euler’s Theorem,
cos @ cos 26 cos 220 ... cos 271 §=sin 2"0/2" sin 6,

we have %= — @’ (2" 1), gf((_zfﬂ——'T) = —@(2" ), ..
o (2%u) a(2u)

0“(211,)— - (2u), o (u) =-—p'u;
whence ‘:r(j—(:)) = — ' (2" 1w) . @4 (2" ). @ (27 Su) ... ' ().

we have

1431. Writing v, for (‘:m("):g,
YpaVat_o(m—1)u onr+)u §(cu)"\*_o(n-1uc(n+1)u
Va2 (ouw) 0 (g@)or P \o(mu) S T o¥(nu)o?(u)
=P(u)—P(nu) ;

‘I’n—l 'Pu"'l

P (nu) P (u)= -

The value of Y (u) found by Schwarz has been shown in Art. 1398,
expressed in terms of differential coefficients of @ (u).

Supposing the functions R, to have been found in terms of @(u) as
explained in Art. 1399, etc., ¥, can also be expressed in the same manner.

For

Y '/’n—ﬂ_ L 'ﬁq,—!_\‘ﬁﬁl_ L 7 e Y ‘l’e R.n Vs ¢1= —R; ;

Varer Yo b T g 25
e )
sl ],

S(=17TF R IA o. BB age,

and ¢,=‘0‘22(_)) - (u), $1=1; whence (n>2)
¢‘f =(-)"FTR BB, ROR
2

www.rcin.org.pl
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n(n—1) ’
S&n:( i l) = {K"("‘)}"_‘ -Ru—-t Rf.—zk}.-:l oee -Ri,!l—s RQ_B)

o (nu)

b= (= D () (P~ P2 (P~ 3y .. (u— L)'

1432. General Form of the Differential Coefficients of @ (u) with
regard to u.
Writing P, P,, P,, ete., for p(u), ¢'(u), p”(u), ete., for short,

we have P2=4P’—IP—J,
P,=6P*—141, P=12PP,,
P,=12P2+12PP,

=aP3+bP+c, say, Py=(3aP?+b)P,,

Py=6aPP2+(3uP?+b) P,
=a, P+ b, P4 ¢, P+d,, say, P,=(4a,P3+2b,P+-c,) P,,
Py=(12a,P?+2b)) P+ (4a,P?+2b,P+-c,) P,
=a, P+ b, P2+ ¢, P2+ d,P+e,, say,
Py=(5a,P*+3b,P*+2¢,P+d,) P,,
ete. ;
whence it appears
that P,, P,, Pg, ... are all rational functions of I’
and that Py, P;, P,, ... contain an irrational factor P,.

If we suppose these equations solved to express the various
powers of P in terms of P, P, P,, ..., we have

P=}(Pt1D),  P'=1(P,—bP—o)
P4:al{Pa'_?‘rbl(Pz"{‘{J)_‘CxP"’dl}’
1

]’5=(%2{Ps_%(l’4—611—c)—%?(1’2+.‘_.I)—dzP—eZ}, ete.
whence it appears that any positive integral power of P
can be expressed linearly in terms of P and its differential

coefficients, and that the general result will be of the form
Pr=AP,, ;+ BP,, ¢+ 0Py, s+...4+KPy+LP+ M,

in which no differential coefficient of an odd order oceurs, and
the coefficients arve all functions of I and J not involving the
variable and readily calculable in the early cases.

www.rcin.org.pl



554 CHAPTER XXXII

1433. Integration of Rational Integral Algebraic Functions of
@ () with regard to u.
It follows from the last article that

[Prau=aPy +BPy 1t CPo gt ..

+ KP,+L{(u)+ Mu+a const.,
in which the Zeta function appears from the integration of
the term LP.

