
CHAPTER XXXII.

ELLIPTIC INTEGRALS (continued). THE WEIERSTRASSIAN FORMS.
1380. It was stated in Chapter XI. that the integration ofwhere Q is a rational quartic function of x, could be madeto depend by a suitable homographic substitution upon theintegration where k is real and < 1,and the properties of z when expressed as a function of u, asalso those and have been discussed in thelast chapter. This is the Legendrian and Jacobian mode of procedure.A more modern method is due to Weierstrass. In thismethod the same integral, viz. is shown to be alsoreducible by a suitable homographic transformation to theform where I, ,J are certain constants,viz. functions of the coefficients of Q, and of the constants of the homographic transformation formulae. The function u, regarded as dependent upon z, is considered as the inverse function, and z expressed as a function of u as the direct function. It is usual to write z=ρ(u), or ρ(u, I, J) if it be desired to put into evidence the values of I and J. p(u) is called the Weierstrassian Function.The letters g2, g3 are very commonly used instead of I and 

J, but as powers of these letters occur very frequently there appears to be less risk of error in practice if we use the I, J notation. 530
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WEIERSTRASSIAN ZETA AND SIGMA FUNCTIONS. 5311381. The modes of reduction of the general integralto the respective Legendrian and Weierstrassian forms will be discussed at length in the next chapter. For the present we shall be occupied with an examination of the nature and properties of the function ρ(u) and the allied functions ζ(u) and σ(u), respectively defined by the equations
These are respectively referred to as the Weierstrassian Zeta and Sigma functions.
1382. Preliminary Remarks.The general binary quartic

possesses two invariants for a linear transformation
viz.the quadratic invariant, or quadrinvariant,

the cubic invariant, or cubinvariant.
If a transformation of this kind has reduced the original quartic to the form

then for this new form
and the form has become
or if Y be unity, 4X3-IX-J, the accents being dropped as the meanings of I and J will be obvious.1383. If e1, e2. e3 be the roots of the equation 4z3-Iz-J=0, so that 4z3-Iz-'7≡4(z-e1)(z-e2)(z-e3), we shall lose no

www.rcin.org.pl



532 CHAPTER XXXII.generality in assuming for the present that e1, e2, e3 are all real. For it will be shown that if two of these quantities be complementary imaginaries, say e2, e3, then a substitution of the form ξ-η1=(z-e2)(z-e3)∕(z-e1) will reduce the integration
to the similar form
where η1, η2, η3 are all real constants such that η1+η2+η3 =0 (Art. 1456). We therefore assume for the present that e1, e2, 
e3 are all real, e1+e2+e3=0 and e1 > e2 > e3. We also have

1384. The Differential Coefficients of p(u).The integral is made definite atthe upper limit, the integrand vanishing when z is infinite.
Differentiating,

Hence also

whence it appears that the successive differential coefficients of p(u) with regard to u are alternately irrational and rational functions of p(u).
1385. Periodicity of p(u).It has already been seen that the function w defined by w2=l∕4(z-e1)(z-e2)(z—e3) is a two-branched function having branch-points at z=e1, z=e2, z=e3, and at z= ∞(Art. 1295),
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WEIERSTRASSIAN FUNCTIONS. 533

and that in consequence has threeperiods 2ω1, 2ω2, 2ω3, where
these periods being not independent but connected by a linear relation, viz. ω1-ω2+ω3=0. Of the three we shall consider 2ω1 and 2ω3 to be the independent periods.We have also shown that if u0 be any definite value of theintegral say that obtained by integrating along anystraight-line path extending from z to ∞, which does not pass through any of the points z=e1, z=e2, z=e3, then all other values are comprised in the system,where λ, μ, λ', μ' are integers.In consequence we have p(2mω1+2nω3±u)=p(u), where 
m, n are integers, an equation which expresses the double periodicity of the function. And this is equivalent to the statement that the most general solution of the equation p(u)=p(u0) is u=2mω1+2nω3+u0, m, n being integers.Further, it follows that

and so on. And in the special cases when m=n=0, we get
etc.

