CHAPTER XXX.

INTEGRATION. CAUCHY'S THEOREM ON CONTOUR
INTEGRATION. TAYLOR'S THEOREM.

1266. Definition of Integration for a Function of a Complex
Variable.

Let f(z) be any single-valued function of 2, and let any path
of z on the z-plane be selected which does not pass through a
point which makes f{z) infinite, and along which the change
in f(2) is continuous.

&

Fig. 377.

Let 2, 2,2, --- 2, 2Zny1 (=2) be an infinitesimally close array
of points on this path from an initial point Py, (zo), to another
point P, (2).

Then the limit (provided a limit exists) of the sum when
n is infinite of the series

(2,—20) f (20) + (2, —2,) f(2)) + (25— 2) f2g) +-- - + (2—24) f(2n),
when the moduli

|2, —2ql, |z,— 2y, |25—2,| ... [2—24l
419



420 CHAPTER XXX.

are each indefinitely decreased, so that the successive elements
of the z-path are all infinitesimally small, is called the integral
of f(z) dz for the selected path, and is denoted by

J: f(2) dz.

1267. Obviously, the last term of the series, having an
infinitesimal modulus, the series may, if desired, be supposed to
stop at the term (2,—2,_,)f(2,_y), as in the case of a function
of a real variable (Arts. 11 and 12).

1268. This definition clearly includes that of functions of-
a real variable (Art. 11) as a particular case, the “selected
path” for the variation of z in that case lying upon the
Z-axis.

1269. General Properties of an Integral.

Properties of the integral, corresponding to those of Articles
322, ete., for a real variable, may be established. Let w,=f(z,).

Then, in the first place, it is immaterial whether we consider
the limit, when » is o, of

(21— 2 wot (g —2) Wy + (23— 2) Wyt ...+ (Zpp1—20) Wp oo = (4),
or of
(21_“20)’”1‘1"(Zz—zl)w2+(z_:;"zz)ws+ cos - (Zns1—20) W1 .- =(B).
For the difference of these expressions, viz. (B)—(4), is
(2y—20) (0 —wg) + (2,—2y) (Wp—10,) + . .. + (21— 20) (Wp 11— W),
in which“the number of terms is n+1, which is ultimately

infinite, but an infinity “of the first order,” if we regard

o as an infinitesimal of the first order.
n+1
Let the greatest of the moduli of the several terms be

|2, — 2, 4| X |00, —w, ],

which is finite, as the path of 2z has been chosen so as not to

pass through a point for which w becomes infinite. Then, since

the z-points are taken infinitely close to each other, and the

function w is continuous for variations of z along the path,

|2,—2,_4| is an infinitesimal of at least the first order, and

|w,—w,_,| is also an infinitesimal of at least the first order.,

,"VA.“Ing‘I;\‘ "v’.r.(';!‘i Grgpi
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Hence the difference of the (4) and (B) series cannot exceed
the value of the product of
(an infinity of the first order) X (an infinitesimal of the first
order) X (an infinitesimal of the first order),
s.e. a finite quantity multiplied by an infinitesimal, and must
therefore vanish in the limit.
1270. It follows that if w=f(z),

=n-+ n+1
g !

[wae=[f0a=3 E—z-dfe) =S~z

n+l i 2 i 2
==Y ea—zfe)=— @ d=~[w

1271. Again, since the sum of the series

(21— 20) f (20) + (2o —2) [ (21) + (25— 20) f (22) + ... + (2—20) [ (20)
may be divided into any number of portions which together
make up the whole series, we have

Z

[Cr@dst [ 1@y ast [} se et .t [ 1@ 3= g1

where ¢, &, &, .- (- are the values of z at any points taken
in order upon the selected path from z, to z.

1272. Again, consider j [f(z)+ F(2)] da.

Provided we follow the same z-path of integration in both
cases, and that both f and F are finite and continuous between
the points 2z, and z on this path,

[ reyd=1 36—z e,

[ PO @=1 30—z P
2

Hence
[ty Poy =13 @2 e)= )
[ +rene

And the same is true if there be any finite number of
functions.
Also, somewhat more generally, if £4; f; (2) stand for

A,f, @)+ 4 fa(2)+...

WWW.rcin.org.pl



422 CHAPTER XXX.

for a finite number of functions, where 4,, 4,,..., are all
independent of 2, then

[ YAy r A fu(2) dz,
2z 2y

80 long as the same z-path is followed in each integration, and
the conditions as to being finite and continuous from z, to z
are satisfied by each of the functions.

The coefficients 4; may be any whatever, provided they are
not functions of 2, and the number of terms in the summation
is finite.

And further, in these results each function has been sup-
posed single-valued, or if not, that the same branch is adhered
to throughout the integration in each case.

1273. So long as the path of integration from z, to z is
finite, and passes through no critical points of f(z), i.e. points
for whiech f(z) becomes infinite, and is a continuous path so

far as variations of f(z) are concerned, the integral r f(2)dz
must be finite. 2

For this integral is, by definition,
Lt[(21—20) f(20) +(25—2,) f(21) + (23— 2,) [ (20) - .. +(2—2,) f(20)],
and, by supposition, none of the expressions f(z,), f(2,), --- f(24)
have an infinite modulus,

I mod.f(z,)=K, say, be the greatest of their moduli, the

modulus of the integral “1 f(z) dz, which is
2

* Lt £ mod. (2,,,—2,) mod. f(z,),
is ¥ Lt K¥ mod. (2,,,—2,),
and Lt Zmod. (2,,,—2,)=the arc of the selected path from
2, to 2, =8, say, which, by supposition, is finite.
Hence the modulus of the integral is not greater than K .S,

and is therefore finite. Hence the integral itself, r f(2) dz, is
finite. %

1274. When the number of functions f(2), fy(2), fi(2), ... fa(2)
is infinite, the functions being each single valued, or if multiple
valued, the same branch being adhered to throughout the
integration, the same theorem as that of Art. 1272 is true for
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their sum, provided that the sum forms a series which is
uniformly and unconditionally convergent,* and provided the
z-path of the integrations lies entirely within the circle of con-
vergence and is finite; for if we write w;, w,, u,, ... for
these functions, let f(z)=u,+wy+2u,+...+u,+R,, where R,
is the remainder after n terms; and let the series

W, Uy +Ug+-... tO 0
be uniformly and unconditionally convergent for all points
within the region bounded by a circle of radius p, then, when
n is indefinitely increased, |R,| vanishes.

But I FEA dz=r R, dz,
) 1 2
and if |R’| be the greatest value of |R,| along the path of

integration, which is finite, and which lies within and does not
cut the circle of convergence, then

H’ Rodslio [ [Rae|, ie #|R| j \dz),

2 2y
+|R’| x the length of the path of integration
+|R’| X a finite quantity,

and |R'| is zero, by supposition, when n is made infinite;

r R, dz|=0
Zy

©

whence r fl2)dz=>, r w, dz,
P 1 2

where the path of integration is the same for each term of the
series and the conditions of the series are as stated.