Any rational integral algebraic function of p(u) and p'(u),
we. of P and P,, can now be integrated. For if it be
separated into two parts, the first containing all the even
powers of @'(x) and the second all the odd powers, then
after substitution of 4P*—IP—J for P2 we have a result of
the form ¢(P)+x(P)P,, ¢ and x being rational integral
algebraic functions of P. And when ¢(P) has been expressed
as explained above as a linear function of P and its differential
coefficients, each term is directly integrable. And if x(P) be
expressed in powers of P each term of x(P)P, is directly

integrable, for J.P'Pl du=Pr/(r+1).

Moreover, since P'Pl— ) which is of form

duw (r+1
%) 3
du (AP,,+...+M)=AP,,+1+... ;

it appears that P'P, can be expressed as a linear function
of P and its differential coefficients, and that the same is true
of x(P)P,, x being rational and integral. Thus, whatever
rational algebraic functions of P, ¢ and x may be, the integral
part of ¢ (P)+ x(P)P, is expressible in the form
A+ AP+ AP +A,P,+
and is integrable with respect to u and expressible in the form
O Aut Ay () + 4,9 W)+ 4,9 () + Ay (W) + ...
1434. Thus, for example, to integrate {p(u)+@'(x)}? with
regard to u, we have '
(P+P,)*=P*+ P*+42PP,=4P3+ P?*—IP—J+2PP,
=145(P+18IP+12J)+ } (P,+31)—IP—J 42PP,
=g P+ 3P, —3IP+ (P51 —4J)+2PP,;

j{«a(u)+p'(u)}2du=c+<ﬁl $J)ut 31¢()
30 (u)+ 39" (u)+ P50 (w).
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1435. If we differentiate equation (1) of Art. 1420 with

regard to u, )

’ ’ o — £ (%) P (u

U o) = 20= 6 o) e —p @
and an interchange of « and v, or a differentiation of (2) of
the same article with regard to v, gives

; , R ) R ) I

S e T T T )

a further differentiation with regard to v gives
—{"(u—v)+"(u+v)—2¢"(v)
—_ ) 3¢e"(v)  20%(v)
p)—p©) [p)—pO)F [p)—p®F
ete.

Thus we can form fractions containing [p(u)—p((®)]3
[@(u)—p(v)P, etc., in the denominators with no functions
of » in the numerators, and this will presently be found
useful (Art. 1443); and since {'(w)=—gp(u), we have

P _ $(u—v)— {(u+v)+2¢(v),

P —p()
MO e i, S . )
CIOETI0) AR A T Tk
ST ot Do LL el St MR
COETI0) LA AR AR A\ =T wery

_ 3¢ (v)e"(v)

[ (w)—gp(v)]*
ete.

Integrating with regard to «,
@'(v) J‘H'T;l—ﬁﬁ?“(”) =log o (u—v)—log o (w+v)+ 2uf(v)+const.,

i dw {
P(v) j =) )~ 2up (o)

w du
A Pt
26%(0) [ (o = — P (U )P+ 0)— 2 (1)
) e —p()F

du

o B
-0 [ sa—p o ¥ OO | Ga—sor

ete.
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Each such integral is therefore expressible by means of
those which have preceded it, the first being completely
integrated. So that all such functions as

1 1 1
pw)—a’ [p(w)—a]’ [p(u)—a
are integrable and expressible in terms of p, { or o functions.
In the case where p(v)=¢,, ¢, or €;, we have v=0w,, w, Or w,
and ’(v)=0.
We now have from the second result,

P”<w>[%=—§(a~w)—§(u+w)—2eu,

with corresponding suffixes for e and w, replacing the first
integration above, and so on for the other cases.
And p”(w,)="6¢,>*— 1] =2e,e,-4e,2, ete.

7 ete.,

1436. As a particular case, if we put p(v)=0, v is a constant

defined by v= And

J‘“’ dz
Tl NI
@2(0)=49*(v)—Ip(v)—J=—J, " (v)=6p(v)—3[=—1I,
" (v)=12p(v) p'(v)=, P (v)=—12J, ete.;

whence the successive integmlsj W’ ]. am (u)
may be at once expressed. 4 ¥ ¢

1437. The integration of the function 3 e (0=Ee . e'ores)
: s afbdeted p(u)—a

may now be effected.
Let a=gp(v), which defines » as a certain constant, viz.