1386. These results are obvious from another consideration ; viz. if we 
consider (4z3- Iz—J)-1/2 as expanded in a convergent series of negative

powers of z, that expansion will begin with the term Integrat

ing between z and ∞ , we have and squaring, , and

therefore by reversion of series even powers of u, i.e. p(u) is an
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534 CHAPTER XXXII.
even function of u. [This expansion will be found carried out in Art. 
1416.]

Thus p'(u), p"(u), p"'(u)... are alternately odd and even functions of 
u, whence p( - u)=p(u), p'(-u)= -p'(u),p''(-u)=p"(u), etc., as stated.

Further,, since these series for p(u), p'(u), p"(u),... all start with a 
negative power of u, it will be clear that p(0), p'(0), p"(0),... are all 
infinite, and the orders of these infinities are respectively those of

so that, for instance,

1387. The Addition Formula for the Function p(u).Consider the solution of the Eulerian Equation for the case when
Let i.e. Then

and
Thus, one form of the integral is u+v=C, a constant. ...(1) We can obtain another form of the integral as follows: Introduce another variable t such that

and letThen i.e.

Differentiating with regard to t,
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ADDITION FORMULA FOR p(u). 535Now

i.e. orwhere C' is a constant. (2)
Now this equation having been obtained on the suppositionthat , i.e. that u+v=a constant C, it appears that

C' is a constant, provided that C is a constant; i.e. C' is a function of C, say φ(C). We thus have the equation
and we have to identify the form of the function φ. Now and
i.e.

Now let v diminish indefinitely. Then p(v) or y becomesinfinitely great, and we have and theform of φ is now identified as that of the Weierstrassian function p.Hence
That is

which, as it expresses p(u+v) in terms of p(u), p(v) and their differential coefficients, forms the addition formula for this function.
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536 CHAPTER XXXII.
1388. Symmetrical Form.Taking a third function w, such that w+υ+w=0, then
Therefore we have the symmetrical form 

by symmetry, and therefore 
whence 
and we have the symmetrical relation

1389. Various Results derived.In the formula 
change the sign of v. Then, remembering that p(- v)=p(v) and p'(-υ)=-p'(υ) (Art. 1385), we have 
whence

1390. Take a function of x, y, viz. F (x, y), such that 
so thatand
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WEIERSTRASSIAN FUNCTIONS. 537Then 

whence 
also

1391. In the formula 
let v approach to ultimate coincidence with u. Then 

or 1392. Hence 
which is a rational function of p(u).1393. Moreover

1394. Another form is

Since
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538 CHAPTER XXXII.
where

1395. Put v=2u in the formula
Then so that p(3u) can beexpressed rationally in terms of p(u).1396. Now put v=nu. Then 

which expresses p(n+l)w in terms of p(nu), p(n—l)u and p(u) in rational form, whence p(n+l)u is a rational function of p(u). Thus it appears that ρ(2u), p(3u), p(4u), etc., can all be expressed as rational algebraic functions of p(u). But the expressions for these successive forms rapidly increase in complexity.1397. Again, using the formula 
and putting υ=2u, 3u, etc., 

from which p(3u), p(4u), ... may be successively calculated; and it is noticeable that 
are all rational algebraic functions of p(u).
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1398. General Value of p(nu)- p(u). Schwarz.
We shall show later that the general form of p(nu) is given

by the formula

where ψn is expressed in terms of Sigma Functions. 
Schwarz has shown that

where and ∆n stands for the deter
minant

The method of establishing this result is pointed out by 
Greenhill (E.F., p. 300, etc.), but the proof lies outside the 
scope of the present account.

For immediate purposes we may establish a difference 
equation which will suffice to give us the values of the 
function p(nu)- p(u) in terms of p(u) for low values of n, 
such as n=3, 4, 5, 6, etc., which is all that we shall require.