. Lt

, and therefore r Rydz=0,

2

1275. CaucHY’S THEOREM.

It was shown in Chapter XV. that if ¢ and \ be any two
functions of  and y which are single valued, finite, and con-
tinuous at all points z, ¥ which lie within or upon a given
closed contour I' of the -y plane, then

(2P O I

* A knowledge of the general theory of infinite series and tests for con-
vergency will be assumed here. The necessary information will be found in
Professor Hobson’s Plane 1'rigonometry, Chapter XIV., or in the T'reatise on
the Theory of Functions, by Harkness and Morley, Chapter IIL
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the surface integral being taken over the area bounded by the
contour and the line integral being taken round the perimeter,
the direction of the integration being such that in travelling
along the arc in the direction of increase of s, the area bounded
by the contour is always on the left-hand side.
Consider the function w=f(z)=f(zr+ y)=u+w, say.
Then w and v being conjugate functions of = and y (Diff.
Cale., Art. 190), we have
8O 10w @iy 4 50 BN
oy ox ox oy
Now, from the above theorem, we have, by two applications,

j(udm 'vdy)——ﬂ o ") do dy =0
and I(’u de+u dy)= I @11,__81; da'dy 0.
Hence f f(2)dz= I(u+w) d(ec+uy)

I(u de—v dy)+ lj(v dax+-w dy)
=0
and the assumption in this theorem is that f(z) is synectic
within and upon the boundary of T' along which the integra-
tion is conducted. That-is, that f(2) is a single-valued, con-
tinuous function which has no infinities, whether pole or
essential singularity, within or upon the boundary of the

contour. -This extremely important theorem is due to Cauchy
(Comptes Rendus de U Acad. des Sciences, 1846).

1276. Deformation of a Path.

When w is a synectic function for a definite region I' of the
z-plane, let ACB, ADB be two z-paths which lie entirely within
that region. Then it follows from Cauchy’s theorem that

B 4
J w dz (along ADB)-}-I w dz (along BCA)=0,
4 B
as there are no singularities in the region between the two paths.
B B
Hence. I wdz (along A DB) =J- wdz (along ACB).
4 A

Hence, as far as the value of the integral is concerned, either

www.rcin.org.pl



DEFORMATION OF A PATH. 425

path from A to B is deformable into the other without alter-
ing the value of j-w dz along it. When one of these paths is
the straight line AB itself, the other path is said to be “re-

B
o

o il
Fig. 378.

concilable with” a straight-line path of integration; and it
will appear that such deformation of the path from 4 to B
can be carried to any extent, provided that this deformation
does not carry any part of the path of integration outside the
boundary of the region I' on the z-y plane, for which the
function f(2) is synectic.

1277. Differentiation of this Integral.

Writing ¢ for z and taking f({) as synectic throughout the
singly connected region I' of the z-plane, and starting from
any selected point z,, viz. 4 in Fig. 378, and travelling along
.any path to 2, viz. the point B, both terminals and path lying
entirely within the boundary of I', we see that the integral
r Sf(§) d¢ is independent of the path of approach of { to the
t;orminal 2. Let F(2) stand for this integral. Then it follows
that F(z) is a single-valued function of z; and it has been
shown to be finite in Art. 1273. Let 2+ Jz be another point
within the region I' infinitesimally close to z. Then F(z+ 6z),

+5
which is r zf () d¢, is also independent of the path of approach
of ¢ to z+z§z. We may therefore select the same path as before
from z, as far as the point 2, together with any additional
elementary path from z to 24 dz lying within the region I, and
along this f({) remains finite and continuous by supposition.
The difference between f({) and f(z) for any point of this
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elementary path is therefore infinitesimal, and therefore we
2+82 .
may write j f(&)d¢ as {f(2)+ €} 6z, where the modulus of ¢

is infinitesimally small, ultimately vanishing with that of dz.
Wherefore F(z-+62)—F(2)={f(2)-+¢} 82, and therefore the
moduli of F(z2+462)—F(z) and 8z are of the same order of
smallness.’ Hence F(z) is continuous at the point z, i.e. at any

point within the region I.  Also ﬂﬁ%@(—z) has a limiting

value independent of the direction of approach of z+dz to 2,
viz. f(z), when |6z| is made indefinitely small. That is F(2)
possesses a differential coefficient. F(z) is therefore a synectic
function of z for all points within the region I.

1278. Definition of Integration regarded as a Solution of the
Differential Equation %—g=f(z).
It now appears that the integral jz f(§)d¢ defined in Art.
2

1266 as the limit of a summation from a definite starting
point z, to a definite terminal point z along any selected path,
both path and terminals lying within the region I, and the
terminals being not within an infinitesimal distance of its
boundary, throughout which region f(z) is synectic, is a

solution of the differential equation %:j(z), whatever the

starting point z, may be. And supposing z, to have been
specifically selected, we may write the general solution of

this equation as y=0+r f(§) d¢, where C is the integral from
2y

any arbitrary point of the region I' along any path lying
within T" to the selected point z,. In fact, we might regard

the notation y=C +r f(§)d¢ as only another way of writing
20

the differential equation, but one which emphasizes the interro-
gative character of the investigation it is proposed to conduct.

1279. Extension of Former Definitions of Integration. Re-
moval of Limitations.

So long then as I' is a singly connected region in the
z-plane in which f(z) has no singularities, whether poles,
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essential singularities or branch-points and the path of
the integration lies entirely within the contour of I' and the
terminals do not lie within an infinitesimal distance of the
boundary, the identity of the summation definition with that of

a solution of the differential equation Z—Z: -f(2) is established.

Seeing that we have a mode of considering any multiple-
valued function of z as reduced to that of a single-valued
function by means of a representation on a Riemann’s Surface,
and under the understanding specified as to the nature of the
function, the path of the integration and the existence of a
differential coefficient, we may now remove the limitations
of the definition of integration as specified in Art. 17, Vol. L,
as to the reality of the variable, and of the function, and the
stipulated condition as to the single-valued character of the
functions dealt with. We may therefore regard the functions
which have been subsequently treated as subjects of integra-
tion, as functions of a complex variable with such alterations
in the several definitions of those functions as may be required
in individual cases to give them intelligible meanings in
consonance with such as they possess when functions of a real
variable.

The proofs of general propositions as to integration given in
Chapter IX. (Art. 321 onwards), which were there established
under the understanding as to reality of the variable and
single-valuedness of the function, are now superseded for the
wider conception of the nature of the variable and the function
by the general propositions of Arts. 1269 to 1274.

1280. Loops.

As the property presupposed for the function w may cease to
hold and the function become meromorphic at certain points of
the plane by virtue of the existence of Poles, Branch Points
or other singularities, it is necessary to consider, in case the
specific region I' should include such points, what paths there
are in this region which are deformable into a straight-line
path from any one point O, which may be considered the
origin, to any other point P of the region. Also we shall have

to consider how the integral J wdz is affected when the path
0
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from O to P is not one which can be deformed into the straight

path OP without passing through one of these singular points.

Imagine an infinitely extensible and contractible inelastic

thread attached at the points O and P to the plane and lying

in the plane. Imagine a pin stuck

perpendicularly into the plane at

a point 4. It will be obvious that

the thread might pass on either side

the pin, or it might loop round it

0 one or more times as in the paths

in the diagram OXP, OSP (which

is straight), OYP or OZP. In the

case OXP the thread path can be

deformed into the straight path

% OSP without moving the pin from

the point 4. But neither of the

(¢) paths OY P, OZ P can be so deformed

Thevs. whilst the thread lies in the plane

without removing the pin. The path OXP is said to be

“reconcilable with ” a straight-line path. But the paths OY P,
OZP are not so reconcilable.

x

1281. The path OY P is “reconcilable with” a loop round 4
consisting of a straight line OB, a portion BCD of a small
circle with centre at 4, a straight line DO’ parallel and equal
to OB, and O'P, and the thread OYP may be deformed into
this “loop and line” without crossing the pin at 4.

The radius of the small circle may be regarded as any
infifiitesimal and the breadth of the canal BO an infinitesimal
of higher order than the radius of the circle, so that the
angle BAD is evanescent; the circle BCD may then be
regarded as complete and the banks of the canal OB, O'D as
coincident. Thus B coincides with D and O’ with O, and the
figure will be as shown in diagram, No. 381. The portion of
the deformation consisting of the small circle and the two banks
of the narrow canal starting from O and terminating at O
after passing once round the point 4 is technically known as

a “Loop,” and the integral dez taken round the circuit
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OBCDO will be called (4), and if U, be the integral along OP
the whole integral for the path will be (4)+ U, the suffix in
such cases denoting the number of loops that have been
traversed before starting upon the portion of the path

indicated by the letter to which the suffix is attached.
P

(%

0 Y
0o o
Fig. 380. Fig. 381.

If 4 be an ordinary point of the plane the region within
the small circle is synectic, as also along the canal, and (4)=0.
The value of w on the return journey DO is the same as that
of w on the outward path OB, and the integrations are of
opposite sign and cancel ; and B
the integral round the small
circle separately vanishes.