B J i
ve[ Jrrgemg wd ¢ )=~ 8= La=J. Then
1 1 [ @ ()4 () ¢'(u)—p (v):'
p(u)—a 28"’ W Lpw)—p®) @u)—p®)

—7— [{f(u—v)*f(u)+§(v)}— {{(u+v)={(w)—{@)}]

e (v)[f(u—v —{(u+v)+2¢(v)]  (or by Art. 1435);
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whence

e m)“"g"(“ v)—log o (s-+v)-+ 2 (v)]+ const.

Ty )loge“’“{(’) E D ;+const

1438. Art. 1435 shows that we also have
S du
@ 2(v)“‘B’WW“P:——-{(u—'v)—g‘(u+'v)—2u @ (v)

" du
4 (v).‘.p—(u)——-_a’

2p3(v) _[ p—ap— ¥ (u—v)+p (u+v)—2u ¢’ (v)

e du 8 ity du
—p (o) S =30 o) [,

and so on.

¢ () j )
1439. Integrals of form La(u)——a,du’ {p(u)—a}”du are of
course directly integrable as
1 i
log[p(u)—-a] and —h——_——l [p_(Ta]"—"i'

1440. Integrals of form jg(%(u ]du where F is a rational

integral algebraic function, can be integrated by expressing
F in a series of form

Apm(u)+ Bpn (w)+ ...+ Kp(w)+ L,
and then dividing by @(u)—a, thus reducing the integrand
to the form

A'pm(u)+Bp2(u)+ ...+ K'+
and each of the terms of form Ap”(u) may be treated as in

Art. 1433, whilst the integration of the last term is effected
above.

shudorg ¥
p(u)—a’

1441, Integrals of form
j Flp(u)] du
(¢ () —a][p(u)—b] ... [p(u)—k]

follow the ordinary rules of Partial Fractions in the first

WWW.ICin .0rg.pl
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place with an integra,tion of the several terms of the form
N (W2 oy )
above.

1442. Ex; Thus
§2%(u) du s a? 1
P - dllp@) - blpw)-c ) “a=b)a-c) p(u)—a
a’ %, 0’(“ ul)
(a (a—by(a— c)p(u,)logew;( )0(u+ul)’
where u,=j: \@—T__I—m, ug=etc., ug=etc., and

@ ()= —N4a¥—Ta—J, etc.

whlch accrue, following the rules deseribed

du

1443. GeNErAL SumMmiNGg Up. COMPLETION OF THE METHOD.

We can now consider the general case of the integration
of a function of form (A+BJ@)/(C+DJ@), where 4, B, C, D
are rational algebraic functions of z and @ is a rational
integral algebraic function of x of degree 3 or 4, thus extend-
ing the result of Art. 318. By exactly the same process as
in Art. 318, the function may be thrown into the form
UMt
LA A

functions of z. The transformation .’;r:=az,,—i—z——i"_—,7 may be

where U, V, M, N are rational integral algebraic

applied to both parts, or to the second part only, for I%dx

is directly integrable in terms of z by the rules of the first
seven chapters. But for the sake of uniformity in the result,
let us suppose the same transformation is applied to both
parts. Then, having determined u and 5 so as to reduce
d% to the Weierstrassian form v iy e i —5 let us put, as in
Art. 1432, p(u)=P, ¢'(u)=P,, etc, where u is p~'(z). Then
U/V and M/N, which are functions of z, take the forms U'/V’
and M’/N’ respectively, where U’, V', M’, N'are rational integral
algebraic functions of P, or what is the same thing, z; and

I(VJ“N l)d“’ .[ :[(z:,;)’]d +j%d_z

UI’
={pr du+[
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where U”/V" replaces —U'u/V'(z—n)?, and U’, V" are rational
integral algebraic functions of z, 7.e. of p(v) or P, and M, N
are also rational integral algebraic functions of P.

