CHAPTER XXXI.

ELLIPTIC INTEGRALS AND FUNCTIONS.

1329. The Legendrian Standard Integrals and the Jacobian
Functions.

In proceeding to the further consideration of the Jacobian
Elliptic Functions snu, cnu, dnw already introduced in
Chapter XI., we shall adopt the same order of discussion as
that followed in the deseription of the ordinary ecircular
functions and of their inverses in Trigonometry ; viz.

(1) The nature of their Periodicity; (2) The establishment
of their Addition Formulae; (3) The examination of formulae
arising therefrom.

We have defined sn(u, k) as the value of 2z, which makes

z
u=L \/(.1.:——?‘;%——6273), where k < 1, and en(u, k), dn(w, k) are
defined as +/1—2% and ~/1—£?%® respectively.

1330. Periodicity of the Extended Circular Functions.
Let us examine first the simpler integral u=/: %, the function
-2
sin % being considered as not hitherto known, but now defined by the
dz
A1 -22

z is not restricted to real values, but may be a complex variable.

, and

equation z=sinw, so that the inverse function sin~z is /1
0

1331, If we write w’= , w is a two-branched function, its two

1
1-22

, and individually charac-

anidi
1-22 V122
terised as assuming the respective values +1 and —1 at the origin.
The branch-points are at z=1 and at z=—1. These points are also
poles of the function. There are no other singularities.
483

. 1
branches being w, = + [ g and w,=
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The region between an infinite circle whose centre is the origin 0, and
a double loop enclosing the two branch-points, is synectic, and the infinite
circle is therefore deformable into and reconcilable with the double loop.

Hence, considering either branch, say w,, f w, dz taken round the infinite

circle has the same value as f w, dz taken in the same sense round the
double loop.

—

Fig. 418.

Now round the infinite circle, along which we may put z= Re® and
dz/z=1d6, where R is infinite, we have

f w,dz s 'E, |2| being very large,

e Ni=z2 ) 2
1 2
== vdf=2mr.
tJo
Hence / w, dz, taken round the double loop, is also= 2.
Again, in integrating round an infinitesimal circle whose centre is at
the branch-point z=1, put z2=1 +ret,

(]
™ ) 2 A
Then f“’xdz: vre?df = e 2d0

BRI L MY - 3. J. | SN
0 J2tretS —re o Ja2tre®
when r is indefinitely diminished. Similarly the integral round the

infinitesimal circle with centre at z= —1 also vanishes.
Hence the integral for the loop round z=1 is in the limit

1
='/; wldz+/; wldz+/:)w,dz,

where ﬁ, w, dz indicates the integration for the circuit round z=1; and

w, has changed into w, after performing the circuit once (Fig. 419) ; and
since w,= —wy, this reduces to

1 dz
=2j; w,dz=2£m=L,. say.
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PERIODICITY. 485
Similarly, the value of the integral f w, dz for the loop round z= -1 is
oy wldz+/ wldz+jo w, dz,

where ¢’ refers to the circuit of the infinitesimal circle round z= —1

and j; w, dz vanishes. Hence, for this loop, we have

‘=1

—1
w,dz+f wydz= Ef w, dz= 2/

Ji- 1 2
dz
= R R
REIE e i
Thus _Li+L,=0 }
and L, - L_,=integral for the whole loop=2 ;
1 dz ey “1 dz T
e e A e o ik Hall S e
the direction of travel in each case bemg the ¢ positive” direction as
defined earlier.
Frarfe
_fN_J
w, ’""
1 oy
(9] % C o 0,
Fig. 419. Fig. 420.

Now, if one of the branch-points, say z2=1, be encircled twice, the path
starting from the origin and returning to it after two encirclings, may be
deformed into two loops round the point, and the integral, leaving out
the integrals for the two infinitesimal circuits about the branch-point,

1 0 1 0
which vanish, is = '/; w; dz + ,/1 wydz+ j; wydz + j: w, dz, which is zero,

and w, has changed to w, and back to w, in the double circuit, i.e. to its
original value at the origin.

Thus, for a loop with an even number of circuits round one pole, we
have a zero contribution with no aggregate change of branch, but for a
loop with an odd number of circuits round one pole, the equivalent is

obviously a single loop, =2 f " wydz=m, accompanied by a change of
o

branch from w, to w, on arriving back at the origin.
The same thing happens for several encirclements of z= —1, starting
from the origin with value w;, except that for an odd number we have
-1

a contribution 2 f wydz= — ; and w; has become w, or w, according as
o
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there have been an odd or an even number of encirclings of the branch-

point.

When both branch-points are encircled » times in the positive direction,
the integral will be n.2r with no change of branch, or if the pair be

o

y

2

oNeNoNeNe

Fig. 421.

@)

encircled p times in the
positive direction and ¢
times in the negative direc-
tion, the contribution will
be (p~q) 2r=2n.m, where
n is the excess of the
number of positive encircle-
ments over the number of
negative ones. And such
an encircling of both points
will result in w, being
restored as the final branch
of the function when 2 has
returned to the starting
point.

Now any path from O
to z is reconcilable with a
linear direct path, together
with such loops as have
been described  above or
some combination of them.

Z
And if/ w, dz along the
0

straight path be called u,,
the contribution to the
total integral from O to z
by any other path deform-
able into the straight line
OP with a system of loops
will be +u, or —u,, ac-
cording as z, after having
described its loop system
and before commencing the
portion OP, has returned

to the origin with a value w; or a value w, for the function, and the
total for any path will be u, or —u,, as the case may be, together
with whatever may accrue from the several encirclings of the branch-

points.

Z
Thus the total values of the integral f wy dz are:
o

(1) for the direct path alone,

t4
/ wydz=1uy;
0
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(2) for an odd number of circuits of one } =L;—u

loop + a direct path, or =L_;—u;
(3) for an even number of encirclements

of one branch-point + a direct } =4y

path,

(4) for » encirclements of both branch-
points + a direct path,

(5) for m complete encirclements of both
branch-points combined with an =n(Ly— L)+ L—u
odd number of encirclements of | or =n(Ly—L_3)+L_;—1u;
one of them + a direct path,

(6) for » complete encirclements of both
branch-points with an even num-
ber of encirclements of one + a
direct path,

and seeing that L; — L_, would be replaced by — L, + L_, if the description
were in the opposite direction, these results are all of one or other of the

forms 2pr+uy or (2p+1)T—1u, i.e. pwA(—1)u,,

p being some integer positive or negative.
z

} o o=nla-Lau;

=n(Ly—L_y)+u;

If then, in the equation u= , We express z as z=d¢(u), it

o N1-2?
appears that as all these paths lead finally to the same point z, we must
have ¢(u) the same for all the paths
=P (o), ie. Puo)={pr+(~1)u,
and the general solution of the equation ¢ ()= (uo) is u=pmr+(—1)%u,.
This is the ordinary result of trigonometry, and for a real variable it is
a well-known theorem that sin w=sin {pr+(—1)Pu}.

1332. Let us next put ~/1—2?=x(«), and enquire which of the above
values of u lead to the same value of ~/T—22%

Fig. 422.

Clearly the function v1-2* has the same value av 7, (-2), as it has
at P, (z) (Fig. 422).

Hence, besides the various paths which lead from O to P must be
considered those which lead from O to P’. And it is not all the paths

WWW.rcin.org.pi



488 CHAPTER XXXI.

which have been considered from O to P thus restoring the value z at P,
which also restore the value of N1—2%. For after a description of an odd
number of single loops, +/1 —2% has become —~/1—2% Hence, in order to
arrive at P or at P with the value ++/T—2?% we can only take the cases
of description of an even number of single loops; also a double loop
traversed any number of times will restore the value 4/1—2%

We therefore have the following cases :

(1) for a direct path from O to P, uo ;

(2) for a direct path from O to /¥,

[l - [Tl

(3) for an even number of loops round either branch-point } &
+ a direct path OP, "

(4) for an even number of loops round either branch-point } o
+ a direct path 07, ]

(5) for any number of double loops + direct path 0P, 20+ U

(6) for any number of double loops + direct path 07, 2nar — Uy ;

(7) for any number of double loops + any even number of } Sugangt
single loops + a direct path 0P, -

(8) for any number of double loops + any even number of } S ity
single loops + a direct path 07,

Hence it appears that the values of «» which lead to the same value of
VI=2 are exactly comprised in and expressed by 2nm + u,, v.e.
if V1—2z'=yx(u), then x(u)=x(2nmwtu),
and the general solution of the equation x(u)=x(uo) is u=2nm3u,.
Thus, defining cosu as +~1—2% where u= , T we have

cosu=cos (2nr+u), and the solution of cosu=cosu, is w=2nmr+u,,
which for real values of u is the well-known trigonometrical result.

1333. Further, in the case when on the whole an odd number of single
loops have been described, ~'T—2? has on the return of z to the origin
become —+/1-2% and along the direct path to P we have

% Nide
R =
and along the direct path to ' we have
[ ==
o —JI-2

So that on the whole we have, for the double loops, 2nm ; for an odd
number of single loops, + ; for the final path OP or OF’, +u,, giving
the general value of u as (2n+1)r+u, t.e. (2A+1)w+u,. And these
values will give —~/1 —2% at the final position, 7.e. x (u)= — x{(2A+1)m +u},
which is the same as the corresponding result of trigonometry, viz.,
A being an integer, cosu= —cos {(2A + 1) +u}

www.rcin.org.pl
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4

1334. From the integral u= ’; Jliiz_‘ it is also directly obvious by
expansion and integration that % is an odd function of z in which the
first term of the expansion in powers of z is z; and, therefore, by
reversion of series, that z is an odd function of %, in which the first term
of the expansion in powers of u is . Hence it appears, from this
consideration also, that if z=¢(u), then ¢(u)=—¢(—u). And further,
since V/I—2% is an even function of w, we have x(u)=x(-u). Also
sin %

=1,
u

z .
Lt“=ou o A e 5 ey

1335. Periodicity of the Elliptic Functions.
We now turn to the consideration on similar lines of
d dz
“=joJ(1—z=)(1~k2z2)’
where k is a real quantity <<1. This may also be written as

daé
”=I:J1—k2_sin2o’
where z=sin 6.
1 dz 3 dz
Lt K=j.—= d K’=I —_—,
. =Dl =B (k)
where k24 k2=1.
The function defined by
1
-
Bl g v gy )
is a two-branched function, viz.
1 1

9

T2 e Ui b S e _—————
i N1-2)(1—k2?)’ s V(1—2%)(1—k%2)
having four branch-points 4, B, C, D, viz.

1 1
z—-l—c, =1 z——k, z=—1,

symmetrically situated about the origin on the z-axis.

Let P be the point 2.
P

R o g
Fig. 423.

There are no branch-points other than 4, B, €, D (Art. 1296).
These branch-points are also poles of the function, and there
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are no other singularities of any kind. We shall first consider
1

. & dz
the integration I —=————— ‘the path of the integra-
tion being : o/(1—2%) (1—k%2?) P

(1) along the z-axis from =0 to a=1—p, viz. O to L in
Fig. 424;

)
LAN R/
o "
B A *
Fig. 424.

(2) round the small semicircle LMN, centre at z=1 and
radius p;

(3) along the z-axis from 2=1+4p to }C—p, viz. NR in the
figure ;

(4) along a quadrantal arc, centre at z=% and radius p,
viz. RS.