1399. A Difference Equation.
From the formula

where x=p(u), y=p(υ), we have, by putting
and

i.e. (I)
Putting
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540 CHAPTER XXX1I.
where the suffixes of χ denote the degree in x in each case, the difference

equation is with the starting equations R1 = 0,

whence say, where χ6≡ χ2χ4- χ32.
The suffix notation will suffice until the case of R5, when a second 

factor of degree 12 occurs after χ12 has been used. We may denote this 
second factor by ϕ12.

1400. Other forms of the difference equation may be convenient, and 
may be used, now we have found R3, for we may eliminate χ2 or χ3, or 
both of them.

Since
and

we have

i.e. (∏)
or again. .(III)

From either of these equations or by another application of (I), R4 can 
be found ; after which we may eliminate both χ2 and χ3, and form an 
equation connecting the R’s of any five consecutive suffixes, viz.

whence

(IV)

in which a factor has been inserted for symmetry.
Now, putting n=2 in (II), we may readily show that

where

putting n=3 in (IV), we similarly get

where
and putting n = 4,

where
and so on.

From the several connecting equations,
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WEIERSTRASSIAN FUNCTIONS. 541

we can readily express χ6, χ12, ϕ12, etc., in terms of the original quan
tities χ2, χ3, χ4, so that the successive values of p(nu)-p(u) may be 
obtained in terms of .v. Collecting the results, we have

, etc.,

and the notation shows the nature of the factorisation of the several 
numerators and denominators.

If we change the notation, and write

etc., with ψ1 = 1, we get

etc.

1401. Factorisation of ψ3, etc.
If we consider the solution of p(2u) = p(u), we may infer 

the factorisation of χ4, i.e. ψ3.
The equation gives 2u==2mω1+2nω3±u. Therefore

or

The principal solutions are

and any other solutions, such for instance as

are merely such that when added to one or other of the four 
principal solutions we obtain a complete period. Hence the 
factors of χ4 are

and since we have various
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542 CHAPTER XXXII.
results from the consideration of various symmetrical functions 
of the roots of the quartic χ4= 0; for instance

etc.,

and similar results will follow from a consideration of the equations 
p(3u) = p(u), p(4u) =p(u), etc.

Then

That is

with two similar equations.

1403. It will be noted that are
perfect squares.

1404. In the same way

with two similar equations.

1405. If  be the three periods, then

and since
Also , say,

where

Then this quartic function Q is a perfect square. For the 
solutions of p(2u)=p(ω1) are given by 2u=2λω1+2μω3±ω1. 
That is u=an odd multiple of 1/2ω1 + a multiple of ω3.

Now ω1/2 and ω1/2+ω3 are the only independent solutions, 

for any others are merely such that, with one or other of
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WEIERSTRASSIAN FUNCTIONS. 543

these, they make a complete period. Therefore the only 
different factors of Q are the two 

which must therefore be repeated. It is therefore indicated 
that 

no coefficient being required, because in p(2u) the coefficient 
of p4(u) is to be l∕p'2(u), which is so.

The actual factorisation is given in the next article, which 
will show that the repetition could not be such that one 
factor is repeated thrice.

1406. Since 

which shows the actual factorisation of Q.

1407. The values of are therefore

and since i lies between e1 and ∞ we take the positive sign for

[See Art. 1410 ]

1408. We have also the relations

with other results. For instance

where the negative sign is chosen, because when u is very small

1409. Putting
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544 CHAPTER XXXII.
Then

and
Hence (1)i.e. ∙(2)

with two similar results by a cyclical change of suffixes.

1410. We may therefore write the result of Art. 1394 as
[M. Trip., 1888.] (3)

Other identities may be established. Thus, since

we have

i.e.

If in (1) we put

and (See Art. 1407.)

Now and is real; and as z increases from e1 to ∞ ,

u decreases from ω1 to 0 and passes the value ω1∕2 in the interval.