No “loop” passes twice
round the same point A4
without first returning to the A
starting point. The canal
of the loop is usually but
not necessarily taken straight
(see Fig. 399, Art. 1294). o’

1282. If the thread ini- 0O
tially lies as in the path Z
of Fig. 379, passing round the pin twice before arriving at
P, a deformation is possible into two loops 4+ a straight path
OP, as shown in Fig. 882, the points 0, 0, 0” being ultimately
coincident. The value of the integration round this path we
shall denote by I=(44)+U, or (4?4 U,.

Fig. 382.
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If the thread passes round the pin n times before reaching
P, the thread-path will in the same way be veconcilable
with # 4-loops + a linear path, and the value of the integral

Iw dz along it will be denoted by I =(A4")+U,.

In the case of a single-valued function the suffixes used
are of no account. But in the case of a multiple-valued
function the return value after traversing a loop is not the
same function as that with which we start encircling the
loop. Hence it is necessary to keep count throughout of the
number of loops passed before starting upon.the next in order.

1283. Next suppose there are two pins stuck perpendicu-
larly into the plane at 4 and at B. There are many varieties
of thread paths along which the thread may lie from O to P.

0" 0
Fig. 383. Fig. 384,

(0]

(1) It may be deformable without crossing a pin (as OXP)
into the straight line OL.

(2) It may, if in position such as OYP, be deformable as
before into an A-loop + a straight-line path OP. I=(4)+U,.

(3) It may, if in a position such as OZP, be deformable
into several 4-loops + a straight-line path OP. I=(4")+U,.
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(4) It may, if in such a position as OT P, be deformable into

a B-loop or into several B-loops + a straight-line path OP.
I=(B*-+U,.
(5) It may be that the thread path surrounds both pins several
times, and then the system is deformable into a set of 4-loops
and a set of B-loops together with a straight path OP, in
which case B may be encircled as

many times as 4, making each time (I)r= %;g))j— +U5-
a double circuit, or there may be (ABYy*+( Azg) 1Y

more surroundings of one pin than

of the other. or (AB)"+(B})+ Usnyy-
The notation for the integrals will explain itself.

1284. A loop round 4 and then round B will be called
a “double loop.” This P
term is often confined
to the case when O lies
between the points in

question.

A double loop is de- T
formable as shown in (o) A
Figs. 385, 386, and

I=(4B)+ U, e e

In the same way, if there be several pins 4, B, C, D, say four,
any thread path such as OXP may be deformed into four loops
- and a straight path, and the integration will be represented by

I=(4)+(B)+(C)+(Dy)+ U, (Figs. 387, 388),

P

C e R
B A
Fig. 386.

or if the thread encircles a pair of pins as in Fig. 389, the
deformation and its integration will be represented by

I=(4)+(B)+(do)+(By) +(C)+ (D) +Us
or (4B)+(A4B),+(0)+(Dy)+ U,
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If the thread encircles three pins ABC, as shown in Fig. 391,
the deformation and the integration will be indicated by

I=(4)+(B)+(Cy) +(4dy)+(B)+(C)+(De)+ Uy,

and similarly in any other case.

0 ar
Fig. 387. Fig. 388.

It will appear in general then that any thread path may be
deformed into a system of loops + a straight-line path,
however many pins there may be.

/
/

Fig. 389. Fig. 390.

1285. Method of Exclusion of Poles.
When a pole exists within a contour I' at a point z=a and
not within an infinitesimal distance of the boundary, it may

www.rcin.org.pl
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be excluded from the integration by the artifice of altering
the boundary, as indicated in Fig. 892, by the introduction of
a loop so as to exclude the pole from the new contour I'.

P
A
B ; i
O D
o} C
Fig. 391. Fig. 392,

A small circle EFG is drawn with centre at the pole O (viz.
z=a), and two adjacent points of it KG are connected with
two adjacent points DH of the original contour forming a
narrow canal. We then regard the boundary of the contour
IV as the curve ABCDEFGHA, and integrate round the
amended contour.

@

Fig. 393.

The breadth of the channel DEGH may be taken as zero
throughout its length, and it may be taken as straight, so
that the portions of the integration of a single-valued function
along DE and GH cancel each other, and it leaves us with

www.rcin.org.pl



434 CHAPTER XXX.

the theorem that J-f(z) dz, round the outer boundary in the
sense of the arrow at 4, +If(z) dz round EFG in the sense

of the arrow at F, vanishes, it being supposed that f(z)
possesses no singularities other than that at z=a, which lie

within the region I'. That is, the value of j-f(z) dz, taken
round the outer boundary in the positive sense, i.c. leaving
the region always to the left-hand, is equal to j f(2) dz, taken

round the inner boundary in the same sense relatively to
the region bounded by and lying within the inner contour,
as indicated in Fig. 393.

1286. The Integral J‘_#)(_z) dz.

Suppose then that f(z)— ¢( ) , where ¢(2) has no factor z—a
so that there is a pole of f(2) at, z=a, at which f(2) becomes

infinite, and that the point @ is not within an infinitesimal
distance of the nearest point of the boundary.

To consider the value of | f(z)dz taken round a small

circular contour with centre z=a and small radius p, which
will not cut the boundary, put z=a+ pe.

Then _d_z(L:‘ d6, and if p be infinitesimally small we may

put p(z)=¢(a).
Hence jgb( )dz—j¢(¢t)lr19—1¢(a)j dO0=2mip(a).

This then is the value of the integral conducted round the
small circle, which is therefore, by the previous article, the value
of the integration round the outer boundary of the contour.

hus _‘.Z)—izi dz, taken round the outer boundary of the

contour I', =2mp(a).

Supposing, however, that the point a lies upon the contour
along which it is proposed to conduct the integration, at a
point of the contour at which the curvature is finite and
continuous, it may still be excluded by travelling round it
along an infinitesimally small semicircle with centre at ¢ and
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lying within the bounded region, cutting the contour at
P and @ Then after putting, as before, z=a+ pe*?, the limits
for 6 will now be from —e to —(e+ ), where —e is the value
of 6 at commencing the small semicircular path at P, and
—(e+) is the value when the contour is recommenced at Q.
We then have

L S
() taken round the whole contour (eFx)
j e?—a (excepb the infinitesimal arc PQ)+ gludag=cd,
that is, Prin. Val. of J‘g dz=mp(a).

¢ (2) dz
(2—a))z—a,) ... (2—a,)

Similarly, if there be several poles of f(z) lying within the
contour I' and none of them within an infinitesimal distance
of the boundary.

Suppose z=a,, 2=a,, ... 2z=«,, to be these poles.

1287. The Integral I

Let f(z)E(z—al)(z——(ch)). R where ¢(z) is of degree n,

say, in z, and possesses no factors z—«,, 2—a,, ... or 2—a,.

By the rules of partial fractions, we have a result of
the form

R =Kp 2 K, g2 bl K 2 K
ST $(a) 1
+IZI (as—a’lxas"aﬂ) ( ar) g (1,
where the factor a,—a, is omitted from the denominator
and 7 is supposed not less than 7, or if n be less than » the
integral polynomial part is absent.

The first part of this expression, down to K, constitutes a
function of z with no poles within the contour T', and therefore
its integral taken round the boundary of I' contributes nothing
to the whole integral. We may construct a loop for each of
the infinities and proceed as in the case of a single infinity.