Now U"/V” and M’/N’ can both be expressed partly as an
algebraic series of powers of P and partly as a series of Partial
Fractions.

Suppose
U” M ’ 'I
P =2AP"+Z 5o P—By 13)' and Fm=3\P +E(P /3,),,,
which are the most general forms.
" W s R R0 1 T
Then IP P,du=_—1; I(P A= —i=1 pogy od

P, du
P—pg
integrated in terms of P, z.e. of g(u).

=log(P—p), so that all the terms of JII{T,P‘ du can be

Also | P”du has been shown in Art. 1432 capable of integra-
tion, and the method to be followed has been there described

P-g°
has been discussed in Art. 1435. The total result

Final]y, the integration of terms of the form J-

P=EY
is therefore expressible by aid of the Weierstrassian function
@(w) and its associated Zeta and Sigma functions, and the
addition formula for each has been established.

This therefore completes the theory of the integration of the
most general algebraic function of nature (4 4 BVQ)/(C+DVQ),
where @ is of degree 3 or 4, the cases of @ being of degree 1 or
2 having been completed in Art. 518.

1444. ILLUSTRATIVE EXAMPLE.
Consider the integration

ohe i 2 dz
U=L (z—13(z—2)W4(2°+1) 2<z<).

dz
J4(z3+1) —du; and let a, B be

two constants defined by p(a)=2, p(8)=1.

Let z=p(u, 0, —4), ¢
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Then p(a)=36, p2(8)=8, p’(a)=6.22=24, "(8)=6.12=6,

and we have 4 1
*r { 1+m—ﬁ—§:r)z} i,

Hence, by Art. 1437,

U=u+8. éloore?“((ﬂ)a.(u “)_4, _10 Zug(p)o'(u B)

{ $(u—PB)—{(u+B)— 2u~:/_1oge°u;(8)‘7§“+g;}+c,

and C is to be determined so that U=0 if u=0. Simplifying,

4 o(w—a) 13 a(u—PB)
U= | Pug(e) Nl | e2ws(® 1" I/
u+3 oge o 7 8J210 b e )8)

+5 (200+ 28 o) o

and when u is diminished indefinitely,

2
_4 1.2 ES]
0= log (—1)— st (1)Lt 2o lJ.+0
e
gAML o WD
g sdé :

Therefore subtracting,

"u{(u)M 13 il ge2u§(ﬂ)i8—
o(atu) 8y2 a(B+u)

1 @(u)

where uzp‘l(Z, 0, —4), a=p7(2), B=p*(1).

1445. For further development of this part of the Theory of Elliptic
Functions, the reader must be referred to some book expressly dealing
with this section of the subject, such as Professor Sir George Greenhill’s
treatise, where he will find a large number of very elegant applications of
their use to the problems of higher Applied Mathematics, and a much
more extensive account of them than space admits here.

U———u+3loge

www.rcin.org.pl



WEIERSTRASSIAN FUNCTIONS. 561

PROBLEMS.
1. Reduce the integral
z da ’ ’
EJ‘ (2<2<2.5)
2@ - 2) (- 3) (22— 5) (30 5)
to the Weierstrassian form, by putting z=2+—. Show that the
moduli of the integral are 2/4/5 and 1 /\/T 5, and that u=p=1{1/(z - 2)}.

R o g 2
Show also that u=—_dn™! , mod.

5 .m—5 NG

2. In the integral u_j —-i_—_—_, show that if
2 J4z5 — 20z — 28

z>el>e2>e3,

(i) p(u)= + u? + ut +:13uﬁ+

il _1 O T
(i1) ((")_{—3” —Bu ) LIt
(iii) a(u)=u—1—2u —%u i
dx :
3 If 2u= , show by puttin
i \/(4z-+17x+4)(2x:~ 3o+1) R
@=y/(y - 5)

that the integral is reduced to Weierstrassian form. Prove
also that

1

“=_~3°1<_,§i!84’_8 Tdo+1

5% -1 3

4. Show that ‘
3208 () ' (2u) = 64%(u) — 80Ip*(u) — 320J0%(u)
- 20120%(u) — 16 1Jp(u) + (1° - 32J2).

Also show that if 2u=j Jﬁ:d;:l’ #'(2u) contains §(u) as a
factor. abh e a

the roots of the

5. Show that for the integral 21&—.‘- \/73 = 3,

equation @'(2u)=0 are given by @(u)=a (J3 +1), ao(v/3£1),
aw?(v/3 £ 1), where o is one of the unual cube roots of unity.