Hence the value of z corresponding to that is lies between
e1 and ∞, and is therefore > e1. Hence we take the positive sign, and

Also, since 

1411. It may also be shown that
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1412. Again

Therefore

and

1413. Also with
two similar results.

adding

whence

1414. WEIERSTRASSIAN PERIODS IN TERMS OF LeGENDRIAN.

We have now to examine the relationship between the 
Legendrian and Weierstrassian systems. Taking e1, e2, e3 as 
the roots of 4z3-Iz-J=0, and supposing them all real and 
e1 > e2 > e3, the period 2ω1 is defined as

and is a real period
Let

which is positive and <1.
Then

and
Again and gives

Again (z real, and passing below z=e1, see Art. 1335),
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546 CHAPTER XXXII.
Let
Then

and

where

k' being positive and < 1. Also

Again gives gives

Finally

Let

gives gives

Hence

and ω1-ω2+ ω3=0, as it should be.

1415. Connection between the Jacobian and Weier- strassian Elliptic Functions.
In general, taking

Put and we have

where
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WEIERSTRASSIAN AND JACOBIAN FUNCTIONS. 547

Then

i.e.

(A)
which may also be written as

∙(B)

which show the connection between the Jacobian and Weier- 
strassian systems.

1416. Expansion of p(u) in Powers of u.

Taking and we have

and a convergent expansion,

We have to reverse this series, and expand z in powers of u, Squaring, 
we notice that u2 is a rational function of z, viz.

Then

. to the first three terms.

As z is obviously an even function of u, we may conclude that the 
expansion is of the form 

where A6, A8,... remain to be found. As the work of reversion of series
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548 CHAPTER XXXII.
is somewhat laborious, we may now use the differential equation z"'=12zz' 
(Art. 1384) to determine the coefficients from this point.

Now

whence

giving etc.

Hence

417. It appears that vanishes with u. That is, for very

small values of Also etc.

Again vanishes with u.

Moreover the expansions of p' (u), p"(u), p"'(u), etc., are now all 
known to several terms.

1418. The Expansions of the Weierstrassian Zeta and Sigma 
Functions.

Since we have

(A)

Also

whence

i.e. (B)
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ADDITION FORMULA FOR THE ZETA FUNCTION. 549

Equations (A) and (B) give the expansions of the Zeta and Sigma 
functions.

The constants of integration are in both cases taken zero. That is,

and are taken as vanishing with «.

1419. We note that both ξ(u) and σ(u) are odd functions of
u, and that in consequence

Also that etc.,

etc.,

and for small values of

1420. Addition Formula for the Zeta Function.
Integrating the equation

with respect to v,

and putting

(1)

Also ζ(u) being an odd function,
Hence, interchanging u and v in equation (1),

(2)

Hence adding,
(3)

or writing u-{-t=-w and remembering that

where 0. [See Greenhill, E.F., p. 205.]
Changing the sign of v in (3),

(4)
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550 CHAPTER XXXII.
1421. By differentiating (3) and (4) with regard to u,

and 

whence

1422. Addition Formula for the Sigma Function.
Integrating with re

gard to u,

and since, when u is indefinitely small, 

whence

(1)

i.e.

and (2)

Putting v=nu, we have

1423. If we integrate with regard to v instead of with 
regard to u, we have

whence .(3)
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ADDITION FORMULA FOR THE SIGMA FUNCTION. 551

1424. Starting with

and integrating with regard to u,

whence ∙(4)

1425. Since we have

(5)

1426. In the result

make υ approach indefinitely closely to u. Then

for (Art. 1419). Hence-

1427. Differentiating we have

etc.,

Integrating the same equation,

and taking u indefinitely small, we have in the limit

whence

Again integrating
and diminishing u indefinitely,

as found before.
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552 CHAPTER XXXII.
1428. Putting n= 2 in the formula 

we have

1429. To find σ(4u), we have 

and by aid of these results we might proceed to find σ(5u), σ(6u), etc.