The term involving —15 taken round a small circular

contour with centre a,, contributes to the integral
p(a)
(al_al)(a'-!—aZ) " (as_ar)
this small circle being taken of so small a radius as to exclude
all the other poles and not to cut the boundary.

. 27,
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Hence the whole integral taken round the contour, viz.
f(z)dz, being equal to the sum of the integrals round the

small circles which surround the several infinities,

P (%)

Uy—ay) ... (@ —a,)’

ISt b e

Fig. 394.
r
the factor a,—a, being omitted, =2mz As, say, where the
1

value of A\, may be reproduced as Lt;_odf(a,+9), i.e.
B $(a,+9) ,
(a,+38—ay)(a;+6—ay) ... (@, +5—a,)
and similarly for A,, A,, ete.; or by the ordinary rules of
partial fractions.
The effect of pole-clusters within a contour will be discussed
in Art. 1317.
1288. Effect of a Branch Point.
If the function w be multiple-valued, say two-valued, but each
branch being continuous and finite and possessing a differential
coefficient at all points of a certain region I' of the z-plane,

Cauchy’s theorem as to the integral of j'w dz from a point 4 to a

point B of this region along a path which does not pass beyond
the boundary of T'is still true, provided that the paths from 4
to B belong to the same branch of w; and as long as the paths
ACB, ADB of Fig. 378 are both finite paths of the variation
of w, lying entirely in the region I, or both finite paths of the
variation of w,, the theorem stated is still true, viz. that

le dz along ACB=[w, dz along ADB

and jwz dz along ACB =jw2 dz along ADB.

Www.rcin.org.pl



EFFECT OF BRANCH POINTS. 437

When, however, the z-path encircles a branch point in one of
these paths from 4 to B, the functions w, and w, interchange

values, and the integrals of jw dz along two such paths may
differ.

1289. For instance, in the case of the two-valued function w defined
by the equation w?=1+2z, we have two branches
w, = +’\/l +2z, W= —\Im,
and there is a branch point at z= —1, and, as will be seen later, one also
at .
To examine this case, put z= —1+7re®, and let z travel round a small
circle of radius r with centre at z= —1, and let us start with the branch
wy= +NTFz= +n/re?.
P

Then, in encircling the point —1, § increases to §+42x and ¢’ becomes
ot (0+2m)

" Hence w has changed from Nre® to /ret @M o to e"n/re'?, and has
become —\/:e_, t.6. w;.

Now, any path from O to P will be reconcilable with (1) a number of
loops round —1, (2) a straight-line path, and the integral will be

I=(4") +u,.
Now, (1) in case of a path such as OXP, which is reconcilable with the
straight line OP (Fig. 395), we have

I= f w, dz=1,.
(2) In case of a single encirclement of the branch point
(A)=f w, dz+/wl dz+fD w, dz,
where f represeuts the value of the integration round the infinitesimal

circle ; and this= { 's/re‘"(tre‘o) df, and vanishes when r is indefinitely
small.
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4y »
The third integral jf wyde= - ﬁ oyl ﬁ 0 0 o e

S (A)=2 '/;_l wy dz.

We thus arrive back at O with the value w=1w,, and with this value
must continue along the line OP.

Thus, u,=£ wedz= — 1y,
where %, is the contribution of the path OP after one encirclement of 4-
The whole integral is therefore
-1
I=2 , dz —ug.

(3) If there be two circuits of the loop before reaching P, we have
e

I=(4)+(4) +us= f wldz+/;w, dz+/:w,dz

ol -
+ A 'w,dz+'£w,dz+/:w,dz+j; w, dz,

which is evidently =u,, and we note that (4,)= —(4).
(4) It will thus appear that if there be n circuits round the branch point,

1401 2 1)n]f°"wldz+(—1)nuo.

1
The value of the integral /: NT¥zdris [3(1 +.1:)&]o_l= -3
Hence the values of the integral for the different paths are :

(1) direct path, U}

(2) one loop+direct path, -4—u,;

(3) two loops+direct path, 1,;

(4) three loops+direct path, —4—u,;
and so on, alternating in value.

Hence, if u= /: NI+zdz, and z is thence regarded as a function of u,
say z=¢(u), we have z=(up)=P(—4—u), indicating that two values
of the argument lead to one and the same value of z.

1290. In the case of any branch point at a point z=a of a
function w=f(z—a), which is such that Lt,_,|f(z—a)dz| is
zero, as in the case considered in Art. 1289, the contribution
due to the circular portion of the loop is zero, being

2w
'[ f(re®) e do,
0

and vanishing with 7, since Lt,_o|7f(re?)| vanishes; and the
only contribution from the loop is that due to the two banks
of the canal portion of the loop.
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If the function w be two-valued, it has been seen that in
passing round the branch point w, and w, interchange values,
and the contribution of the loop is

a 0
I=J wldz-i—j wldz—{—j w,dz ; A
0 ¢ a i
and in the case considered, viz. 0.@\
Lt,_ 4w, dz| =0,
I w, dz=0, Fig. 396.
[

whilst r W, dzzr w,dz and I= QIa w, dz=(4).
a 0 0

1291. More generally, if the function be n-valued, such as
Wr=z=—re",
1 1
so that w=7r"[cos (0+ 2\7)+sin (04 2A7)]",
1 40
where A=0, 1,2, ... n—1, each branch w,—a*7"e", where a=one

of the n' roots of unity, changes into
1.0
ws+1=a’+1r"e”,
and there is a cyclical interchange of the value of w as we
pass round successive branch points, so that w,=aw,, wy=aw,,

and so on, and a"=1. (See Art. 1259.)
So in this case, I=J.a w, dz—i—r w, dz
[} a

- becomes I=(1-— a)."a w, dz.
)

1292. To return to the case of a two-valued function, if
after a description of the A-loop, starting from the origin
with value w=w,, we pass along a second loop round another
branch point B, we start off along the second loop with the
value w, and return with the value w,, and for the two loops

A Izjawldz+'[ wldz+rw2dz
0 c a
b
+I wgdz-}—j wzdz—{—rwldz
0 ¢ b

o b
=2j w, 3—2“‘ w, dz
N ¢ by g
Fig. 397. =(A4)—(B), say,
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and this we shall call (4B) for shortness, so that
(4B)=(4)—(B).
Similarly (ABC)=(4)—(B)+(C),
(ABCD)=(4)—(B)+(C)—(D),
and so on.
It alsc appears that in a double looping of the same branch
point 4, we have
(44)=(4)—(4)=0.
In a triple looping of 4,
(A44)=(4)—(4)+(4)=(4).
These peculiarities are indicated in the notation
(A2n)=0’ (A!'H'l):(A)‘
So we have
(AB)=(4)—(B), (BA)=(B)—(4), (4B)+(B4)=0,
(4BC)=(4)—(B)+(C)=(4B)+(C)=(4B)+(C)—(4)+(4)
=(4B)+(C4)+(4),
(4?BC)=(44BC)=(4)—(4)+(B)— (C)=(BC)=(4C)+(B4),
(4°BC)=(4)—(4)+(4)— (B)+(C)=(4B)+(C) or (4)—(BC)
or (4)+(CB).
For a double lcoping of any pair,
(ABAB)=(4)—(B)+(4)—(B)=2(4)—2(B).
For n-encirclings of 4 and B we may write
t4AB)"=n(4— B).
Again, (B)=(B)—(4)+(4)=(B4)+(4),
(BCD)=(B)—(C)+(D)=(B)— (C)+(D)—(4)+(4)
T =(BO)+(D4)+(4).