Show also that g (2u) - p(u)= - iz and that
@ (u) =24 (.)ps(u) - 2a3}.

www.rcin.org.pl
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; e 1 i f2=2a2cos 15
6. If Zu_L e & show that u = 2:/3(_chn {z+2a..j§ =t 15.}-

Mod. sin 15°.
7. For any Weierstrassian Integral, show that

¢ 6 2 i
(@) Lhemo {1:;;0((:)) } 2, () Lacso {uo'if:;)— uu} e

8. If u=g~(z, 84, - 80), show that the values of p(%) and
?(‘2‘ + "’.) are 4 + 3.3, and that
©'(u)Vp2u — 4 + *(u) — 8p(u) - 11 =0.

Show also that

(u+w) = - 27p'(w)/ {p(u) - 4}”}

Putw)= 18¢'(w)/{p(u) - 1}*%
(1w +wg) = - 54'(u)/{p(w) + 5}*.

. dz
9. If u E-“ , transform the integral by the
a{(z-¢)(@-e)(z- es)}l1

substitution g3 = (x—ﬂi) , and show that

(£-4)
dole. Lot
LK o ?{3 (e, - €) (e, €5), O, ﬁ;—("x‘l—‘a)}'
10. Prove the relations, _
(i) o*(w)o (v+.0)o (v - w) + o*(v)o (w + u)o (w - u)
+cX(w)o (v +v)o(u—v)=0.
(i) p(u)0* (W) (04 0)a (v ) + (o) (o) r (10 + u)r (10 - )
+p(10)r3(ur) o (u+ 1) (1 — 0) = 0.
(i) )0 ) 5+ ) (0= )+ F0) Ao+ o (0~ )
+ @%(w)o*(w) o (u + v)o (v - v)
=o*(w)a*(v)o*(w){p(v) - p ()} {p W) - p() Hp(v) - p(v)}.
(iv) o(v+w)o(v-w)o(u+2z)o(u-=z)
+o(w+u)o(w-w)o(v+2z)o(v-2)
+ 0 (u +v)o(u - v)o(w + z)o(w - z) = 0.
[GrEENHILL, B. F., p. 208.]
(¥) ()00 +10)0%o - 0) + 0%e) 0¥ + u) %0 — u)
+ o¥(w) o¥(u + v)o¥(u — )
= 30%(u) o%(v) o*(w) o (v+ w) o (v — w)o (W + u) o'(w — u) o (v + v) o (u - v).
11. If u=g'(2, I, J), find the values of

Pl 19p%(u) - I
I’a (%% L@() I Bl oy s
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12. Find the values of

I?i(u)du, Ig:r"(u)du., Ig.;‘(u)du, Igaiﬁ%’ I p—f{fd} . I ?J(MT) y

13. Prove that
2 (u — ¢) (v — pw){p (v + w) - €]} p (v~ w) — €} =0,

where the sign of summation refers to any three arguments u, v, w,

and e is any one of the usual quantities e,, e,, ¢,.
[MATH. TrIP., 1896.]

14. Prove that
. 94 o 2
8¢/ (w)p'(21) = () — Bp(u) — 187 — 4z =V &)’

P(u) - &
15. Prove that
Vp(2u) — e, +Vp(2u) — ey + Vip(2u) — eg = {129%(w) - 1}/4¢(u).
16. Show that
4]9(2u)g:’(u) du = 1p%u) + log (pu — e,)(pu — e,)*(pu — e;)%,

where a = (¢, —e;)(e, —¢5), ay=ete, az=ete.
17. If ¢p(u, v)= :((:): 8) ¢~%®), show that

(i) ()b —0)=p(w) - p(v);
(i) (0 0p) = blty — ) =Vpw) .