1430. Corresponding to Euler’s Theorem, 

we have 

whence

1431. Writing , we have

The value of ψn(u) found by Schwarz has been shown in Art. 1398, 
expressed in terms of differential coefficients of p(u).

Supposing the functions Rn to have been found in terms of p(u) as 
explained in Art. 1399, etc., ψ can also be expressed in the same manner.

For

and whence (n>2)
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1432. General Form of the Differential Coefficients of p(u) with 
regard to u.

Writing etc., for short,
we have

etc.;
whence it appears

that P2, P4, P6, ... are all rational functions of P 
and that P3, P6, P7, ... contain an irrational factor P1.

If we suppose these equations solved to express the various 
powers of P in terms of P, P1, P2, ..., we have

etc.;

whence it appears that any positive integral power of P 
can be expressed linearly in terms of P and its differential 
coefficients, and that the general result will be of the form 

in which no differential coefficient of an odd order occurs, and 
the coefficients are all functions of I and J not involving the 
variable and readily calculable in the early cases.
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554 CHAPTER XXXII.
1433. Integration of Rational Integral Algebraic Functions of 

p(u) with regard to u.
It follows from the last article that 

in which the Zeta function appears from the integration of 
the term LP.

Any rational integral algebraic function of φ(u) and p'(u), 
i.e. of P and P1, can now be integrated. For if it be 
separated into two parts, the first containing all the even 
powers of p'(u) and the second all the odd powers, then 
after substitution of 4P3-IP—J for P12, we have a result of 
the form ϕ(P) + χ(P)P1, ϕ and χ being rational integral 
algebraic functions of P. And when Φ (P) has been expressed 
as explained above as a linear function of P and its differential 
coefficients, each term is directly integrable. And if χ(P) be 
expressed in powers of P each term of χ(P)P1 is directly 
integrable, for 

Moreover, since which is of form

it appears that PrP1 can be expressed as a linear function 
of P and its differential coefficients, and that the same is true 
of χ(P)P1, χ being rational and integral. Thus, whatever 
rational algebraic functions of P, ϕ and χ may be, the integral 
part of ϕ(P)+χ(P)P1 is expressible in the form 

and is integrable with respect to u and expressible in the form

1434. Thus, for example, to integrate {p(u) + p'(u)}2 with 
regard to u, we have
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1435. If we differentiate equation (1) of Art. 1420 with 
regard to u,

and an interchange of u and v, or a differentiation of (2) of 
the same article with regard to v, gives 

a further differentiation with regard to v gives

etc.
Thus we can form fractions containing [p(u)-p(v)]2, 

[p(u)-P(v)]3, etc., in the denominators with no functions 
of u in the numerators, and this will presently be found 
useful (Art. 1443); and since ζ'(u)= — p(u), we have

etc.
Integrating with regard to u,

etc.
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556 CHAPTER XXXII.
Each such integral is therefore expressible by means of 

those which have preceded it, the first being completely 
integrated. So that all such functions as

etc.,

are integrable and expressible in terms of p, ζ or σ functions.
In the case where ρ(υ)=e1, e2 or e3, we have v=ω1, ω2 or ω3 

and p'(v)=0.
We now have from the second result,

with corresponding suffixes for e and ω, replacing the first 
integration above, and so on for the other cases.

And p"(ω1)=6e12-1/2I=2e2e3+4e12, etc.

1436. As a particular case, if we put p(v)=0, υ is a constant

defined by And

etc.

whence the successive integrals , etc.
may be at once expressed.

1437. The integration of the function
may now be effected.

Let a=p(v), which defines v as a certain constant, viz.

 and Then

(or by Art. 1435);
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whence

1438. Art. 1435 shows that we also have

and so on.