1293. It appears then that to integrate round any com-
bination of these branch points, the whole can be expressed
linearly in terms of integration round any one loop, say the
A-loop, together with an integration round a combination of
double loops round pairs of others; and each such looping
of two branch points is expressible as the difference of the
integrals which accrue from integrating round each of the
separate branch points of the pair. And further, that for a
two-valued function the value of the function on final arrival
at 0, and before starting on the straight part of the path
from O to P, depends upon how many times the path has
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surrounded a branch point, and the final integration along the
straight path adds +wu, if an even number of circlings has
been effected, and —u, if the number be odd.

Thus, if O be the origin, and there be branch points at
4,B,C,D,E,F, G, H, a path in which B,C, 4, D,E, F, A, H
are successively looped before returning to O, and then passing
to P, will give the integral of a two-branched function

(B)—(O)+(4)— (D) +(E) — (F)+(4)— (H)+ (—1)%u,,
and integration for a path for the loops round B, C, 4, D, E
will give
(B)—(C)+(4)— (D)+(B)— (4) +(4) + (— 1) u,,

and these may be respectively written
(BC)+(AD)+ (EF)+(AH)+u,,
(BC)+(AD)+(EA)+(4)—v,.

Now, if there be n critical points 4, B, C, D, ..., there are

n(n—1)

3 sets of differences (we omit the brackets for short),

A—B, A-C, A—D, A—E, ...,
B—-C, B—-D, B—E,...,
C-D, C—E,...,
D—FE, ...,
and only n—1 of them are independent, say
: A—B, B—C, C—D, D—E,...;
for any other, such as B—E, may be expressed as
(B—C)+(C—D)+(D—E).
Hence the value of Iw dz taken along any path from O to P
must take one or other of the following forms:
A (AB)+u (BC)+v (CD)+ ...+« (EF)+u,,
or N (4B)+ ' (BC)+v' (CD)+ ...+« (EF)+(4) —u,,
where A\, u, v, ..., ', ', v/, ..., are integers, positive or negative.

1294. If there be no branch point at infinity, and if w
remains finite and continuous for all other points of the z-plane,
an infinite circle, with centre at the origin, will contain all the
branch points, and can be deformed into a system of loops,
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each passing round a branch point once, as in Fig. 398; or in
case they lie in a straight line, as in Fig. 399 ; and the region

Fig. 398.

between this circle and the loop system being synectic, we have
[w dz,taken round the infinite circle, =(4)—(B)+(C)—(D)+...,
and |wdz round the infinite circle will be a definite quantity
which, in such cases as
1

(z—a,) (z—a,)(z2—a;) (z—a,)

- gl
(E—a)(e—a,) e—ay)(e—a,) (e —a;) (z—ay)’
will vanish. For, taking the first of these, and putting

2z—Ret (R—nod), d?z=z de;

W=

or 90—

1 27, dO
Iw dz:j;z—d#: f ‘Fg,=0, when R=x

and similarly in the second expression

@ D= =)

Fig. 399.
Thus in such cases there is a relation amongst these differ-
ences, viz. 4)—B)+(C)—(D)+...=0.

In the case of four branch points, the independent differences
will reduce from three, {(4)—(B), (B)—(C), (C)—(D)}, to two,
say (4)—(B), (B)—(C).
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And the forms possible for the value of the integration

along paths from O to P will be comprised in
I=X (AB)+ p (BC)+u,,
I=X(4B)+ 1 (BO)+(4)—u,.

1295. Representation for Large Values of z; Branch Points at
Infinity.

To represent the nature of the function for values of z at an
infinite distance from the origin, take a third variable 2/, such
that zz’=1, and represent the travels of 2z’ on a plane of its
own. Then, for points z on the z-plane which are at great
distance from the origin O, the points 2’ on the 2’-plane are
near the new origin O on the z’-plane.

Taking the function 2

N Je—a)e—a) e—ag) .. (—a)
which is a branch of a two-valued function, let us find the
branch points.

Let O be the origin on the z-plane 4,, 4,, ... 4,, the several
points 2=a,, z=da,, 2=4a,, ..., and let P be the point z.

Let z=d,+rei=ay+retr=a,trel=....
1
\/;17‘2”‘3 b e'-(91+0|+9-a—'r'-—5-

Let P describe a small circle round any one of the points,
say ;. Then, after the completion of this circle, r,, 7,, 7y, ...
and 6,, 0,, 0, ... have resumed their original values, but 6, has
become 6,4 2.

Then W, =

Hence the function w, has become t.e. —w, or w,, and

therefore there is a change of branch at 4,. Similarly at
4,, A,, .... Now consider the case when z=o

Using the other representation we have, writing al:a_l”

a,=—;, ete.,
Ay
J Ry 2oy s B S
Ay O Qg .. Ay 2

e m s faw Tarcaat

and we have to consxdor the behavxour of this function for
values of 2’ near the origin 0" on the 2z’-plane.
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Putting z'=re?, we have ultimately, when r is very small,
B ne
w=nr% 2 and when 2’ is made to describe a small circle of

radius r about the z-origin 0, " has changed by 27, and the
function becomes multiplied by e, i.e. by
(cosmm+4sinnw) or cosnw.
Hence if » be even, w, remains unchanged, but if n be odd
w, changes into —w,, 7.e. there is a change from branch w, to
branch w,.

1296, Thus, in the cases

'w=——1——____ and w= : ,

N(z—a,)(z—ay) V(z—a,)(z—a,) (z—ag)(2—a,)
there are respectively two and four branch points, viz. z=a,
and z=a, in the first, and z=a,, 2=a,, z=a,, z=a, in the
second, but none at cc.

But in the cases

= : and w,= :

" Ve—a)(z—a,)(z—ay) Y V= ay) (e—ay) (2—ay) (—a,) (a—ay)
there are branch points at «,, a,, @, in the first, and at
a,, ay, ag, @,, a5 in the second, and in both these cases there is
also a branch point at .

In the latter cases the loop system, when represented on
the z-plane, will be as discussed previously, the origin being
also a branch point. But if represented by loops on the
z-plane, we have (taking the case of three factors) a,, a,, a,, ©
as branch points at 4, B, C, D respectively, the latter at infinity,
and, as in Art. 1294, there are apparently three independent
pairs of differences, which we may take as (4D), (BD), (CD).
But writing w={(z—a,) (z—a,) (z——a:,)}_i, we have

(AD)=2 rw dz, (BD)=2 rw dz (CD)=2 r sy

and we shall show that (BD)=(4D)+(CD), which reduces the
three apparently independent pairs to two really independent

ones. For | wdz taken round any finite contour in the finite

part of the z-plane, which does not include 4, B or C and
cannot include D, vanishes; and such a contour is deformable
into an infinite contour, such as indicated in Fig. 400, with
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loops excluding the branch points. Therefore |wdz round this

deformed contour also vanishes. For convenience this defor-
mation may be taken as a circle of
infinite radius centred at the.origin,
with four loops excluding the branch
points, the canals of 4, B, C being of
infinite length and that of D finite.
The contribution to the integral

_‘.wdz which accrues from these

loops amounts to (4) - (B)+(C) - (D),
v.e. to (AD)- (BD)+(CD). The re-
mainder of the contour, which
consists of infinite circular arcs,
along each of which the same
branch of w is adhered to, and which
each extend from the canal of one loop to the canal of the
next, contributes nothing to the integral. For taking any of
these arcs, say from 6=a to =4, where z=Re*’ and a<B<2,

we have J.w a7 J-ﬂ 2w dO, and therefore

a

Fig. 400.

8 8
mod. j'w dz=mod.j zwdf ¥ j mod. (zw) db.