In this integration which passes the point B, where z=1,
the sign of 1—z changes at B and the integrand becomes
imaginary. We have then to examine the behaviour of the

factor /1—2z as we pass round the semicircle LMN, but do
not complete the circuit, about the branch-point. Put

z2=14pe*,

Then +/1—z=+—pe, and in passing round the semicircle
LMN above B, O decreases from == to =0, and J1—2
changes from the value v/—pe™ at L to the value v/ —pe® at

N ; that is, its value has been multiplied by €% or —t in
passing round the semicircle.

Therefore w, becomes (w; in passing over B.

If we pass under B, we have a change in +/I—z from the
value /—pe™ at L to the value /—pe™ at N, and therefore
the value at L would be multiplied by ¢% in passing to N;
that is, w, would become — 1w;.

Since the value of v/1—z at L may be written as +/p, where
p is 1—z, = being the abscissa of L, it becomes —i/p at X,
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where p=x—1, « being now the abscissa of N, and along
NR there is no further change of amplitude. Hence

From O to L +/1—z=+1—z, z increasing from 0 to 1—p.

Fromilito N s —F fenim. =
r(::::i ' IV})N } V1—2z=y/—pe*, O decreasing from = to 0.

From Nto A /1—z=—J/z—1, « increasing from 14 p to 7lc

The factor v/I—kz=+/1—kz from O to R. But 4 being in
this case a branch-point, we take a quadrantal arc with centre
4 and small radius p, avoiding the branch-point.

Put z=% 4-pe®  Then /1—kz=+—kpe?,in which  decreases
from 0—mito 0= 7—2r . We thus have as the contributions

from OL, LMN, NR and RS respectively,

roe daw -" % 1pe”® dO

o JI=ad(1 —lr,?wz)’ ,\/:_";6‘0(2_}_,,6‘9)[1 —kP(1+ pe")Z]’
: 1pe’ df

i f,—t«/ {Git-pe) 1} (—kpeme+kpen,

and when p is indefinitely small the second and fourth vanish
and the first is ultimately K. Transform the third by writing
k*x?+k®x'?=1; whence

1. kRatdat '——T—"— T
Ny and Ja— L _lzll% J1—22

Hence the third becomes ultimately
1
J‘E dm e J“’ <_1> k% da’ ke ol B
W@e—1(1—k2?) h\ WAl kJ1—22kz

='Il 2 —K;
oJA—a)(1—k=? =’

1

dr=—

da
J(l —a)(1— /c?x?)
and =K— K, via a path below B.

that is, K +.K', via a path above B,

It follows that sn(K+:K’)=%.

www.rcin.org.pl

J



492 CHAPTER XXXI.

Now, noting that iis the value of 2 when «'=0, and that

Jx —1_.—J1 «’%, we have

Nkl 1 o .
() 1—W=E, 2.6. '\/l—k—2=—7,

. cn(K—{—lK’)—_——, also dn (K4 K)= Jl —g=0
1336. Remembering that when
vl r 28 i’ de
“JoV1=Fsin®0  Jon(1—a?)(1—k%?)
gl jz’ - Rl J‘ dz
“Jo/T—k2sin?0 JoJ(1—a?)(1—F%?)

and z=sin@=snu, also observing that =0 gives u=0,
we have sn 0=0, whence cn 0=1 and dn0=1; also sn K=1,
whence ecn K=0 and dn K=v1—k?=K.

1337. Again, if we write —@ for 6,
. j’ conen (70 ipve, 0L
i o/1—k%sin®0 .[0 J1—k?sin%6’

=)
e W=
Therefore —f=am (—u); sn(—u)= —sin @=—snu;

also cn (—w)=cnw; and dn (—u)=dn u.

1338. It also appears directly from the integral

VR dz

_.‘ oV(1—29)(1—k%?)’
by expansion, that « is an odd function of z whose first term
is 2, and therefore, by reversion of series, that z is an odd

function of u, the first term of the expansion being u, and

therefore also that Lt,_, s%u_ 1.

Also that, since cn u=+1—sn®« and dnu=+1—/i*sn®u,
ecnu and dnw are both even functions of z (==sn w), the first
terms of the expansions being in each case unity. These
facts also show that

sn(—u)=—snu, cn(—wu)=cnu, dn(—u)=dnu,
as seen before.
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1339. The Elliptic Functions of 0, K, K-} (K. Collected
Results.
We thus have

sn 0=0, cn 0=1; dn 0=1,
sn K=1, cn K=0, dn K=F,
sn (K4 )=, on(E+K)= %, an (K+E)=0,

1340. General Values.
We shall now consider the variety of values of » which will
accrue from the integral

u_j" dz
o= 01—k

in integrating from the origin to the point P, viz. z, along the
different paths which may occur, as was done in Art. 1331, for

J” dz
oNI—2%

There are four branch-points 4, B, C, D, and four loops
and it has been seen in Art. 1294 that for such a system any

Fig. 425.

path starting from O and terminating at P is deformable into
and reconcilable with
(1) a straight line from O to P
or (2) a straight-line path from O to P, together with a com-
bination of loops,
and that in any system of loops about four branch-points
there are two and only two groups which give different values
to the integral taken from O to P, viz.
(i) those which consist of the integrations for sets of double loops + a
direct path

cor (ii) those which consist of the integrations for sets of double loops + a
single loop + a direct.path.
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Moreover, resuming the notation of Art. 1292, any two of
the six possible double-loop systems may be selected as inde-
pendent. This time we shall take these two double-loop systems
as (AB) and (BD), and (B) as the principal single loop; and
remembering that after every travel round a loop the branches
of the function interchange, we have

u=A(AB)+u(BD)+uy or u=N(AB)+u'(BD)+(B)—u,
as the only possible forms of the result, where %, denotes, as
before, integration along the straight-line path OP starting
with the branch wj, 7.e. the same branch with which the whole
integration was started from 0.

1
0
Now (A)=_r?w1 dz+j w, 0l2+J‘1 w, dz, where J. w, dz refers
0 a = a
k

to the integration round an infinitesimal circle with centre
at A, which vanishes;

1
o )= [ v de=2(B ),
0
the 4 or the — according as we pass over or under B in
arriving at 4 ;
(B)=2Il W, dz=2K ;
0

ey 1
(0>=2j kwldz=—2r w, dz=—2(K+.K);
0 0

wis} 1
(D)=2J'0 w, dz= ——2_[0w1 dz=—2K;

and (4B)=(4)—(B)==2K'; (BD)=(B)—(D)=4K.
Hence the general values of the integral which accrue are
u=2\ K+ 4uK +u, where A, u, X', u” are
or u=2\"1K'+4u' K+ 2K —uyJ integers;
that is, u=2p K’ + 29K+ (—1)%u,, where p, g are integers.
If we write 2= (u)=¢ (1), it follows that
$(u0) = (2P + 2K+ (— 1)}
and taking ¢ an even integer =2r,
(o) = iK'+ 40K +,),
so that 2¢K’ and 4K are independent periods of this funcuion.
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Conversely, it follows that the general solution of the
equation ¢ (u)=¢(uy) is u=2p K’ +2¢K +(—1)%u, and ¢ (u) is
the Jacobian function snw.

Hence sn uy=sn (2p K"+ 2q K + (— 1)%,)
or, which is the same thing, putting (—1)%u,=v,

sn (2p K’ + 29K +v)=sn(—1)?v=(—1)sn .
As particular cases of this double periodicity, we have
) =d(4K +u)= $(2K —u) = (4K + 2K’ +u) = (6K —u) = (2K’ +u)
=¢[4(K+K')+u]=etc.

1341. Having defined z as a function of u, =¢(u), by the

equation i dz
u=jo V(I—22)(1—k%?)’
let us examine the periodicity of the expressions
VI—z2=x(W)=x(u) and VI=EZ=y ()= (1)
regarded as functions of .

Let P and P’ be the points z and —z respectively. Then, as

z travels from O along any path which terminates either at P

or at P, starting with the respective branches for which
x(0)=1 and {»(0)=1, we are to arrive at P or at P’ with the

P,

Fig. 426,

values +/1—2% and +4+/1—%%? respectively. And this will
be effected, provided that either no change has occurred in the
branches of the functions in the paths followed, or provided
that in either case an even number of such changes have
occurred. Such changes of branch occur
in x(u) at each looping of B or of D, but not of 4 or C;
in yr(u) at each looping of 4 or of C, but not of B or D.
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Hence in the case of x(u) the number of times a single loop
has been formed about B or about ) must be even, but a double
loop round B and D may occur any number of times. A double
loop about 4 and B counts as a single loop about B.

In the case of yr(u) the number of times a single loop has
been formed about 4 or about C' must be even, but a double
loop round 4 and €' may occur any number of times. A double
loop about 4 and B counts as a single loop about 4.

Again, if the integral for the direct linear path OP be
denoted as before by u,, that for OP is

i dz it dz Ak
L JO1—2)(1—k%2?) _.“o JI=2)(1—k2%) i

It has been seen that for the variety of paths from O to P
the general value of the integral u is

u==\(4B)+u(BD)+u, or u=\(AB)+u'(BD)+(B)—u,.

It follows that the general value of the integral from O to
P’ will be expressed by

u=X\(4B)+u(BD)—u, or u=X(4B)+u(BD)+(B)+u,;
that is, for those which terminate at an unspecified one of the
two points P or P/, .

u=\(4B)+u(BD)xu, or u=\(4B)+ u'(BD)+ (B)=xu,.

Now amongst those solutions which restore to the inde-
pendent variable either the value z or the value —z, some
arrive at P or at P’ with the value ++/1—2* and some with
the value —+/1—2% for yx(u), and similarly with the values
42/T=k?2% or —/1—k?2? for y,(u); and those solutions which
arrive with the values —a/1—2%, —/1—k%22 must be removed.
To do this in the case x(u)=+1—2* it is only necessary to
select those cases in which the number of single loopings of
B or of D must be even; that is, A must be even and \" must
be odd. And in the case of yr(u)=v1—%k%? we must select
those cases in which the number of single loopings of 4 or of
C must be even ; that is, A\ and A’ must both be even.

Thus for #/1—22 the form of u is
u=2m(2K")+ udK +u, or u=2m'+1)(2K')+ u'4K+ 2K +u,,
in which the coefficients of 2.K’ and 2K are both even or both
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odd, z.e. in one expression u=p(2:K '+ 2K)+ q4K +u,, where p
and ¢ are integers ; and for »/1— k22 the form of u is
u=2m (2K )+ pudK +uy, or u=2m'(2K")+ 4K+ 2K +u,,
i.e., in one expression, u=4p K '+ 2qK +u,, where p and g are
integers.
Thus VI—2= y ()= x {p(2K'+2K)+q4K +uy}
and VI—k22= ()= (4p K + 2K *uy).
The functions ¢, x,  are plainly sn, en and dn respec-
tively. Thus
snv=sn (2pK’'+-2¢ K+ (—1)), with periods 2.K’, 4K,
cnv=cn(p (2K +2K)+q4+K +v), with periods 2.K'+2K, 4K,
dn v=dn (4p. K+ 29K +v), with periods 4.K’, 2K.
Each function will have returned to its original value when
the ‘argument’ has been increased by any multiple of 4K’ or
of 4K, which are therefore the whole periods for the group of

functions, though individuals of the group will each have twice
performed the whole cycle of their values in these intervals.

1342. We may examine this periodicity of cnu and dn « from a some-
what different point of view. Defining cnu as +~/1—2* and dnu as
+~1=%%? and noting that z=+1 are the only branch-points of N/T—2*

and z= :{:;E are the only branch-points of ~/T —k%? so that an odd number

of loopings of B or D would change the branch of ¥1—2% whilst an odd

number of loopings of 4 or C would change the branch of T —%%% and
remembering that

(A)=2(K+:K’), (B)=2K, (0O)=-2(K+:.K'), (D)=-2K

we have cn[u+(4)]=cnu, cnl[u+(B)]= -cnu,
and .  cn[u+2(K+:tK)]=cnu; and cn(u+2K)=-cnu;
whence cen(u+4K)=—cn(u+2K)=cnu.