1439. Integrals of form are of

course directly integrable as

and

1440. Integrals of form where F is a rational

integral algebraic function, can be integrated by expressing 
F in a series of form 

and then dividing by p(u)-a, thus reducing the integrand 
to the form 

and each of the terms of form λpr(u) may be treated as in 
Art. 1433, whilst the integration of the last term is effected 
above.

1441. Integrals of form

follow the ordinary rules of Partial Fractions in the first
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place with an integration of the several terms of the form

which accrue, following the rules described
above.

1442. Ex. Thus

where , u2=etc., u3=etc., and

etc.

1443. General Summing Up. Completion of the Method.
We can now consider the general case of the integration 

of a function of form (A+B√Q)∕(C+D√Q), where A, B, C, D 
are rational algebraic functions of x and Q is a rational 
integral algebraic function of x of degree 3 or 4, thus extend
ing the result of Art. 318. By exactly the same process as 
in Art. 318, the function may be thrown into the form

where U, V, Μ, N are rational integral algebraic

functions of x. The transformation may be

applied to both parts, or to the second part only, for

is directly integrable in terms of x by the rules of the first 
seven chapters. But for the sake of uniformity in the result, 
let us suppose the same transformation is applied to both 
parts. Then, having determined μ and η so as to reduce

to the Weierstrassian form , let us put, as in

Art. 1432, p(u)=P, p'(u)=P1, etc., where u is p-1(z). Then 
U/V and M∣N, which are functions of x, take the forms U'∣V' 
and M'∣N' respectively, where U', V', M', N' are rational integral 
algebraic functions of P, or what is the same thing, z; and
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where U''/V" replaces -U'μ∣V'(z-η)2, and U", V" are rational 
integral algebraic functions of z, i.e. of p(u) or P, and M', N' 
are also rational integral algebraic functions of P.

Now U"∣V" and M'∣N' can both be expressed partly as an 
algebraic series of powers of P and partly as a series of Partial 
Fractions.

Suppose

and

which are the most general forms.Then and

so that all the terms of can be

integrated in terms of P, i.e. of p(u).

Also du has been shown in Art. 1432 capable of integra

tion, and the method to be followed has been there described.

Finally, the integration of terms of the form or

, has been discussed in Art. 1435. The total result

is therefore expressible by aid of the Weierstrassian function 
p(u) and its associated Zeta and Sigma functions, and the 
addition formula for each has been established.

This therefore completes the theory of the integration of the 
most general algebraic function of nature (A+ B√Q)∣(C+ D√Q),
where Q is of degree 3 or 4, the cases of Q being of degree 1 or 
2 having been completed in Art. 318.

1444. Illustrative Example.
Consider the integration

Let , i.e. and let a, β betwo constants defined by
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Then 

and we have

Hence, by Art. 1437, 

and C is to be determined so that U=0 if u=0. Simplifying, 

and when u is diminished indefinitely,

Therefore subtracting, 

where
1445. For further development of this part of the Theory of Elliptic 

Functions, the reader must be referred to some book expressly dealing 
with this section of the subject, such as Professor Sir George Greenhill’s 
treatise, where he will find a large number of very elegant applications of 
their use to the problems of higher Applied Mathematics, and a much 
more extensive account of them than space admits here.
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PROBLEMS.1. Reduce the integral
to the Weierstrassian form, by putting Show that themoduli of the integral are and thatShow also that mod.

2. In the integral show that if
(i)
(ii)

(Hi)
3. If show by putting

that the integral is reduced to Weierstrassian form. Prove also that
4. Show that
Also show that if contains p(u) as afactor.5. Show that for the integral the roots of theeouation p'(2u) = 0 are given bywhere ω is one of the unreal cube roots of unity.Show also that and that
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6. If  show thatMod. sin 15°.7. For any Weierstrassian Integral, show that(i) (ii)8. If show that the values of andare and that
Show also that
9. If , transform the integral by the

substitution and show that
10. Prove the relations,(i)
(ii)

(iii)
(iv)