But mod. (2w) tends continually to a limit zero as mod. z is in-
definitely increased, and if K be its greatest value for points

g
on the arc from =qa to 6’=,3,I mod. (w) df is positive and

< K(B—a), and therefore also tends to a zero limit. Hence
the whole integral for the deformed contour is that due to
the four loops only, viz. (4D)—(BD)+(CD), which therefore
vanishes. It follows that the only possible values of the integral

uzr da are of one or other of the forms
z \/(Z'_a'l) (z—a,)(z—ay)

P(AD)+-q(BD)+1r(CD)+u,,
or P (AD)+¢ (BD)+7'(CD)+(4) —u,,

where p, ¢, etc., are integers, and that by virtue of the relation
(BD)=(A4D)-+(CD) these further reduce to

A(AD)+u(CD)+u, or N(AD)+u(CD)+(4)—u,,
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where A, u, X', &’ are integers, and u, is the value of I wdz by

any straight-line path from z to oo, which does not passz through
4, B, or C.

1297. From these considerations it will follow that, if a
qua,ntity 2 be defined as ¢(u), and given by

4 J’ dz
o (z—a,)(e— ay) al)(z—a,z)
the possible forms of the result being limited to
w=A(AB)4u, or u=A(AB)+(4)—w,,

and the same point z being attained for either of these values
of w, we must have, when we regard z as being expressed in
terms of 1, 2= () = $[A (A B)+ o),
or =¢[A(4B)+(4)—w,].

¢ must therefore be a periodic function such that an addition
of (4B), i.e. (A)—(B), to the argument any number of times
makes no difference, and also that, if (4) be added to any
number of sets of integrals round double loops (4B), the same

will be true if the sign of u, be changed.
In the cases

r w dz, say,
0

g dz z dz
z“'/(‘T_al)(z_aQ)(z'—a’S) P u=.[0\/(z_”'1)(2_‘“2)(2_“3)(7_“4)’
since w=X\(4B)+ u(BC)+ .

or N (AB)-+u(BO)+(4)— 1y

in both cases, for 4, B, C are any three of the four branch
points, we have

¢ (w)=3[\ (4 B)+u (BO)+u,],
or = [N (4B)+ ' (BO)+ (4)— ],
and a double periodicity of z=¢(u) is established.

1298. Period Parallelograms.

A geometrical illustration of this double periodicity may be
given.

Let ¢(z) be a doubly periodic function of a single complex
variable z with independent periods w, o', viz.

w=a+B o=d+F,

rrrrr
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so that  ¢(2)=¢(+w)=¢(z420)=...
=¢(2+w)=¢(2+20)=...
=¢(Z+w+w')= =4}‘)(Z—-|-pw+qtol)= S
where p and ¢ are any integers, positive or negative.
Referred to any set of rectangular axes in the z-plane, the

points (0, 0), (a, B), (a+d’, B+B), («, B) are the four corners
of a parallelogram (Fig. 401).

=

Fig. 401.
The adjacent sides of this parallelogram make angles
tan—! é» tan’lé, ’
a a

with the z-axis. It is called a period parallelogram.

The four points, pa+ @B, (p+1)a+:(q+1)B,
{p+Data}+dlg+1)B+B}, (pata)+i(gB+pB),
will equally form the angular points of a pavallelogram of the
same size and shape as before. The whole z-plane may be
regarded as mapped out into a network of such equal parallelo-
grams by giving to p and ¢ all integral values. As z travels
over the region bounded by any one of these parallelograms,
¢(2) ranges through all the values it is capable of assuming.
If 2 travels into other parallelograms on the z-plane the values
of ¢(z) are merely repetitions of the values it attained at
corresponding points within the first parallelogram. Thus
points similarly situated with regard to any elementary

parallelogram of the network give the same value of ¢ (2).
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1299. If ¢(z) be Synectic throughout I', so also are its
Differential Coefficients.

We shall next show that when ¢(2) is synectic within and
upon the boundary of a given region bounded by a closed
finite contour I, all its differential coefficients are synectic
within that region.

We have seen that if a be a point within the region and
not within an infinitesimal distance of the boundary,

@) =gy [2E as

taken round the boundary of I', where z=a is not a zero of
o(2).

Let z=a+da be an adjacent point to z=« within the
contour and not infinitesimally near its boundary.

Then $(at8a)= lj flek gy

2mi)z—a—da
taken round the boundary of I, and therefore
platé0)—s@=5r [+ {0552
Now, by division,
1 Rl i da (6a)?
z2—a—da z—a ' (z—a)' (z—a)l(z—a—da)
Therefore

platd0)—p()=5 I¢(){(z ot e )

a)?(z—a—da)
round the boundary; and the definition of a differential
coefficient is that it is the limit, if there be one, of

Pt —¢(@) (44, 1239
da

when |da| is made indefinitely small. Hence we may put
¢(a+da)—p(a)={P'(a)+€) da,
where ¢ is something whose modulus ultimately vanishes with
|al.
We may therefore write

; I 1 da
\ (a)+e=ﬁj¢ (z){(z a)2+ (z-—a)g(z—a——&c)} b
¢(2) " ¢(2)dz
i o 21n,\-(z a)zd o +27r1j(z ap(z—a—éa)’ " 3450
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and therefore the moduli of the two sides of this equation are
equal. And since the modulus of the sum of two complex
quantities is less than the sum of their moduli, and the
modulus of the product is the product of the moduli, we have
mod.[right-hand side] < mod. €+mo2d 5 mod. ,[(v—a)2 (z(i)a da)
Let K be the greatest of the moduli of the values of the
integrand as we travel round the boundary, which is a finite
quantity since ¢(2) is finite and z—a, z—a—da are not
infinitesimally small. Then the modulus of the integral in this
expression is less than K x Perimeter of Contour, which is a
finite quantity, the perimeter being supposed of finite length ;

*. mod. [¢ (@)— 2.,,., J.(;b(?)ﬁd }

< mod. e+2—7r .mod. da X Perlmeter of Contour.

Hence diminishing mod. da indeﬁnitely,

mod. [q&’ (a)— §7r7 (z¢ (2)2
Therefore ¢'(a)= j ¢(2) dz,
27 ) (z—a)?

the integration being in all cases taken round the boundary
of the contour.
In the same way we may prove

@) g,

ete.
’m (z—a)? i

For if z=a+dJa be a point within the contour and not
within an infinitesimal distance of the boundary, we have

Fid-+da)= 2m = OL(Z)m)2 da,
¢'(a+da)—¢'(a) _ 1 1 de
st da T om j ) [(z —a—6a)? (z— a)”]

“am I #(2) [(z a,)3:| aat+d

where mod.  vanishes with mod. da,

$(2)
2mj(z L e
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It appears therefore

(1) that ¢ (aj—_&gl__:ﬁ;(q_) approaches to and ultimately differs

by less than any concelvable quantity from -I(z¢(2)3 dz,

when mod. da is made to diminish indefinitely without refer-
ence to the way in which the indefinite approach of the point
a+da to the point a is conducted. Hence ¢'(«) is a function
of a which possesses a differential coefficient ;

(2) since ¢(a) and ¢p(a+da) are by supposition single-valued,
p(a +6a) p(@) .

the expression is also single-valued, and also
its limit; so ¢'(a) is sv,ngle valued ;

(3) ¢'(a) is finite; for its equivalent —j( $(2) sdz is such

that the integrand is finite for all points upon the contour,
since the point a is not at an infinitesimal distance from the
boundary, and the boundary itself is of finite length by
supposition ;

(4) for any positive infinitesimal change in |da| there is a
change

(9 a+s0) = @)+ dul {25 [ 2 +o}|
of the same order as [da| in |¢'(a)|. Hence ¢'(a) is con-
tinuous.

Hence ¢’(a) has a differential coefficient at the point a, is
single-valued, is finite and is continuous. It is therefore
synectic at any point a within the specified region for which
¢(a) is synectic.

Also ¢"(a)—2m I( () dz,

z—a)?

the integration proceeding, as before, round the boundary.
And the argument may now be repeated with this result to
establish the successive equations,

# (0= [ da.. =g [

27 ) (z—a)+1

all of which functions are synectic in the region for which
¢(a) is synectic.
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1300. Taylor's and Maclaurin’s Theorem.