Therefore 2(K +tK’) and 4K are periods of cnu, and
cn [u+2A (K +uK') +4pK]=cn u,
en[u+2A(K+:K')+2uK]=—cnu (podd);
i.e. en[u+2MK +2(A+p)K]=—cnu  (p odd),
cn[u+2MK +2(A+p)K]= cnu (ueven).
Similarly dn [u+(4)]=—dnu, dn[u+(B)]=dou,

i.e. dn(u+2K)=dnu%; and dn[u+2(K+K")]=-dnu;
whence dn[u+4(K+:K')]= —dn [u+2(K+K’)]=dnu,
E.I.C. IL 21
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Further, dn (u+2K’)= dn(u+2K+2K’)=—dnu,
dn (u+4tK’)= —dn (u +2.K’) = dnuwu, etc.,
e dn(u+2 K +4uK’)=dnw ; dn(u+2AK +2uK’)= —dnw if p be odd,
We may sum up these results concisely thus:
' sn (u+2pt K’ +2gK)=(~-1)snu, 1
cn (u+2p K’ +2gK)=(—-1)"+%cn u,
dn (u+2peK’ +2¢gK)=(—-1)?dn u. J

1343. Values of sn ¢, cn tu, dn .
" o

Let tu= om’ and put sin 0= tan ¢, an imaginary
transformation. Then cos@df=sec®pd¢ and cos@=sec ¢;
then ok J-qs tsectp dep d¢

osec g1+ 2 tan?p  Jo/I— 2 sm2¢
(x4 Ho & _ sn(u, k).
. ¢p=am(u, £); .. sn(wu, k)—lcn(u’ %)
1 _dn(u, k)
whence cn ((u, k)= c—n(u ) dn (i, k)= Eta

These relations are true for all values of u real or complex.

1344. TeE ApDDITION FORMULAE FOR LEGENDRE’S FIRsT
INTEGRAL. EULER’S EQUATIGN.

i 1 dz __""dz e 2 2,2
Let u,=J: 77 Upy= o JZ where Z=(1—2%(1—1%?.

Then Ty =8N Uy, Lo=S5N Uy.
Consider the differential equation
i’% et J_ .......................... (A)
where X, =(1—22)(1—%%?), X,=(1—z2)1—~=,?.
Let x, and z, be regarded as functions of a third variable ¢,
such that ¢

&
xl— 1—— /Xl’ then (Ez_ dt _—\/_
and #2=1—(k*41)x2+k?; @.2=1—(k2+1)x2+ Pzt
vyhence, differentiating and dividing by 24, and 24, respec-
tively, i — — (k24 1)w,+ 22,3 ; d,=— (2t 1)z, + 2k%.2;
Thus &z, —&x, =2k%(2>—x,%)w,x,,
whilst &y g — a2 2= — (22— ) (1 — lc%lzwf)}
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Epy—Bymy H/L i, ( A
&y — &, — k% *x,? dt el >

Hence

whence log (&,2,— dy1,)= Iog (1— K2z, %x,?)+ const.,

&\, _"”2951 v 2V X 4, \/*Yzz
1—lx G e o 1— kP, %2
Another form of the Integral of (A) is obviously

dx, oy _ W)
U+ U= _[\/X—l__[ 77, const. ="

It appears therefore that when w,+u, is constant, so also is
w, VX, 42 VX,
1=’

One of these constants must therefore be a function of the

other, say, C=¢(C").

xz\/ ‘Tl+ ml@_
Tl 2o 20 e i

be readily identified. For, since u,= j N andiu,— j

is clear that,

1.e.

a constant.

Hence ¢ (w,+u,), and the form of ¢ may

% dz
it
VT
if ;=0 and therefore .Y;=1, we have u,=0,
and if £,=0 and therefore X,=1, we have u,=0.
Putting u,=0, we have ¢(u,)=2z,=snu,. Hence the form

of the function ¢ is identified as the elliptic function sn.
Thus we have

sn(uy+u,)=

@gn/1—a,2/1— /cza,ll+ a/1T—a 21— lPz,?

— It 2o,

sn u, cn %, dn uz+sn %, en %, dn Uy
1—/%sn?u, sn’u,

z.e. sn (u, + o) =
Remembering that

’ & ’ e
sn’wu,, e snw,, =cnw,dnwu,; and cn'w,=-—snu,dnw,,

i
du,
this formula may be written as

sn u, 8n'u,--sn o, sn’ LY
1—Z%* sn’u, sn®u,

sn (w, +u,) =

For shortness write snu,=s,, sn w,=s,, cnu,=c¢,, cn u,=c,,
dnu,=d,, dn w,=d, and 1—%?sn?u, sn®w,=D.

Then sn(w,+-u,) = (8,6, 4 8,¢,d,)[ D or =(s,8, +35,8,")/ D
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[Compare the ordinary addition formula of trigonometry,
sin (u, + u,) =sin u, €os u,+ sin u,cos u,, which may be similarly
written =s,c,+8,¢, or =s,8,'+ 8,8/, viz. the case of the above
elliptic function formula when £=0.]

1345. To obtain cn (w4 u,), we have

en?(w, 4 uy) =1—sn®(u, 4 u,)
= {(1—K%,%,%)— (3,¢d,+8,0,d))*} | D*
=(c,%c,>— 28,8, ;¢, d,d,+8,%,% d,%d,?) [ D? ;
*. en(w,+uy) =(c,c,—8,8,d,d,)/ D, the positive sign being
taken because, when wu,=0, each side must become ¢,. This
may be also written

en (u,+u,) =(¢,6,—¢,'c,) [ D.

[Compare with the trigonometrical formula for cos (u,+ u,),
which may be written ¢,c,—s,s, or ¢,c,—e¢,’c,’, where ¢,=cos u,,
ete.]

1346. To obtain dn(u,+u,), we have

dn?(u,+wy) =1—k? sn®(u, +wu,)
={(1=K?8,%8,%)2 — k*(s,c,d,+ 8,0,d,)%} | D?
=(d,2d,2— 2k?s,s, c,c, d,d,+ I s,%,* c,c,?) | D?,
and dn(w,+u,)=(d,d,—k*s,c, 8,¢,)/D, the positive sign being
taken because, when u,=0, each side must become d,. This
may be written as

dn (u, +u,) = <dld2— ’%2 d,’d;) / D.

1347. Derived Results.
From the three formulae
sn (uy +u,)= (8,640, + 8,0,d,)/D,
(T), we obtain, by changing
the sign of u,,

en (uy +u,) = (¢,6,—8,8,d,dy)/D,
dn (uy+uy)=(d,dy—k%,8,¢,¢,)| D,
8N (uy— ty) = (8,04d,— 8,¢,d,)/D,

cn ("1 ey u2) L 4 (clcz+ 3132d1d2)/D; (II)
dn (u, —uy) = (d,d,+ k’s,s,¢,¢,)| D,
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The addition and subtraction of formulae (I) and (II) in
pairs gives
sn (u;+uy) +8n (uy—uy) = 2s,6,d,/D,
sn (u,+uy) —sn (u,—u,)=  2s,¢,d,/D,
en (u;+uy)+cen (u;—u)=  2¢,¢,/D,
en (u;+u,) —en (u, —u,) = — 28,8,d,d,/D,
dn (4 +uy)+dn (4, — )= 2d,d,/D,
dn (u,+u,)—dn (v, —uy) = — 2k%s,s,¢,¢,/D, )
Replacing 4, +u, and %, —u, by U,, U, respectively and writing D’ for

l—k’sn'U—’-—;—q’s U‘2 U, , we have

(III).

U,+U0, U, -U,, U,-U,

AR Sk dn 3 D

U‘;U’cnU‘+U’dnU‘+U’ D
2

sn Uj+sn Up= 25

sn Uj—-sn U= 2sn
cn Uy+cn Uy= 2cnU‘;—U’ U' U-U/p D,

cen Uyj—cn Uy=-2 sn

U,+ U, U,—U, U,+U, , U,-U,
2t-m2d|12dn2/D’,

U +in0y= 2dn D3 liay Ui=la/py
Uyt Us g Ur=Uy Ui Uy o, U1

dn U;—dn U= —2k*sn :D.

Again, by division of corresponding formulae from groups (I) and (II),
and writing ¢, or tnw, for tanamw, and ctn %, for cotam u,, etc.,

(o 4)= O - E

clcﬁ’ F88,d,dy _ctnu, ctn uyFdn w, dnu,
otn (¥ £ %) +8:0d;  ctnwydnugtctnu,dnu,’

1348. Following Cayley’s notation (Elliptic Functions, p. 62), with a
slight modification, let us write

8,8 =4,, €10y =B,, dyd,=C,,
1 ’ ’
88 =4, —c¢)cy'=B,y, ‘Eidndl =0y,

1-ks,%,*=D,

P=g—gt=c—
Q=1 -8"—8,"+k%,%, =, — 8,8, =, - 5,42,
R=1-k%,*— k%, + k%,%," =d,* - k%, =d,* - ks,%,*,
88y =8,, -oc'=T,, scdy=U,,
~kK%8=8,, ¢&'=T;, sed,=U,.
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A number of identical relations immediately arise amongst the
capital letters. We have

(1) 4,2 — 4,2=8,%8," — 5578, =58,%(1 - 8,%)(1 — k?,%) — 8,* (1 — 8,°)(1 — k%,%)
=(8,2— 8,?)(1 — k?s,%s,2)=PD.

(2) By—Byt=c,%cs* — ¢,y =(1 - 8,°)(1 — 8,°) — 8,%, (1 — k?,*) (1 — K%s,?)
=(1-8,"— 8> +k,%8,*)(1 — k%,8,") =QD.

(3) 0)—Cy2=d,2d,? - k's,%s,% % = (1 — k2s,2)(1 — k%s,?) — k8,2, (1 — 8,%) (1 — 85%)
=(1 —k?s,2 — k8,2 + k%s,%,2)(1 — k?,%s,2)= RD.