18. Putting —('-‘—:—45—‘) e~ = o (u), ete., etc., show that

o (2u) = 20 (u) o (u) oy (u) og(u).
[GreENHILL, E. F., p. 208.]

19. If the function ¢ (z, v) be defined by the equation
1 [P -¢(),
log ¢ (u, v) = éj @ T du,
show that (1) 4>(u, v) p(u, —v)=p(u) —p();
(ii) -——((“+v) {(w) - {(v);

(i) $a?;= 20 (1) +9(0).
Hence give the general solution of the following case of Lamé’s
Equation, viz. 1d%

ydu~ 2p(w) + () [GrEgNuILL, E.F., p. 210.]
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20. Prove the results
0 =2 oy Tpos = F 0+ 9=+ Eliplu =) e+
oy )P @) + @ @) o o P(0) - 9(2)
O e -p)r O o g
o @ (W) ') - p” (”)f"_(l)_ 1 x @' (u) +@'(v) < )
O et - et A TTO R A
. AP ()" (w) + {p'(v) } 2" (v)
(iv) (@) _?(v)}z ={¢'(v) - S’«’(“)}S’J(“ v)
~{p()+g()}p'(u+2).
21. Obtain from the definition of the function g () the formulae
(@) p(u+2)+p) +p)=m?; 0) pu)—p(u+v)==
where 2m == {p'(u) — p'(v)}/{p (v) - p(v)}. [Marn. Trre. I1., 1918.]
22. Prove that
du 1 1 ')
.‘-S"’(") =8 T eyts + 26,2 [ e+ {(w) +5 2 p(u)—e,
23. Prove that o,(2v) + o u(21) = 20,%(w) o, *(u), where A, p are any
two of the integers 1, 2, 3. [Matn. Trre., 1890.]
24. If S()=p(u+w)+9(u)—e, o=¢—¢", prove that
T e—¢ e—e' .
S@+2% " pw) ¢ pa -7
and [¥(w))2=4u—E,) (Su - E,) (Su - E,),

where E,, E,, E, are respectively ¢+ (9¢ - ¢2)} and - 2e.
[MaTa. Trre. 1I:, 1919.]

25. Show that the function {p(u) —e,}} is a single-valued

function of 1, and obtain its periods and its addition equation.
[MaTH. Trip. IL., 1918.]
dé

- - - - , verify that sin ¢ is
a {(sm ¢ —sina)(1 - sin Bsin ¢)} 2
expressible as a single-valued function of % in the form
(sin ¢ —sin a)/(sin ¢ + 1) = (1 — sin a) sin’(py, k),

= —20'(u+v);

26, [Hius

where
p?=%(1 —sinasin B), k2=%(1 —sina)(1 +sin B)/(1 - sin a sin B).
. [MaTH. Trre. 11., 1918.]
27. State the pr opermes of the elliptic function (), which prove
that there is a single-valued function a(u), such that a2(u) = p(u) — ¢,
and wa(u)=1 when u=0.
Defining similarly b (u) = {p(x) — ¢,}3, ¢(u) = {p(u) - ¢,}3, prove that
a(u) b(v) ¢(v) — a(v) b(w) c(u) :

a*(v) - a*(u)

{

a(u+v)=
[Marn. Trip, IL., 1916.]
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28. With the notation of the last question, show that if
) da(u)

(i) a(u+o)a(u)=a (w) = -ad*(}o);
(i1) 2a(u) b(w) c(n) a(2u) =a*(u) — at(}w);

(iii) J-: {11—‘ —-a (u)} du=1log [3u{b(u)+ c(u)}].