We may now proceed to establish Taylor’s Theorem for the
expansion of f(a+7%). Let f(2) be any function of z which is
synectic within and upon a given
circle €' with centre at z=« and
radius p, and suppose z=¢ not
to be a zero of f(2). Let «+h be
another point within this contour
and not within an infinitesimal
distance of the boundary.

Then

fla+h)= : f 2, 0 Fig. 402. ¢

T o) z—a—h

the integration bemg conducted round the boundary.
Now, by division,
ik il L
z2—a—h z—a+(z—a)2+(z—a)3+ W
4 hn Jntl 1 i
(z—a)"+1 (z— a)"+1 z—a—h’

oo f(a+}‘)__jf( [z B (z a)2+ )3+

hn + I obdls ] P

+(z a)™l ' (z—a)" z—a—h

.[ f(z) di- hg f(z))2 du +h2-‘-(zf(~))3 dadn

a2

= @)+ C‘)+gf"(a)+---+i;—';ﬂ”)(a)+ R,,

27l't

Jntl : |
where R,= e j(z— ay +r(z_:a_h)dz taken round the circle;

and putting z=a+ pe?, we have
R )
27 prlz—a—h

_IO)

e— mode

n

Let the greatest value of be K, which is finite

since |f(2) | is finite at all pomts w1thm the circle, and the point
2z=a-}h is not within an infinitesimal distance of the boundary.
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1 |Antt) (2=
Then |Rn|21>2— — K de,
m| p" Jo
; hin
v.e. |R,| % a Ak 6

and |h|<< p, so this may be made less than any assignable
quantity, however small, by increasing n indefinitely.

Hence the convergency within the circle of radius p is
established, and the usual form of Taylor's theorem still
holds for a complex, viz.

Fath)=f@)+hf @+ b @)+ .. to

for all points within a circle of centre @ and radius > |(a-%)|,
provided f(2) is synectic for all points within this region.

If the origin be at the point z=a, 7.e. =0, we have the
same result as for Maclaurin’s theorem for a real variable, viz.

h2 "’
FR)=f0)+1f (0)+5;/"(0)+...,
with the same limitations as before.

1301. Definite Integrals obtained by Contour Integration.

Cauchy’s Theorem of Art. 1275 is of great use in establish-
ing in a rigorous manner many results in definite integrals
and in furnishing new results. In such investigations the
form of w as a function of z is at our choice, and the particular
contour of integration is also at our choice.

Consider the integration of f zt_l__za round amy closed contour, a being
supposed real.
B It follows from Arts. 1275 and 1286,
that the result of this integration is
(1) 2me, (2) m or (3)0,
according as
(1) the contour encloses the point

/ k
E . ot =

(2) the contour passes through z=a
with continuous curvature at
the point ;

(3) the contour is such that z=a lies
outside it.

T L—
Fig. 403.

Take as contour a circle of radius R (drawn as > « in the figure) and
centred at the origin.
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Put 2=Re*’; then dz=tRe®df ;
. '/’2" Re®. . df
" Jo Re¥-qa

2r  Re'Y(Re~*’—a)
R?—2aR cos 0+a?

=2m, m or 0, as R>a, =a or <a;

whence /0 df=2m, w or 0 in the three cases ;

2 R—acosf 21 T
whence /0 F—oaRes i W=F (B>, 3 (B=a) 0(R<a)
2w sin 6

and 5d0=0

o ft*—2ak cos b+ a?

in any of the cases, results which may be readily verified by direct
integration.

ckz
1302. Consuder the integration of w= 97, where k is real and positive,

round a contour bounded by (1) an infinite semicircle BCD, centre at the
origin of the x-y axes, radius R (=), (2) a small semicircle EFA, centre
at the origin and radius r, concave in the same direction as the former, and
(3) the two intercepted portions of the x-axis, viz. DE and AD.

w has a pole at the origin. The small semicircle excludes this pole.
Examine the behaviour of the function when z is infinite.

kRed  ,—kRsin kR cos 6) + ¢ sin (kR cos 0
el "o x w=est _e {cos( cRew) ¢sin( )}’

and therefore vanishes in the limit when R is increased indefinitely,
so long as sin @ is not negative ; that is from @=0to §== inclusive.
There is no pole in the region described, and w is synectic throughout

the region. The total integral f wdz taken round this perimeter therefore

vanishes. To estimate this we consider c
the integrations :
(1) from 7 to R (=) along the z-axis ;
(2) from =0 to == round the great
semicircle BCD ; F
(3) from — & to —r along the z-axis ; 1o\
(4) from @=m to #=0 round the small
semicircle ZF4.

(1) Along AB, y=0 and dz=d», and the corresponding contribution

w kz

to the whole integral is f %— dz.
T

(2) Along BCD, R=constant, z=Re*, ‘—i;=td0, and the contribution
to the whole is

kz "
";;_ dz=j;' ekRe? a0 =j; e~ FR 800 (605 (kR cos §)+usin (KR cos 6)} d,

which ultimately vanishes when 2 increases indefinitely. Therefore
there is no contribution from this part of the integration.
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ed:z —r ok ¢ 3 i
(3) Along DE, P4 dz=/ 1*= dz, and as @ is negative we write —2
for x, i

0 o—ikz
LiFEy
r x

which is the contribution for this portion DE of the integration.

0
(4) Round the small semicircle the contribution is / ekre?, dg, and r
”

being infinitesimally small this becomes ~ ‘L «df=—m.

Hence, summing up,

© gtk ® ,—uka
f —dz+0— de—m =0,
r X r x
“.e. in the limit when 7 is indefinitely diminished,
® kz — g—ikZ LIPS
f S de=ur or f - =%,
0 z (i SR 2

k being supposed positive, which is in accord with the result of Art. 993.

3 kz
1303. Consider f :_—adz, where k is a real positive quantity and a is a

complex, viz. a+tf3, in which 3 is positive.
We take as contour the z-axis, an infinite semicircle whose centre is
B at the origin and radius R (=«), and an
infinitesimal circle of radius 7, and centre
at the real point (a, (), which, since f is

F_E positive, lies within the great semicircle.
Q ~There is a pole at z=a, which is excluded
D by the small circle. Examine the behaviour
(o} o A elkl
Fig. 405. of Nhew s when z is infinite. Put z=Re‘®.
e~ ¥R sin (005 (LR cos @)+t sin (AR sin )}

Then w= , and therefore, as in

Re®—a
the last case, ultimately vanishes when R is indefinitely increased,
provided @ lies between 0 and 7 inclusive.

There is no pole in the region between the two circles, and w is synectic

throughout it ; and f wdz=0 when taken round the boundaries in opposite
directions.

(1) Along the z-axis z=z, and we have as the part contributed by
integrating from C'to 4, 7e. — to o,

fao ok pe f’a (z—a+fB)(cos kx+ sin/c:t)dx

—wz—a—tf J-n (z—a)?+ (32

_ [? {=—0)cos kx— Bsin kz} ® (==
B —® (z—a)2+32 dx-*-b-/—w

a)sin kz+ 3 cos kx

@-p+f =
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(2) Round the infinite semicircle, we have a contribution
i IkRB‘ = ¢g—kR sin @
j - e Re® df— / e {cos (kR cos 8)+¢ sin (kR cos §)} Re
0 Re* Re® —a

which, by virtue of the ultimately zero factor e *R51¢ adds nothing,
R being absolutely infinite and sin @ positive.

() de,

(3) Round the infinitesimal circle DEF, put z=a+re?.