4,°-4,*_ B*-By 0,*-Cy
Hence P == ey =D

Again,
(4) 8,2 —8,2=(1 5,31 —8o®)(1 — ks, 2)(1 — k%s,?) — (1 — k%)%, %s,*
=(1—8;%— 8,2+ k?%3,28,2)(1 — k28,2~ k28,2 + k?8,%8,2)=QR.
(6) Ty~ Ty2=s,2(1—k%,*)(1—8,%)—8,*(1 — k?,*)(1 —5,%)
=(8,2—842)(1 — k28,2 — k28,2 + k%s,%3,%)= RP.
(6) Uyt~ Ust=s;3(1 - 821 - k8% — 8,2 (1 - 8,2)(1 ~ s, ?)
=(8,2—89?)(1 — 5,2 — 8,2+ k%,%,%) = PQ.
Hence P(82—-8:.0)=0(T,2~T*=R(U;*-U,*)=PQR.
Also,
(7) (By+B,)(01 — Cy) = (1€ — 8182010, (dy s+ £23,85¢,C5)
=10y, dy + 423,85 (1 — 8,2 — 8,2+ 8,%5,2)
o 8185 (1 — k2,2 — k2,2 + k's,28,2) — £3s,28,%¢,c.d d,
= (c1648,dy — £728,8,) D= (8, +8,)D,
and similarly, or changing the sign of s,,
. (B,‘B,)(C’,+C',)=(S,—S,)D.
(8) (C1+C:)(Ay— A;z)=(dydy — k*8155¢,€,)(810as — 85¢,1;)
=81Caly (1 —k%3,%) — 850,d, (1 — £%,?)
— 8,%85C, k%, (1 — 8,2) + 8,8,%C, k%, (1 — 8,2)
= (8109 — 830,d,)(1 — E%sy%8,%) = (T'1 + 1) D,
and similarly, or changing the sign of s,,
(G~ 0:)(41 +4,)=(T, - T,)D.
(9) (A1+A4,;)(By~ By) = (81285 + 83018, )(c1€3 +8,8:0:ds)
=810105 (1 — 8,%) + 85640, (1 - 5,*)
+8,28,Co; (1 — £28,2) +8,8,%¢,d, (1 — £2,2)
=(81€185 + 8504, )(1 — £%8,%8,%) = (U, + U,)D,
and similarly, or changing the sign of s,,
(41— A4,)(By+B,)=(U, - U,)D.
Thus
(BixB)(C,¥0h)_(Co+CoAiFAy)_(Ay+A)(B,FBy) _
S, +8, T,+T, U,+U, y
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With this notation, it follows at once that
i3 (ul+u')=A,;A, PA’ U1+g‘, T::g':z
n (“l"")=Al1_)A'=AIfA,=Z:+g:=giig:’
°“(“‘+“')=BI;B'=BI?B,=gl,tg' ZI—A,
cn("‘_“’)=Bl£B'=B1$B,=g;:-g‘. =X:If4}:’
dn (%, +u,)=0‘ ; C'=c,l f0’=§:+§:=8‘ :i" )
dn (o -w)= O G O = T A B B

1349. A number of identities immediately appear.
For example, since
(By+B,)(4,—4:)=D(U,- Uy)

and (By— By)(4,+A4,)=D(U,+ Uy),

we have ByA,- BA;=DU, and B,4,-B;4,=DU,,
te. 8182 s 838y €10y =810,ds (1 = K25y, %)

and 898y . €109+ 818y . €4'cy’ = 8ye0d; (1 — k2s,28,%).

1350. More important however than such, are the following :

24
sn (uy +ug)+sn(2y — u,)=2—g-1, sn(uy +uy) —sn (uy — u,)=—D—-’ 3
en (uy + ug)+cn(u, — u,)=&. en(uy +ug) —cn(uy — u,)——g’;

dn(u,+u,)+dn(u,—u,)=%‘—, dn (wy +uy) —dn (uy - u,)—-q-,

which ave the formulae of Group (1II) in Cayley’s notation.
1 LA
A2-A2 PDR. sn’ul soluy (32D,

sn(u,+u,) sn(u‘—u,)= D —W_ k’m
D 2y, — sn?u,d
on (uy +uy) en (U — Uy) = B‘ B gﬁ 2 crlx u;c,s:rglui:;";luul or (¢,* - 8,°d,*)/D,

Cy? C'. _RD_R_dn’u,—k*sn’uycn’y, |
dn (uy +u,) dn (u, - uy) = lD’ Y = e e, or (d,? - k%,%,?)/.

3_g3

14 sn(u, +u,) 80 (uy — uy) =1+ Jlkg"_gi = (e +8,°d,y%)/D,
31’-31’ 2 2/

1 =80 (uy +u,) 80 (Uy —Uy) =1~ 1= sy tegt =(e,*+8,%d,*)/D,

14-k2sn (uy +ug) s (u; — ug)=1+k* _‘-Llc% = (d,? + k%,%,?) /D,

W8
1= k*sn (uy +1y) 80 (g — ) =1~k 1 !_!k?,i‘;;:i =(d,*+ k,%,%)/D,
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¢, —8,%d,? TR
1+cn(u;+%,)cn (ul—u|)=l+ﬁf—2_‘2 =(e*+¢.%)/D,
— k%42,
d,? — kls,%,2 Dils
1+dn(u, +u,) dn (u, —us) =1+ =(d,*+d,%)|D,

1 — k?s,%s,*

[14sn (uy 4 u,)][1 +isn (g — Ug)] =50 (U +u,) +80 (U — Ug) +[1 480 (2 +u,) S0 (%, — u,)1

Again, cn(u;+u,) dn (u, —uy)=

dn (u; +u,) sn (u; — uy) =

sn (% + uy) en (g — Uy) =

=(28,03dy + 5>+ 8,°d,%) | D= (¢ + 8,d,)*/ D.
B,+ B, ; C,-0, _S,+S,
D e
=(81'8y' — K'%8,85)/ D =(c1ced,dy — k' ?:85)/D,
C,+C, A4, —A,=T1+T,
D D
=(Cy81dy — €184d,)/D,
A, +A, : B,-B, U,+U,
D D D

= (c1¢e’ — €2¢1)/D

=(8;0,d2 +85¢5d4)/D,

and so on for other cases.

Jacobi gives a list of 33 such results (Fundamenta Nova, pp. 32-34).
These are quoted by Cayley (Elliptic Functions, pp. 65 and 66) and by
Greenhill (Elliptic Functions, pp. 138, 139).

Several have been worked above as illustrative of the method to be
followed. They are too numerous to remember, but any one of them
may be readily obtained if wanted. This list we append as Examples.

ExAMPLES. (JACOBL)

1351. In each case the denominator D=1—#?%,%:2, and the
previous notation is adhered to, viz. sn u,=s;, sn u,=s,, ete.

Establish the results following :

1,

© XN D e W

bk
W o = O

SN (g +ug) +sn (% —u) =  28,¢ody/D.

. S0 (U +uy) —sn(uy —ug) = 2s56,d,/D.

. en(uy+u)+oen(uy —u) = 26165/ D.

. on(uy +us) — en (uy — us) = — 28,8:d,d,/D.

. dn(uy+ug)+dn (uy —ug)=  2dydy/D.

. dn (uy 4 %) — dn (u; — ug) = — 2k2%8,8,6:¢5/D.

- 80 (U + ug) sn (uy — uy) =(8," - 8%)/D.

. 14sn(uy+ug) sn (uy—uy) =(c.2+8,.2dy?)/D.
. 1—sn(ug+up)sn (U — ) =(c,®+8,%dy?)/D.

. 14 K?sn (g + ) sn (uy — u,) =(dy® + k?s,%¢5%) | D.

o L= E?sn (uy +up) sn (uy — us) = (dy2 + k?s52¢,2)/ D.

- T4cen(ug+ug) en(uy—us)  =(ci2+¢?)/D.

. L—cn(uy+us) en (u, — ug)  =(8,°dy?+8,%d,%) | D.
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14. 1+4dn(u+us) dn (uy — ug) = (ds2 +dy?)/ D.

15. 1 —dn (uy +us) dn (uy — up) =k2(8,2¢,% + 85%¢,2)/D.

16. {1 +sn(uy+u) {1 ksn(uy—up)}  =(cat8ds)?/D.

17. (Lo (uy+ug) }{l Fsn(uy—uy)}  =(cy+8:d,)%/D.
18. {1tksn(uy+us)} {14 Fsn(uy—u,)} =(datks1c2)2/ D.
19. {1&ksn(uy+us)} (1 FEsn (uy —us) } = (dy + ks,¢,)%/ D.
20. {1xen(uy+ug)}{1kcen(uy—uy)}  =(ci6s)%/D.

21 {l1+ten(uy+wug) } {1 Fen(us—us)} = (8:1dz F8:d4)%/ D.
22. {1tdn(u;+ug)}{1+dn(uy—uy)} =(dy+dy)*/D.

23. {1+£dn(u;+u)} {1Fdn(uy—u)} =k*(8,6aF 8:6,)%/D.

24. 80 (uy +%s) cn (U — Us) = (8,610, + 826,d,) [ D.
25. sn (uy — Ug) en (Uy +Us) = (81613 — 82¢ady )/ D.
26. sn (uy +u;) dn (uy — ug) = (8,163 + 82d5¢,) | D.
27. sn (uy — Uy) dn (uy + ug) = (8,d1€5 — 89dacy)/ D.
28. cn (ug+us) dn (uy — uy) = (c1¢adrds — K'%8y83)/ D.
29. en (uy —uy) dn (uy + ug) = (¢1¢odidy + k'%818,)/ D.
30. sin {am (u; +ug) +am (uy — ug) } =28,¢,dy/ D.
31. sin {am (u;+ us) —am (uy — us) } = 285¢ad, | D.
32. cos {am (u; +uy) +am (uy — uy)} =(¢,% — 8,%dy?)/ D.
33. cos{am (uy+uy) —am (uy — uy)} =(cy? — 8,°d,%)/D.
To the above list it is convenient to add for reference :
(@) en(uy+ug) on (uy — ug) =(Co? — 8,%dy?)/ D =(c,® — 8:°d,2)/ D.
(b) dn (uy+uy)dn (uy — uy) = (d,% — k?s,%¢,%)/ D = (dy? — k*s;%¢s%) [ D.
(©) {dn (uy +us) - on (g +us)} { dn (2 — ug) o0 (Ug — ) } = (C2da £ €2dy)*/ D.
(d) {dn (uy+uz)3cn (g +us) } {dn (uy — us) F on (uy — ug) } = & (8, F 82)*/ D.
[(c) and (d) are given by Greenhill, E.F., p. 262.]
1352. Periodicity of the Functions considered by aid of the
Addition Theorem.
Starting with the addition formulae in which D=1 - k%,%,?*
8D (U Ug) = (8:Cada :8:61d1)/ D 5 en (g U) = (€100 F $189hda) [ D ;
An (= %) = (dyds TF k?818:0,04) /D ;
and putting u,=u, u;=K, we have, since sn K=1, cn K=0, dn K=k,
sn(u+K)=(snwucn K dn K +sn K cnwdnw)/D,
where D=1 -k sn*u=dn*u=d’,
i.e sn(u+ K)= ;, en(u+K)= —’%‘3, dn(u+K)=%, 1

so(u—-K)=-3, en(u-K)= ,%9, dn(u—K)=g.]
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Putting v+ K in these formulae in place of «,

sn(u+2K)= 528::118 s cn(eta)s le" i ek)=d,
sn(u+3K)—;:§Ziz§; —5, cn(u+3K)= %, dn(u+3K)=Il_°l,

en(u+3K)
dn(u+3K)

Hence the functions have all returned to their original values with
period 4K. It will be noted that dnu was restored with two additions
of K, and that snu and cnu took the same value but the opposite sign
after two additions of K.

In the same way, since

sn(u+4L)=—+ s, cn(u+4K)= ¢, dn(u+4K)=d.

sn(K+.K’ cen(K+K') = —i, dn(K +:K")=0,

_k’
we have sn(u+K+cK')_~ cd/D, where D=1-k’? -c ¥

@K +E) = L i K4K) =-‘kﬁc, dnurK+K) = 2
sn(u+2K+2K')=~s, cn(u+2K+2K’)= ¢, dn(u+2K+2K')=-d,
sn(u+3K+3.K)= —i, en(u+3K+3.K')= —%, dn(u+3K+3.K')= —‘k—e

sn(u+4K+4K)= s, ocn(u+4K+4K)= ¢, dn(u+4K+4K)= d,

and all the original values are again acquired after an addition of
4(K+K’), and it will be noted that after two additions of K+¢K’,
en % resumed its original value, but sn % and dn» resumed their original
values with the opposite sign.