[Marn. Trre. II., 1916.]
29. Prove that

(i) plo)+pGo+o)=2¢;
(if) p(ho) - pho+e)=2{(e-e) (6 - ea)}¥;
(i) @'(Bw) = —2{(e, —eo) (e, — eg) HH{(e1 — )t + (¢, — e)}}.

[MaTH. Trre. II., 1913.]
30. Prove the formulae

enacnfB-cn(a+pB) dnadnf-—dn(a+p)
dn (a +B) kZen (o + B) 3
and hence verify Cayley’s theorem, that if a + 8+ y+8=0, then

snasn B=

k2~ k%%snasn Ssnysnd+k*cnacnBenycend
—dnednfBdnydnd=0.

Prove independently that with Weierstrass’ notation the addition

theorem may be expressed in the form
(e~ eg)ryu o B ayy + (o5 — ¢)) oya B oy + (¢ - ey)oga oy oy =0,
where a+fB+y=0; and show that the equivalent of Cayley’s
Theorem is
(e, — ) rya o, Boyy 0,8+ (eg — ) 050 09 ooy 8 + (6 — €) 0ga0yBoyy 08
+(e;—¢) (65— ¢)) (¢, ~ &) ca o By ad=0,

where a +8+7y+8=0. [Maru. Trre. IT., 1890.]

31. Show that ‘(’T,(,(if)) =} (W) " (u) - p"*(u)}
[MarH. Trrpe. 11., 1889.]
Show further that this result when expressed as a function of @ (u) is

2
394(u) ~ 39°(0) ~ 3Tp(u) ~ 1o

32. Evaluate (i) j{gs(u) - @) }2du; (i) j{so(u) - @ ()} 2du.
[(MaTha. Trip. II., 1889.]
33. If one straight line cut the cubic curve y?=ax®+dbz+c¢ in
(@, %), (@g ¥y), (2, ¥s), and a consecutive straight line cut the
curve in (z, +dz,, 7, +dy,), etc., prove that

da, [y, + dy/y, + dg/y;=0. [Mar. Trre. 1., 1914.]
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34. If a variable straight line cut. the cubic y®=ax®+ba® + cx+d
at the points (z;, ;), (%3, ¥5), (%3, ¥s), and a contiguous straight line
cut the curve in (z, +dz,, ¥, +dy,), etc., prove that

() 31Yoys = 02,2575 + b (2gg + 252, + 242y) +€(2) + Ty +25) +4d;
(i) de,/y;2 + da,/y,? + dag/y,? = 0. [GrEENHILL, E.F., p. 170.]

35. Show that [p(w, — u) - e,][pu —¢,] = (¢, — &,) (¢, — &;).

36. If u=r (2® +a2)"¥(2? + 12)-¥dz, express z as a single-valued
0

function of w. (MaTi. Trie. 1L, 1919.]
1 ¢ P(u—w)-e
pu—e  (e1—ew)(er—en)
numbers 1, 2, 3, taken in some order. [Mars. Trre. II., 1913.]

: - dt
38. Develop a proof that if uELW—_tT—)_(I_——-—Tzﬂ) 3

J1—=2% are single-valued functions of w. Explain clearly what
conditions the path of integration must satisfy and how you fix the
value of the integrand at every point of the path.

Express z as a single-valued function of » when

37. Prove that , where /, m, n are the

then z and

2 dt
u=_L JOI =201+ [Marn. Tree. 11, 1916.)
39 If 20, and 2w be a imir of primitive periods of the elliptic
functions, % 4
' ?(5‘) -p(w)
1) Sh that ?(u’+ “’1)= _{ 2 N
gty #'(w) © () — p(w,)

?_(.%i__@, then

il h?(%) - (o)

“s “s
#(3) P(o)+20()

Hence show how to express the coordinates of a point on the
quintic y =2z(z* — 1) as elliptic functions of a single parameter.
[BurNSIDE, Proc. L.M. Soc., 1892.]

40. Show that
8k2s3¢343

EQu) - 3E(W) = r—gpa e+ ) 9 =
[Maru. Trie. II., 1913.]
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