[Greenhill, E.F., p. 208. ](v)
11. If , find the values of
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WEIERSTRASSIAN FUNCTIONS. 56312. Find the values of
13. Prove that

where the sign of summation refers to any three arguments u, v, w, and e is any one of the usual quantities e1, e,2, e3. [Math. Trip., 1896.]14. Prove that
15. Prove that
16. Show that

where
17. If show that

(i)
(ii)18. Putting , etc., etc., show that

[GreenhILl, E.F., p. 208. ]19. If the function ϕ(u, v) be defined by the equation
show that (i)

(ii)

(iii)Hence give the general solution of the following case of Lame’sEquation, viz. [Greenhili., E.F., p. 210.]
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564 CHAPTER XXXII.20. Prove the results(i)
(ii)

(iii)
(iv)

21. Obtain from the definition of the function p(u) the formulae(α) (b)where [Math. Trip. II., 1918.]22. Prove that
23. Prove that where λ, μ are anytwo of the integers 1, 2, 3. [Math. Trip., 1890.]24. If prove that

andwhere E1, E2, E3 are respectively e ± (9e2 - σ2)1/2 and - 2e.[Math. Trip. II;, 1919. ]25. Show that the function {p(u)-e1}1/2 is a single-valued function of u, and obtain its periods and its addition equation.[Math. Trip. II., 1918.]26. If verify that sin ϕ isexpressible as a single-valued function of u in the formwhere
[Math. Trip. II., 1918.]27. State the properties of the elliptic function p(u), which prove that there is a single-valued function a(u), such that α2(w) = p(u) - e1 and ua(u) = 1 when u = 0.Defining similarly b(u) = {p(u) - e2}1/2, c(u) = {p(u) - e3}1/2, prove that
[Math. Trip. II., 1916.]
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WEIERSTRASSIAN FUNCTIONS. 56528. With the notation of the last question, show that if
(i)(ii)(iii) [Math. Trip. II., 1916. ]29. Prove that(i)(ii)(iii) [Math. Trip. II., 1913.]30. Prove the formulae

and hence verify Cayley’s theorem, that if α + β + γ + δ = 0, then
Prove independently that with Weierstrass’ notation the addition theorem may be expressed in the form

where a + β + γ = 0 ; and show that the equivalent of Cayley’s Theorem is
where [Math. Trip. II., 1890.]31. Show that [Math. Trip. II., 1889.]Show further that this result when expressed as a function of p(u) is

32. Evaluate (i) (ii) [Math. Trip. II., 1S89.]33. If one straight line cut the cubic curve y2 = ax3 + bx + c in (χ1, y1), (x2, y2), (x3, y3), and a consecutive straight line cut the curve in (x1 + dx1 , y1+dy1), etc., prove that [Math. Trip. I., 1914.]
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566 CHAPTER XXXII.34. If a variable straight line cut the cubic y3 = ax3 + bx2 + cx + d at the points (x1, y1), (x2, y2), (x3, y3), and a contiguous straight line cut the curve in (x1 + dx1, y1+ dy1), etc., prove that(i)(ii) [Greenhill, E.F., p. 170.]35. Show that
36. If express x as a single-valuedfunction of u. [Math. Trip. II., 1919. ]37. Prove that where l, m, n are thenumbers 1, 2, 3, taken in some order. [Math. Trip. II., 1913.]38. Develop a proof that if then x andare single-valued functions of u. Explain clearly whatconditions the path of integration must satisfy and how you fix the value of the integrand at every point of the path.Express x as a single-valued function of u when

[Math. Trip. II., 1916.]39 If 2ω1 and 2ω3 be a pair of primitive periods of the ellipticfunctions,(i) Show that
(ii) If  then

and
Hence show how to express the coordinates of a point on the quintic y = x(x4 - 1) as elliptic functions of a single parameter.[Burnside, Proc. L.M. Soc., 1892. ]40. Show that

[Math. Trip. II., 1913.]
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