Writing »— K for u in the several cases of the last form,
dn(u-K)

v . kcn(u—K\

T J il ’ I, |
) cn(u+K’) =\ dn(u+cK’) =

sn(u+K+2K’) =-sn(u-K) = _c_’ en(u+ K+2K') = 4 , dn(u+ K+2K') =
d d d

-%é, cn(u+2K+3¢K’)=—;g, dn(u+2K +3K)= “

sn(u+2K+3.K)
sn(u+3K+4K)= sn(u-K) = d’ cn(u+3K +4K')= %g, dn(u+3K +4K')= -

the last three being the same results as for the functions of u+3K.
Again, writing u — K for u,

sn (u+2.K") =§—% =s, ‘' cen(u+2K’) =-¢, dn(u+2.K") =-d,
£ d y: ik’ s k’s
sn(u+ K +3.K’) :Fc’ en(u+ K+3K)= e dn(u+ K +3K")= o
y  _ldn(u-K)_ Ve ST Res e
sn(u+3K’) = PR T ks cn(u+3K’) By dn(n+3K’) i
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Writing u+ K for « in the functions of u+ K +.K’,

n _ ldo(u+X) l w d
sn(u+2K+.K") = Seolar ks b en(u+2K +K') =
sn(u+3K +.K’) =-l—l—=-lb—i en(u+3K +K')=

ksn(u+K) ke’

Writing w+ K for w in the functions of u+2K +2.K’,

E!

’

507

R 43K £k

ke

dn(u+2K + 1K) = -‘s—c

&
C

sn(u+3K+2K)= s+ K) =-5, on(u+ 3K YUK =-X2 dn(u+3K+2¢K')=—é

1353. We exhibit these results for arguments of form u+pK+qK’, in

tabular form for reference.

If A stand for the word denominator we have, tabulating the numera-

tors only and indicating the several denominators,

+0.K +K +2K +3K +4K
8 c -8 —-c 8
+0..K’'| ¢ -ks -c k's c
d | 4 d 4 d
A=] A=d A=1 A=d| A=1
1 d -1 -d 1
+iK' | —ud —uk’ ud ok’ —ud
— ke ukk’s — ke okk's —tke
A=ks A=ke A=ks A=ke| A=ks
8 c -8 -c 8
+2.K' | -¢ k's c ~k's -c
—d -k —d -k —-d
A=1 A=d A=1 A=d| A=1
_1_; d -1 ~d 1
+3K'| ok —ud — ok ud
tke —ukk's tke —ukk’s tke
A=ks = A=ks A=ke| A=ks
8 c -8 -—(I:c s
4K'| ¢ ~k's —c ’s ]
e M ¥ d ¥ d
Ant A=d A=1 A=d| A=1

If, for instance, dn (u+ 2K +3tK’) be required, we look in the group of
the third column and fourth row and find numerator =tke, denominator

= ks, and the result is ¢ cn u/snw.

The vertical order in each square is sn( ), en( ), dn( ), A.
The fifth column and fifth row exhibit the fact, that after an addition
of 4K or of 4K’ to the argument, each of the functions returns to its
original value, and shows their double periodicity. The value of any

function of the forms

sn(u+pK+qK’), cn(u+pK+qK'), dn(u+pK+qK'),
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where p and g are integral, can now be written down ; e.g.
cn(u+5K +11eK')=cn (u+ K + 3t K’) =k’ [ke.

The tabulation is given by Cayley (E.F., p. 77) with a slightly different
notation. '

1354. Putting u=0, all the functions in the table for which A=ks
become infinite.

There are four such groups, i.e. twelve of the functions. Cayley points
out the importance of their ratios even when themselves infinite, and
writing I for the infinite factor 1/£sn0 we have, remembering that ¢=1
and d=1, in this case

sntK’ ceniK’ _dneK’ sn(2K +.K') _cn(2K+K) dn (2K +:K’)

§ T S —uk -1 v —ik
__sn3¢K'_cn3LK'_dn3LK'_sn(2K+34.K')__cn(2K+3¢K')_dn(2K+3;K')_I
BT PR s i g -1 113 -t At ok g

1355. Formula for sin 2u, etc. Duplication Formulae.
Putting ,=u,=u in the addition formulae and writing s, ¢, d, D
respectively for sin %, cos u, dnwu and 1-k?sn'v,
(1) sn 2u=2scd/D, (2) en 2u=(c?— s*d?)/D=(1-2s*+k%*)/D,
(3) dn 2u=(d?— k%%?)/D=(1 — 2k** + k%s*)/ D.

Hence we deduce, writing ¢= tn u=sn u/cn u,

(4) 1+4cn2u=2¢%D, (5) 1—cn2u=2¢%?D,
1-cn2u 1—¢%d?
(6) 14cn 2u=pd2’ (7). 2u=1+t"d"
(8) 1+dn2u=2d*D, (9) 1-dn 2u=2k%*D,
1-dn2u k%%? d? — k?s?c?
(10) 1+dn2u @’ (1D) dn 2u=iﬁ¥k’i’cﬁ’
1-dn2u_,,, ANAD). 8 2.0 cn2u+dn2u
(12) l+cn2u—k" 5 T 1+cen2u
14cn2u_c* l+en2u_ . k¢ k?
%) 1+dn2u d* 19 1_k'1+ Y b
k*+dn2u—Kkcn2u Kk
14+dn2u L
l-enu . .., . k?+dn2u+ken2u
(15) l—vl_‘_a‘m—l k*s —d‘l, 1.6 W -d’,
cn2u+dn 2u
(16) cn 2u+dn 2u=2¢%d%/D and T

(17) From (15) and (16),
sn®u b en’u H dn®u 1
l-cn2u cn2u+dn2u k%+dn2u+kcen2% 1+dn2u’
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1356. Dimidiation Formulae.
By writing % for u, we have

- 1-cnu cn,z_c__cnu+dnu ds’l_l, kE?2+dnu+kcnu
2 1+dn 2 1l+dnu’ X 1+dnu

1357. Again, since
dn 2u—cn 2u=2k"s*/ D, 1+cn2u=2¢*D, 1+dn2u=2d*D,
k?+dn 2u - k* cn 2u=2k"%/D,
k%s? c d? k”

s iy dn2u—cn2u” 1+cn2u” 1+dn2u k?+dn2u—FKen2u’
and putting 5 ¥ for u, we obtain further formulae for sn § cn —, dn f, viz.
an? c_;_ dnu—cnu en? z_a__ k% (1+cn u) an2¥— k?(14+dnu)

F2+dnu-kenu’ k?+dnu—k*cnu 2 F+dnu-Eenu

1358. Triplication Formulae.
Writing %, =%, u,=2u in the addition formula for sn(u,+u,),

sn 3u=(snu cn 2u dn 2u+sn 2u cn w dn %) (1 — k*sn’u sn?2u),

and substituting for sn 2w, cn2u, dn2u their values from (1), (2), (3) of
Art. 1355, we obtain, after a little reduction,

sn 3u/sn u={3 -4 (1 +k*)s*+ 6k%* - k's’}/ D,
and similarly cn 3u/en u= {1 -- 482 + 6k%s* — 4k*s®+ k's%}/ D,
dn 3u/dn w= {1 — 4k%® + 6k*s* — 4k*s® + k's8} /D,
where D’'=1 - 6k%s* + 4k*(1 + k2)s0 - 3k4s5.

Cayley gives also the following results, which may be verified without
difficulty :

1-sn3u ., 3 - l+su3u De " )
Treny D/=(1-20+2K% — k') ; T8, D= (1420 - 24°6 - Riet)?;
1-ksn3u PR T 1+ksn3u :
T kenw « =1 2o+ 2k’ kal); T I = (14 2ks - 2ks® - Koot

The formulae for sn Au, cn Au, dn Au for the cases A=4, 5, 6 and 7 are
also given by Cayley (El. F., pp 78 and 81 onwards), but these formulae
rapidly become more and more complicated. According to Cayley the
cases A=6 and A=7 are due to Baehr (Grunert's Archiv, xxxvi. pp. 125
to 176).

1359, Dimidiation Formulae for the Periods.
yu_l-cnu cn.,!g__cnu+dnu i ,u &%+ dnu+kenu
= TFdnw " 2” 1+dnu s T ~rraml

give many results for the functions of w4 p l% +q ‘—g: , pand ¢ being integers.

www.rcin.org.pl



510 CHAPTER XXXI.

Putting »=0in the formulae of the table, and therefore s=0, c=1, d=1,

snl—{ B TR T e e nK ecnK+dnK WK

2 T NY1+dnK \ixE’ 2 1+dnK ~Ji+FE’

dnK k'2+dnK+kzcnK_J];,
1+dn K

K’ 1—cn'K’ 1+LI 109
Mg T+dn K~ 2w \/ Y 4

K’ _Afem K wdneK [ [—d—ukl,, . NIk,
g ‘\/ T+dnK’ “\/ 70 g

K’ Al +dn K+ EPen K (K2 — ok - ka
dn—5- _\/ T G = g I=®)= NT+E.

E+K | [T-cn(K+K) Nk+k e —
sn 3 1+dn(K+LK') \/70 =\—/—2—z_(\1+k+b‘\/1—k),
cnK+I.K’_'\/cn(K+l.K’)+dn (K+.K")

TR 1+dn(K+:K’)

E_ o 3r . 3\b_ |F
=V—L%='V~E<COS —21E+Lsm§1r> = QTG(—1+L);
dnK+ LK’_Vlc’2+dn(K+zK’)+Ic“cn(K+zK’)
P 1+dn(K+uK') »e
=‘\/I;'N/k"—tk=v£ WVI+F - wI1-¥].
The reader will find no difficulty in completing for himself and

tabulating the various results for the cases p=0,1, 2 3; ¢=0, 1, 2, 3.
Such a table is given by Cayley (E.F., p. 74).

1360. We now have

2
VE+ =
(u+'—l§)=s iI+%° Jitk’ 1 Kks+ed
" 1- ks —— TVITE FHESE’
1+k
K ;
( K)_G\/1+k' - ’1+k’Jk_ k c—sd .
PPy ) 1 1+F 2+ks?’
1- k‘s2 ;
1+%
dVE -k Jl{
4 ( K) 8J1+k' itk _pd-(=F)se
n u+§ o 1 1 E+kst
1+k

with many similar results, and such results may be thrown into other
forms. For example, we may show that

K\ 1 d+se(l+k) ( I_{)__ ¥ ks
s“(“+§)_~/1+k' o A bkt S e e R
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1361. Other formulae may be obtained by direct application of the
dimidiary formulae to the results for 2u+pK+¢K', e.g.

sn 2u ¥
Inow’ dn(2'u+K)=d

n2u;
1—cn(2u+K) dn2u+k'sn2u
1+dn(2u+K)  dn2u+k °’

and many other formulae are similarly obtainable.

= 2:‘;, en(2u+K)= -k

sn(2u+K)—

whence sn’(u +K) ete.,

1362. A General Proposition.
Let U be a function of three variables ¢,, ¢,, ¢, between
which there is a connecting relation, viz.

depy /Ay + depy/Acpy+-deps/Apy =0,
and suppose the function U to be such that when any one of
the three, say ¢,, is regarded as a constant, then U vanishes in
one of the two cases (‘/’1 ¢3, ¢2 0) or (py=0by, ¢,=0), and

provided also that 2= A¢1

always. % ¢

For if ¢y=const, d¢p,=0 and d¢,/Ap,+dps/Ap,=0, 1.e.
d¢,/Ap,= —dp,/Agp, =], say, and this would have been equally
true if the connecting equation were

d¢1/A¢1+d¢JA¢z_d¢s/A¢s=0

A¢,, then U must be zero

But
BU aU U
U const C’ say. But in the case (¢,= ¢s, ¢$.=0),
U = . 0=0. Therefore U vanishes.
1363. Case I. Let
b1 dO b1 dO 4 df
u =_L A—O, u2=-“0 A—-e, Ug= A A—e and UEul-{-u,—us.

U U Dl TR Y
Then -——=1, —=1 A=—, =
ouy ou, op, A, opy Ag,
U U
and =— A¢y—5— Agpy=1—1=0.
og, T ag, O
Also, if ¢, =¢, and ¢,=0, we have w,=u, and u,=0, te.
t,+u,—uy=0. Hence the conditions of the general theorem
are satisfied, and wu,+u,—u;=0 always, t.e according to
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Legendre’s notation F¢,+ F¢,=F¢,, which is the addition
formula for the first Legendrian Integral.
That is, F(am u,)+ F(am u,) = F(am uy).
Another mode of treatment (Art. 1342) of the equation
dep,/Ap,+dp,/Agp,=0 led to the result that
SN u%; cn %, dn u,+sn u, en u, dnw,

=const.
1— k2 sn’u, sn’u,

when ¢;=const., so that w,=const.; and as (4,=u,, u,=0)
satisfies this, the constant is snu,, so that
8,y +-5,0,d,
1—k%,%,;2
1364. Case II. With the same definition of w,, u,, u,;, and
taking

ey
Uy + Uy =5n" , as before.

‘b1 b2 b3
=["a0d, v=["s0d, v=["n0as,

0 0 0
and U =v,+v,—v,—k?sin ¢, sin ¢, sin ¢,, then, proceeding as
before,

%’{1 Ag,— gg =Agp,[Ap,—k? cos ¢, sin ¢, sin ¢,]
—Agy[A¢p,— k? cos ¢, sin ¢, sin ¢,]
=(Ag,)>— (Ap,)>— k2 sin ¢y[A¢p, €os ¢, sin ¢p,— A, cOS b, sin ¢, ]

— (1= R, — (1— s 2)— kﬂ%(sﬁdl—%@

=k2[(822———812)(1—k2312822)+81 (1—s)(1—#%,?)
— 8,2 (1—5.2)(1—FK%,%)]/(1 — K%s,’s,”)

=0;
Also, if ¢2 0,v,=0 and if ¢,=¢,, v,=v,, and ", U=0 in
this case; .. U=0 always, and

", 0,40, —v,=k?sin ¢, sin ¢, sin ¢y ;

and writing v,=E¢,, v,=E¢, v,=E¢,, viz. the Legendrian
notation, E¢,+E¢,— E¢p,=k*sin ¢, sin ¢, sin ¢y
and since ¢,=amu,, ¢p,=amu,, ¢,=am uy;=am (u;+u,), we
have

E am u,+ E am u,— E am (u, + u,) =k? sn u, sn u, sn (u, 4 ,),
which constitutes the addition formula for the second class of
Legendrian Elliptic Integrals.
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1365. Case III. Let

e do
WI_-[0(1+—nsinz—9—)A_()’ wy=ete., w;=ete.,

where ¢, =am u,, etc. Then, putting
dR
U=w1+w,——w3—_‘.ﬁa—m, an=(n+1)(n+k?),

Parias sin ¢, sin ¢, sin ¢,
~ 14+n—ncos ¢, cos ¢, cos ¢,

we may verify as before by the general theorem that U=0, 1.e.

gy + M, Tlgy=Jtan'Ra or —2=tanh'RV—aq

which is the addition formula for a Legendrian Integral of
the third class (see Cayley, E.F., pp. 104 to 106).

The work of this verification is necessarily somewhat
cumbrous, and it is found best to proceed to discuss the Third
Legendrian Integral II(6, n, k) after a modification of its form.

Taking §=amu as before, A A Let n=—4*sn%,

: dd Af dnu
a being not necessarily real ; then the transformed integral is
du

I1(6, m, k)= .‘. 1—k?sn%a snu’
But instead of considering the original function II(6, n, k), it
is convenient to consider a somewhat different form II(u, a),
“k2snacnadnasn®udu
defiand ae o o 1—k?sn®a sn®u
The connexion between II(«, a) and II(8, n, k) is then
b ®  sin%*@do
II(u, a)=k*snacnadn an (A nsm®0)A0
.2 9 An20)—
k “' (14nsin%0) 1d6

=-;snacnadna om

=’—S snacnadna{F(6, k)—I1(6, n, k)},

and the new function is proportional to the difference of the
first and third Legendrian forms.
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1366. Jacobian Zeta, Eta, Theta Functions. Introductory.
These functions, denoted respectively by Z(u), H(u), O(u),
are defined as

Z(w) E.[: (dnzu—— %) du, Al =7 (u), e =Jksnu

O(w) O(w)
with a constant of integration in the second case, such that
0(0)= 2k K ,and & being the modulus in each case. Also
mw

E, in the first of these Jacobian Elliptic Functions is the
complete Legendrian Integral of the second kind with limits
0 and 7/2 (Art. 375).

1367. Obvious Elementary Properties.
Clearly Z(0)=0 and Z(—u)=—2Z(u).

w (]
Also Z(u)+%u=j dnzudu=j A8 d6—=E(6)= E(am u)
0 0
in the Legendrian notation, s.e. Z(u)=E(am u)——EK‘u in that

notation.
Again

e LA Nl H(u)=\/_2"er v gy

Also @(—u)='\/2li_ e'[" Z('m=\/§IcTI{e_I°z(_w)dw(t=—w)

W \/2&{( eI: Z(w)dw
el m

=0(u),
H(—u)=Vk sn(—4)0(—w)=—JEksn u O(w)=— H(u).
Also H(0)=0 and Lt.,=oH'(‘u)= M

™

Thus Z(u) and H(u) are odd functions of %, and @(u) is an
even function of w.

1368. Properties of the Second Legendrian Integral.
-
O B—p=| 2080~—['axdx, 0=—x. =~E().

(i) E(r+ ¢)=f29 de=(j: +f¢) A6d0

" +¢
=(I +J. >AXdX» (6=m+x insecond), =2E, + E¢.
o Jo
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(iii) B @27 x¢)==2E,+ E(7w+¢)=4E,+E(¢), and generally
E(nr+¢)=2nE,+E(¢), 1.e. E(nr+amu)=2nE, +E(am u).

(iv) Again.‘with u=r i v=r Apdg,
PRAY 0
0=amu, v=FE(amu),
and if #=0, u=0 and v=0, z.e. E(am 0)=0; whilst if 6=?—;,
u=F =K, v=E,, e E(amK)=E,.
(v) Moreover E (am u)+E (am K)— E am (u+ K)

SnuUcCnu,

Ui Foad —]2
—ksnusmzsn(u-{-K) k2 T

.. Eam(u+K)= E(amu)+E1_k23""°““.

dnu

Also —Eam(u—K):_E(am“)+El+kgsnucnu‘

dnu

1369. Addition Formula for the Zeta Function, etc.
The formulae for dn(u-+-v), dn(s—v) of Art. 1347 give

2 R e e bl oSnucnudnusnvenvdny
dn?®(u+v)—dn®(u—v) 412 (T—Fsntu satoys :

and integrating with regard to v from v=a to v=uy,
[Z(u+v)+%(u+v)l,_.+I:Z(u—v)-{-%(u—v)l=

2 snucnudnu]”"
nu| 1—k*snusn®v |,-q

n.e. {Z (2u) - FKJ 2u—Z(u+a)— EI';‘ (ut a)}

+{Z(0)+%.0—Z(u—a)—%(u—a)}

~ 2snucnudnu LS 1 )
i b4l sniu (l—k’sn‘u 1—k%snasn’u

il 2k,snucnudnu sn’u—sna
1—k%snu ' 1—K%snqsniu

= —ksn 2usn(u+a)sn(u—a) (Arts. 1351 and 1355);
5. Z(u+a)+Z(u—a)—Z(2u)==k*sn 2usn(u+a)sn(u—a). (I)
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Putting «=0, we have
Z(2u)—2Z (w)==—k?sn 2u Sn®U. .ceeeenennnnn. (1)
Adding

sn®u—sn%a
Z(u+a)+Z(u—a)—2Z(u)=kzsn2u{m—snzu}
1o i sn’a(l— Irzsn‘u)
ki oobo 1—&%snusna

snucnudnusn’a.
1—k2%sn2q snu
and writing v+ a=1u,, ¥—a=1u,, 2u=1u,--u,, Eq. (I) becomes
Z (wy+ ) =Z (Uy) +Z (wy) — k?s11 wy 81wy 80 (U, +u,), (IV)
which constitutes an addition formula for the Zeta Function.

ie. Z(u+a)+Z(u—a)—2Z (u)= — 242 ; (III)

1870. Substituting for Z (u) its value E (am u)——% u, we have

E(am u,)+ E (am u,) — E (am w, 4 u,)=k*sn u, sn u, sn (4, +u,),
viz. the addition formula of the Second Legendrian Integral.
If in (IV) we write u,+-u,+u,=0, we have the symmetrical
form
Z (u)+Z (uy) +Z (ug) = — k*sn u, sn u, sn u.

1371. From (III), we have at once

®’(u+a)+®’(u—a)_ O'(u) _ o sn % cn % dnu snq
Outa)  Ou—a) Ou) 1—F*sn’*usna ’

s.e. [1 @(—uig—z—(%w i [log(l k?sna snzu)]

ie. 9("(‘;‘(‘;—;%2‘7_”‘) @(0)= 1—K%sin*asn’u. ... )

1372. If we integrate with regard to «, instead of with
regard to %, from 0 to g,

log gngf‘;—zazw).—_ SO Gkl (VI)
and interchanging % and «,
log 8&’:3—2% s T el (VII)
3
re. II(u, a)=log "*'” {8————%:;2;} -
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which expresses the Legendrian Integral of the Third Kind in
terms of the Jacobian Zeta and Theta functions.

There are in this form two arguments only, viz. v and aq,
instead of the three, 6, k, w, in the Legendrian form (see
Greenhill, E.F., p. 192).

1373. From (VI) and (VII),

(%, a)—11(a, u)=uZ(a)—aZ(u). ......... (VIII)
Since H(“p a)=u1Z(a)+'%' lOg gi:i;g’
TT(0, o) =y Z(a) + Hlog i,
and  TI(w,+u, “)=(“1+"2)Z(a)+%log%:ii—zziz—;,

_0(u,—a) O(uy—a) O(u,+uy+a)

O (u,+a) O (uy+a) O(u,+ty—a)’
which is a form of the addition formula for the Third
Legendrian Integral. Various forms of the function Q will
be found in Cayley, E.F., pages 157, etc., and The Messenger of
Math., vol. x. (Glaisher).

where ()

we have II(w,, a)+II(u,, a)—II(u,+u,, a)=1log Q, }
(IX)

1374. In this brief notice of these important functions, we
have in the main followed the course .suggested by Dr.
Glaisher in his note in the Proceedings of the Lond. Math. Soc.,
vol. xvii.

1375. Integration of Expressions involving the Jacobian Func-
tions.

[We shall write s, ¢, d for snu, cnu, dn u respectively when desirable
for abridgment.)

(l)fsnudu = - ﬂ;.:—f—d&—=—lsinh‘lm
1= kisn?u NE? +k*cn?u k K
s % log ‘:]',’,’L'*’;,k 2 “=}; log \/;;Tkz, or other forms.
(2) fcn udu = 71_‘_1;8_;;‘_,1 =;—‘sin"(lc snu) =;—c cos™'(dn u), or other forms.
—k?sn®u

(3)fdnudu = fd0=0=am w.

(4)fsn’udu = ,:,/(1 —dn’u)du=ll?,(u—Ea.m u)==):—,{u—(Zu+%l u)}
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(5)fcn2udu= %f(dngu—k”)du:%(Eamu—k""u):Elé{<Zu+ ) k”u}
g —zus B
(G)j-dn’udu— Eamu—Zu+fu.

5 ; dfcnu) (1-c?)de
(7)fsn3u du = —-fsn”u———d"u =-|

1442 ke
2 e —]
IWHW 3 [ VIR B do= — L sinh
(1-s%)ds 1 )
3 il 1% 22_—-———— ds
(8)fcn wdu Ny (~/l ks Ji- i
& mz+2"2 1 gin=1(ks).
(Q)fdnaudu= f(l-—k’sin?0)d0=2_7k%0+¥sin20=2_2k23.m u+gsnucnu,
ete.
(10) Phpi LR WAL which suggests puttin, —é whence
e ) (I-@Wkit e o SE R LAY
dy= = G du, =1/ +y?), &=(* - KK +47) ;
du B dy bl i _,/ dnu
Ay —fédy— - \/y-“—>k-’2_ — cosh l(l?’)— —cosh l(k’snu)'
du 5 _d y2— (b
(ll)fm. Puttmgy--a,dy #’2 du 8= e Ic”’c_ vy £
du Y dnu
_— k"’fN/z - dy= k,cosh ‘y=Pcosh"<nu).
cosec’fdf 1 cotf 1 _,ctnu
(12)fdnu f] PFanid~ ) cott0+ i~ K ¥ - B ¥
1376. Again a‘%logsnu= d—%?=—d’ k”c’-—c—q-z— lc%’—;lé,
/2
dd logcnu——é%?:—d2+k-e-—-32£——k702—12—
d? SUNE dhde ™ 8%?
mlogdnu——k.ﬂ Z__ 7 _w_dz_
cnudnu
Hence (1 )fs_’n‘;_"—snu +u-—-Eamu.

1snudnu 1 b
(l4)fcn2u e ﬁ(Ean)u—k ).

k® snucnu
(]")fd $% i dhui +k,2Eamu
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1377. Other positive or negative integral powers of snu, cnw, dnu
may be integrated with regard to % by the reduction formulae
of Examples 24, 25, 26 at the end of the chapter, which can be
verified at once by putting respectively P=s""ted, c"'sd, d"'sc
and differentiating.

1378. Again, by aid of the Period formulae of Art. 1352, viz.

f—l=sn(u+K), 5= —%;cu(u+K), %: %dn(u+K),
}=lcsn(u+LK’), g:-kcn(u+LK’), §=—}dn(u+tK’),
%:kan(u+K+sK’). 2———- cen(u+K+K'), f= é,du(u+K+:K’),

we may readily deduce the integrals of integral powers of
c d 8 d ¢ s

dlcaldi el o'

Thus, for example,

n’“du—fsn’(u+K)du— ((u+K) - Eam(u+K)}
dn?u 2
{u Eamu+k’snucn“}+const
1379. Again, since
“ksn’usnacnadna cnadna 1
T, a) f 1—k%sn’a sn®u b sna f(l ksn’asn®u )d""
» du sna
W heve 0 l—k’sn"asn’u=cnadnan(“’ @)+
du sna ]
'&J() 1—ksnasnu+f itksnasnu [cnadnan(“'a)+“ 4
whilst
- du - du ={“ 2ken a snw
L 1—ksnasnu Jo 1+ksnasnu Jo 1-k®sn’asn’u
ksna [*, —— i e
=cnadnafo (snu+a+snu-—a)dy,

which is integrable by (1), Art. 1375 ; whence by addition and subtraction
the two integrals
ot du v du
l; T=ksnasnu’ Jo 1+ksnasnu

are determined.
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PROBLEMS.

i snu 2
ducenudnv cen2u+dn2s  [Ox. IL P., 1903.]

1. Show that

2. Prove that
(@) V(@ -k sn*u)(k +dn 2u)/V1+E =1~ (1 -F)sn2u;
() ~(cn 2w+ &k sn 2u) (1 — k2 sn*u) = & snw+cnudn w.
3. Prove that the equation of the osculating plane at the point
on the curve z=asnu, y=benu, z=cdnw is

Lrrs oanyl Ype m B adg s
akk sndu bk cn' u+cdn u=k2 [Ox. 1L P., 1002.]

X
4 If u=j {(a2+a%) (1 + 22)} ¥ a da, show that
0
z=>btnu, (mod. Va2 -0%a), a>D. [Ox. IL P., 1902.]
5. If the functions snw, cn %, dnu be defined by means of

d d d
—snu=cnudny, -——cnu=-snudny, ~-dnu= —k?snucnu,
du du du

sn0=0, cen0=1, dn0=1,
prove that (i) dn?u=1-k2sn?u=1-k2+Ak%cn%u;

.\ SNUCNV+CNUSNY . ;
(i1) is a function of u +.
dnu+dnov

- [Ox. II. P., 1901.]

| ‘ dz
6. If 2v/2 -J3=cos ¢d and the differential Jit12005 o
—_(?#_.__, find the values of @ and a.
V1 = sin® asin? ¢

[Carus, 1885.]

is

transformed into

7. Prove the following results :

. K 3K K+2K' |3K+2K'| K’ 2K 41K’
2 o 2 2 2 2
1 1 1 1 . 1
snu e ———— —— s —_—
NIFE |- NTER N N Nk N7

o 3K’ 2K+3K’| K+.K’ | 3K+.K’ | K+ 3K’ |3K+3.K’
2 2 2 2 2 2

—¢ £ bk 7y k=& | | [k+ik
pox B vk \/ % \/ % ‘/ % ‘/ 2

and find the values of ¢n %, dn u in each case.
[See Table in CaYLEY, E.F., p. 74.]
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8. If tan 3 sin ¢ =sin nﬁ a:J 1 —#/\/1+4? prove that
: v dy
| el L (Y
\/1 'cs 2J’f41 tan*,}wsln’¢+sm gr_‘.m/l — tan?r sin?y
[MATH TrIp., 1896.]
9. Prove that cn }«K'dn }iK' + sn 1K' = — (1 +VE)VT +%
and dn 1K' +sn }uK' en oK' = -;{1+\/1+k}\/12.
[MaATH. Trip., 1896.]
10. If tnw, =1 dny,, tnu,=T;dnu,, dnu, =D, dnu,=D,7},

show that
7+7T, o 2tnudnu

DD, T.Ty and (ii) tn 2u=—___1 T T T
11. Prove sin [am (% +v) +am (¢ —v)]=2 sn w.en wdn ¢/D,
1+dn (v +v)dn (v —v) = (dn®u + dn2v)/D,
where D=1 - k? snu sn?w.

(1) tn (4, +u,) =

Prove that
K 1 k's+cd 1 d+(1+k)sc
12 =) = =
’"(“+~> JTAR1-(1-K)¢ JI+F c+sd
i1 d+(l+k’)sc_\/dn2u+k’sn2u
CJL+E Nd+ (1 =k)se k' +dn 2u
i [CAYLEY.]
13 K s K c—sd
v Cn("v"'E) l+k’1—(l—k’)s.
K - ks —JF \/l—sn-u
l+k’ c+¢d k' +dn 2u
K d-(1-k)sc jmed+ks
14. dn(u+§) Jk’ Sy T i =k ATy
=  [1+k"dn2u —A®sn 2u
=k k' +dn 2u
K 1 (L+k)s+wd 1 [(1+k)s+ed
@ “"("*'2’) i 1+k® e NO+hs-wd
1 [ksn2u+cdn2u
"N sn2u-ven2u [CavLEY.)

' T+ke- T+k1 - kst
16. cn(u+‘£ L 1+kc—sd 1+k1-ks

Tk T+ks Tc-ﬁ-;sd

Jl+k\/ —ks* c—wd_ 1 [dn2u+ken2u
1 +ks* c+wd J' on 2u +tsn 2w
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17 dn(u ) x/ﬁcd Lksc—:\[——kl =M

d + tksc

44 \/k’l sn 2w — cen 2u — tk dn 2u
sn 2u — tcn 2u i

- K+.K \/k+nk' —k's+cd
18. sn(u+ ) = TR+ &) 5
Jk+ & c+(k—¢k’)sd__\/k+ 3 Jc+(k—tk')sd
d+ksc c+ (k+u)sd
o ken Su+ ok
—\/E on 2u + i sn 2u’ [CayLEY.]

19. Show that
st oud d daz
(i) 3231-Llogs= —c“’d—ulogc= -Pd—logd—scd

(i) @ dif‘ ti = — & + &,
(iii) &8 ‘dﬁ E;f: PRy

(iv) dn?(u+ K') =d?®+ - - (“l)

du
20. Show that sn2(u; + w,) — sn?(u; — u,) = 2 5?‘- lsl—’s];%gg—.
21. Show that -
(i) j 1+222):d u= —logcnu,
(ii) Jﬂ \/1 +SE ;::d = —l‘logdnu,
(iii) jo sn w m du= — ‘}i logdn u,

w ———
) Io %:ng_;':d“*—log[/l +k sn (u.i.K)]

22. Find the values of
(i) lenudu, (i) “'sn “d

cn2u

(i) J’sn’udn Y

L 4 =I(sn w)"du, show that
(n+ 1)L~ n(l + k) I+ (0 - 1) I =s""cd.
24. If I,,=I(cn u)"du, show that
(n+ 1)KLy —n(k - k2) I, — (n - 1) K2,_=c"~1sd.
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95, If I, = j(dn w)ndu, show that
(n+1)Lppg - n(1 + 52 I, + (n - 1) k21,_, = k2" se.

26. 1f In=j(3n u) du, show that
(0 + 1)y~ (1 + K2 I, + (0= 1),y = — K fj,,;,
and obtain reduction formulae for j( oy ) du and j'( dn g - similarly.

27. Prove that

(l)l+dn(u+v) 2SN UCNY—SNVENY
sn(u +v) dnv—-dnu

[M. Trre. II., 1915.]
dn(u—-v)—cn(u—-v) dnucnv-cnudnv
sn (v —v) Ki SN %+ 8N v i

[S1r J. J. THOMSON.]

(ii)

28. Show that sn (1, + u,)
_ 810ty + 8,0y 8100y + iy 8100y +8500dy — 5,2
1 k%28,2 0o+ 8,50, dg  dydy+A%8,55016, slr2 — 850,00y
[M. TluP 1L, 1889]

29. If u,, uy, uy, u, be any arguments, and , y, z respectively
denote

sn (u, — w,)sn (uy —ug) 81 (%, — wy) SN (U — ;) 80 (%, — Ug) SN (U; — Up)
sn (1w, + u,)sn (g +ug)’ 81 (uy + uy)sn (ug + '“1) sn (ug + ug)sn (u; +uy)’
prove that r+y+z+ayz=0. [M. Twre. III., 1885.]
30. If 2, denote the function
sn (ux — u) en (ua +w,) /en (up — w,)sn (ua +w,),
then 202,62, oeTe) + T41og + Tyolay +Tyeo=0.  [M. Trrp. IL, 1889.]

cnw
sn w

31. Find the values of Idn u du, I dy I

[M. Trre. 1I., 1888.]
32. Prove the formulae

(1) 3jdn‘udu =2(1+k?)eznu+Ai2snucnudnu - k2,

(i) k"Im Bes —ezn(u+K+LK’)+dn—u

cnw
(iii) % snudu= log - +L,
[
where eznu= E—I‘(- +znu, and zn u is Jacobi’s Zeta function Z(u).
[M. Twrre. II., 1888.]
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33. Show that sn(z+ K) =¢%, sn(z+2K) = - s, sn(w)=1tn(z, k).
[M. Trie., 1876.]
Prove that, if D=1 - k%22
34. (i) en(u, +u,) en(uy — uy) = (¢,2 - 5,2d,%)/D = (¢ - 8,%d,%)/D ;
(ii) dn(u, + 1) dn (u, — up) = ()2 - k2,%¢,2)/ D = (dy? - k?,%,?)/D.
35. (i) cn(u; +uy) on (u, — uy) + s (uy + ) 81 () — Uy)
=(c* -~ %,°d,*)/D;
(i) cn(u, +1,) en (u; — u,) — sn (uy + uy) sn (v, — uy)
=(¢* - 5,d,")/D;
(iii) dn (u, + u,) dn (u; — u,) + k2sn (u, +u,) sn (u, — uy)
=(dy? - K%s,%,*)/ D ;
(iv) dn(uy + u,) dn (w, — w,) — k2sn (uy + u,) sn (u; — %)
= (d,2 - k2,%,2)/D.
—sn(u—a) 1-sn(u+a) [sn(K—a)-sn u}’.
+sn(u—-a) T+sn(u+a) |sn(K-a)+snuf’
l+ksn(u—a) 1-ksn(ut+a) [1 —ksnasn(u+K)}’
l-ksn(u-a) 1+ksn(u+a) |\l+ksnasn(u+K)f '

36. () ]

(i)

’ 2snucnudna
37. (i) tn(u+a)+tn(u—a)=m;
2snacnadnu

(ll) tn(u+a)—tn(u—a)=m.

38. Verify the identity k%'2S — k2C + D — k* =0, where S denotes
the product of the four sn functions with arguments u+v, utw,

C denotes the product of the four cn functions and D) the product of
the four dn functions with the same arguments. [M. Trre. IL., 1914.]

39. Prove that the length of the curve of intersection of two
right circular cylinders, whose axes are at right angles and radii

L] 1 - k%sin*¢ ¥
1 2 _ a2/p2 . 1
a, b (a<d), is SaL (l —k2sin2¢> d¢, where k2=a2/b?; and verify

the result when a=b. [St. Joun’s, 1886.]

40. Prove that the relation
M dy iy dz
(=g - M) (1 -2)(1 - B2y
where M is a constant, can be satisfied by an equation of the form
yV =U, in which U, V are integral polynomials.
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41. Show that the envelope of
y(enudnw+ ksn?u) - z(dnw—kenw)snu=aksnu

3 T3
. 3 14 A A
is kP+Q+ :c 0, where P*+ <k2> =1; Q’+<a> =i

[This is St. Laurent’s result for the caustic by refraction for
parallel rays falling upon a circle. See Heath’s Optics, Art. 108.]
42. Show that the envelope of the straight line
K2zsnu+(cnu+kdnu)y=Fksnu(dnw+kenw)

is ?z:k“’[l —<]'%)§]%+k|:l —(Icy)i]i.

[CaYLEY on Caustics, Ph. T'r., 1856.]

43. A particle under the action of a central attraction

2 1 (l 3 T)S]
A

moves from an apse at distance /(1 +¢) with velocity Vu(l +¢)/e;
show that the orbit described is I/r=1+e¢cn 6, mod. 1/4/2.
[Tarr AND STEELE, Dyn. of a Particle, p. 393.]
44. Show that Euler’s Equations of motion of a body about a fixed
point under the action of no forces, viz. 4 —! d — (B - () 0,0, =
(—i——w‘“ - (C - A4) vgw, = dw“ - (4 - B) w0, = 0, are satisfied by

o,=asnA(t—1), o;=ben )&(t - -r), wg=cdn A(f - 7), provided the six
constants a, b, ¢, A, 7, k be suitably chosen

[KircaoFF. See Rourn, Rig. Dyn.]

[For the treatment of these equations by aid of the Weierstrassian

functions, the reader is referred to Greenhill, Ell. F., Arts. 104-114.]

45. Prove that

T L C@—u(l+k)s  1+4ks?  d—dsc_ c—usd
witfond il 3 it 1+ks? cd+o(1+k)s c+wd d+iksc
[M. Trip., 1888.]

46. Prove that
- kan3(u +3K') = -k _ C-«S C-kD-&?S_  D-kC
3 _0+:S “D+dkS- D-kC C-kD+d&%’
where S, C, D denote sn 2u, cn 2u, dn 2u respectively.
[M. Trrp., 1888.]

dn 2 + en 2u

47. Prove thatI dn 2u—cn 2u

do—-—logsnu
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48. Show how snmu may be expressed in terms of snw, where
m is an integer; and if m be odd, prove that the numerator of
1 — snmu when so expressed consists of a perfect square multiplied

by the factor 1 — (- l)i(m_nsn U [CaYLEY, E.F., p. 90.]
49. If *= - w, where » is an imaginary cube root of unity,

prove that 1-sn(w-o)u 1-snu (1 —wsn 79)2
I+sn(w-o?)u l+snu\l+owsnu/’

50. Prove that
"1_ n2(u+v)cn2(u—fv)}'

1 - k2sn%u sn?v
l k2sn2u — k2sn?v + k*sn2u sn2v”
[MaTHa. Trre., 1878.]

1 dn?(u + v) dn?(u — )
1 —k*sn?(u + v) sn?(u — v)

51. Prove that
snu  cnjudntw.enjudniu.enfudniu..

T k2sn“u)(1 k*sn*3u)(1 - L“’sn“u)
[MaTH. Trip., 1878.]

52. Prove that
1-snu 1 en?}(u+K)dn?}(u+ K)
1+snu L’Z sn?) (u+ K) )

[MATH. TrIP,, 1878.]

53. Show that if U=sn{u+ a,)sn(u+ a,)sn(2u+a, + a,), then

IUdu: ——)—L—,,log[l k2sn?(u + a,) sn®(u + ay)].

54. Show that
O(z+a)@*(y+a)O@+y—2a) 1-ksn?(z—a)sn?(y -a)
O (z—-a)O*(y-a)O@+y+2a) 1-k2sn®(z+a)sn(y+a)’

[GLAISHER.]

55. Show that
-‘- gifM 0 ¥ dn g udu,=~ log {Jl +k'sn <u+12()}

ocnu+snudnu

56. Prove that in a spherical triangle 4BC, obtuse angled at C,
we may replace cos a, cos b, cosc, cos 4, cos B, cos C respectively by
cnu, cnv, cn(u+v), dnw, dnv, —dn(u+2), and then

cos?p =1 — k?sn®wu sn?v,
where p is the perpendicular arc from C on 4B, and point out any
other analogies between elliptic functions and spherical trigono-
metry. [MaTn. Trre. III., 1884.]

Www.rcin.org.pl



PROBLEMS. 527

57. Prove that

" ) ;
(i) ®(2u)—®2(0)(1 — k?sntu) ;
= ®2(2u) (v
(il) O(3u)= *((92—20)_(_) (1 —&2sn?u sn?2u).
snudnu  wu
58. Prove that Z(u)= o ks ¢ o +Z(w, k).
59. Solve completely the differential equations

(i) (2;;+n‘2u+au? 0; (n) lﬂ +'n?u+ﬂu”—

[MATH. Trip., 1878.]
Show that in case (i) » is of the form

b2 =(a -m)?+n,
K
l—ch(t—-r) [k 3 a-m
w=a - b_f—’ with x )’
l+en7(t-7) KB 92
1 F=—ab
K 2
or u=—-a—(a—b)tn2—(t—-r), (@+c)k>=b+c,
with
or u=cen -—(t ) - bsnzf(l—'r), 1—--—a(a+c),

and in case (n)

2
u=acn—(t— 7), with (a?+ b%)k%=a?, %:%ﬁ(a’+b2).
[Sor. S.H. ProBLEMS, 1878.]

60. Prove that if a uniform chain fixed at two points rotate in
relative equilibrium with constart angular velocity about an axis
in the same plane with the line jcining the two points and free
from the action of gravity, the form of the curve assumed by the

chain will be given by y=bsn K ~, the axis of rotation being the

axis of . [GrEENHILL, M. TrrP., 1878.]

61. Differentiations being denoted by accents, show that

en"u  sn"w I dn"w _en"w_,, sn'u_dn'w_

enw  snu > dnu cnuw ' snu dnu
dy
62 If ———— —0 obtain the relation between z and
Jl o J1-¢ sl
in an integral form. [MaTi. Trre., 1876.]
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63. Transform the differential dz//(1—«?)(1 —4%?) into a like
expression having, instead of %, the modulus 2Vk/(1 + k).

64. Accents denoting differentiations, prove that
(i) |snw, sn'w, sn”w
ecnw, cn'w, cn’u
dnw, dn'w, dn"w

= —k%; (ii) [snw, sn'w, sn”u|=0
enw, cn'w, cn”w
donw, dn'w, du"w

65. Show that

() |'s% . a8, AR |=FK%ed ;
e, cc', c'2 [MATHEWS. Se¢ GREENHILL, K. F.,
d2, dd, d? p. 349.]

(ii) |enw, cnw, cnu, enu | 8kSon u snd”
enw, dnw, cnw, cnu | _ 2

o e
enw, c¢nwu, dnw, cnu (1 — Jsné lt)
cnw, cnw, cnu dnu :

&

66. Show that for four arguments u,, u,, v;, v,, if differentiations
of the elliptic functions with regard to their respective arguments
be denoted by accents,

dn 2u;, dnZ2u,, cn2u,, cn2u,

cn2u;, cn2u,, dn2wu,, dn2u,

dn2v, dn2y, cn2v,, cn2y

cn2», cn2v,, dn2,, dn2v,
= e | U,V,sn'? 29, — U,V sn?u, s 29
_WVITVI-Q[ 1Vysn"2uy sn2v, — U,V sn?u, sn'%y, ]

2 2 2 2
x [U, 7, sn?u, sn?v,— U, ¥V, sn?u, sn®v,),

U, 7 7y

1
where = it hy : -
1 -k%sn%u, 1-k%snu, 1-FKsnto; 1 -FAZsniv,

67. Show that

1, cnw, dnu|= —4k2%%2IIsn
1, eny, dno
1, enw, dnw

v W
1 -/%sn?-sn%—~
VW V—wW 2 2

sn —
4 : 1 —kzsn‘g

[Ox. IL. P., 1914.]

68. Prove that

sn®(u+v), sn(w+v)sn(w—2v), sn%(u-0v)

en®(u+v), cn(u+v)en(u—v), cn®(u-v)

dn?(u+v), dn(u+v)dn(u-v), dn?(w-v)
[(MarH. Trrp. 1L, 1913.]

_ 8k'%s;5,%,cd,d,y
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69. If m?®+mn2=1, prove that

f f cos?@sin?$ 40 dp

0 (1 - m2sin? 0)% (1 — n2sin? ¢>)*

0

j”? f sin20 cos? 0 dep
0 Jo (1- mzsin?G)‘lf(l —n“sin%)”f.

T m2cos? @ + n2cos?P du
iy u-L .[o V1 —m2sin64/1 - n“’sin'3¢d0d¢’ P dm—o'
[y, 1891.]
71. P and  are points one on each of two circles in parallel
planes with a common axis through the centres C, " at right angles
to the planes; CC’'=b and the radii are 4 and e, PQ=7 and the
angle hetween the planes C'CP and CC'Qise. Evaluate the integral

0 \ ) b . ;
M EEIIC : edsds, the integrations extending round each circle, and

throw the result into the form

M= 47\/1%[<6 = 21—(_> F —CEl]s

9

where F; and E, are complete Elliptic Integrals.
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