The integration round the perimeter must give 2mie®*@*+#) according
to the general resuit of Art. 1286, 7.e. =2 (v cos ka — sin ka)e™*® ; whence,
as f f(z)dz round the outer boundary ABCOA is equal to that round
DEF in the same sense, we have by equating real and imaginary parts,

? (- a)cos kx— [Bsin iz
% (x—a)’+ 3%

® (x— a)sin kz+ 3 cos kx
it (x—0)+ 3

which may be written

Jm cos (km+tzm“‘ x—f—a) A

o N@-a)+p?

fm sin (k:t+tan“x€a>
S —— O ==
—® J(z—-a)‘~’+B”

1304. In the case where B=0, the centre of the small circle lies on the
z-avis and a semicircular arc DEF, of radius r and centre at «, O,
replaces the complete small circle before B
considered.

To consider the effect of this, we integrate :

(1) from C to D, (2) round DEF,
(3) from F to A, (4) round ABC.
For (1) and (3), we have 3
C O DaF A

—r etk
. ( /ﬂ f ) dz‘, Fig. 406.
atr

i.e. when 7 is infinitesimally small, viz. the Principal Value of

@0 ez
e
f da.
— X —Q

For (2), putting z=a+re’?, %=L d@, and the contribution is

dx= —2re~*Fsin ka,

de=2me %P cos ka,

= —2we~*B5in ka,

2me~*B cos ka.

(0
j ek(atred) go_ _ ke
”

r being infinitesimal.
For (4) we have, as before, a contribution nil.
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Hence ultimately, » being indefinitely small,

f wdx—r(c cos ka — sin ka) =0,

— Zr—a
0
i.e oy e = —sin ka, Led ] g
vl il Principal Values being taken in
paR
: / sin kx de o it oSk each case.
—-— =

ez _ gtz

1305. Consider the integration / dz, a and b being real and

positive, taken round a contour consisting of
(1) the positive portion of the x-axis ;

W (2) an infinite quadrantal arc, cenire at the origin
¥ and radius B (=o);
(3) the positive portion of the y-axis ;
As in the last two cases, the function vanishes
in the limit when |z|= o, and it will be clear that
o there is no pole in the region round which it is

proposed to integrate.
We have then

w
R az _ bz 7 jaRe'® _ bRet® —ay _ ,—by
4% — ¢ ¢ —¢ ’0 e W—_¢ i
-/; 7 d$+'/0‘ i vdf+ RTdy—O.

R e . Y ¥
The first integml=/0 (cos az — cos bx)-;c(slnax sin bz)dx.

Fig. 407.

"
The second integral = /1 [e—oRsingaR cosd_ ,—BRsind,bRcosf), g0 which
Jo -

vanishes when R=co by virtue of the exponential factors e~eR#in®
e bRSNG 01 sin @ is positive.

The third integral = ~-logg by Frullani’s Theorem, or by the summa-

tion definition of an integration as in Ex. 1, Art. 16,

Hence we obtain in the limit, when R=w,
o FITEY 0. o A<
j cos ax cosbxdx=lug§’ /‘ sin ax Sll]bﬁdzzo’
0 E” a z

results previously established.

-1
1306. Consider the integral f :—a_—ﬁ dz, where a is real and <1 and >0,

where by 24~1 we understand that particular one of its values whose amplitude
18 (a - 1) times that of z.

‘There are two poles, z=0 and z= —1. 'There are also branch points at
the origin and at .

Take as contour an infinitely large semicircle, radiusR (= ) and centre
at 0, the origin ; an infinitesimally small semicircle of radius p and centre
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O ; an infinitesimally small semicircle with centre at z= —1 and radius p,
the concavities of the circles all being in the same direction ; and the
remaining portions of the boundary being the intercepted portions of the
z-axis; the whole making the figure ABCDEFGHIJA (Fig. 408), within
which, with the meaning indicated for 2%, the function is synectic.

A - o) H
Fig. 408.
The poles are then excluded from the contour, and the integration is to
be conducted along the six parts AB, BCD, DE, EFG, GH, HIJA
indicated in the figure.

—1—p a—1
(1) Along AB the integral is / = 1+zda: or changing z to —a,
ddpy L 130~1 . a— 0 —1
TR o gerifS
R 1-= 14p1-
(2) Along the semicircle BOD, put z= —1+pe?®; .. %—L dg.

The contribution is then /0( 14 pe®)a=10 df, or since p is infini-
tesimally small,

(- l)"—lf) 1df =(—1)%ur=1me's™,
”
(3) Along the straight line DE the portion of the integral is
- -1
/ ol s dz, or changing x to —z,

-1+pl 42
S1.a=1 p =1
—_/P  Gol. nilie i da. .or  efF & ——dx.
1~ep 1-z 1—-pl -2

(4) Along the semicircle EFG we have, putting z= pe*’,
f’ (pe"’)“" :.pe" dé
1+ pet?
which vanishes, p being an infinitesimal and 1>a > 0.
@0 xu-—'l
p 142z
(6) For the semicircle HIJA we have, putting 2= Re'%,
/"' (Re‘o)""ltRe‘ede
0 Re®+1
which vanishes, since R is infinite and 1> a >0.

|

(5) The contribution from GH is

VV
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o 1
Let I, and I, be the Principal Values of " 1 +xdx and [ z_”_x 2§
]

0 1—p
Lty=o f xa-—d.z' and Lt,= o[ f fl +p:| da: respectively ;

we then have, summing up the six portions,

f‘” 2871 1
_ etar 2 am wam
e YU oy dx+zre +e jl L xd¢+0+/ 1_‘_de:t+0 0

P a1 —p z8-1

and 1_pmdx= —/; md‘”'
o B8-1 P 1—p
ol My l+pi?l&‘dx+ 1-Pr-——7/‘ if _<./ f:l)) "
and in the limit, when p is indefinitely diminished, becomes = —I,;
—e' %" [+ vme®™ + I, =0,

f.e. —(cosamr+isinamr) I+t cosar —sinar)+I1,=0
whence I, —cosarl,=m sinam,

—Isinar+mcosar=0 ;

therefore I, = cosecar and I,= cot am.
These are the results of Articles 871 and 1103.

dz for real and positive values of a and b.

% ez
1307. Consider f S

There are poles at z= +¢b ; and when |z|=c the integrand vanishes.

c 4 [6) A
Fig. 409.

Integrate round an infinite semicircle with centre at the origin O and
radius R (= ), and round a circle of infinitesimal radius p with centre at
the pole ¢b.

Then the integral taken round the outer boundary =the integral taken
in the same sense round the inner boundary, and the latter is

ea(d)
o S Z 6. (Art. 1286.)

Over.the outer boundary we have

£a% mRe 5
f) Fratt fwbzwv2 +/7b2+[t‘e2"’ e
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Writing — for « in the first integral, it becomes
e—lﬂ’ ! e—Laz d
| R e | prate
! A 7 “ 2 cos ax
and the first two integrals combine to give o T dz.
—aRsind aR cosd

The third integral is j:re R

virtue of the factor e~%%*"® when R is infinite, sin § being positive.
Thus, summing up, we have

«Re®dh, and vanishes by

cosar , T _g
[ b2+x2dx 2%
the result of Art. 1048.

1308. Consider the integration of w= b ‘+ o far real and positive values of
aandb.

The poles are at z= +tb; and when |z|=cw the integrand vanishes.
Take the same contour as in the last example.

The integral round the small circle, whose centre is tb,

Lbe‘"(‘b) e
e
Over the outer boundary we have
" © pgtd = Reo'graRet? "
) 1‘+f e +o Wlﬂe dé.

Writing — 2 for z in the first integral, it becomes

xe~ waz © ye'a%

I Ll A
which combines with the second integral to give / %—Lﬁ;d

The third integral, as in the last case, contains the factor e~@Rsin® ip
the integrand, and therefore vanishes when 2 is «, sin  being positive.

Hence, as the integral round the outer boundary is equal to that
round the inner in the same sense,

[hagen

1309. Consider the integration of w=
of aand b.

There are poles at z=0 and z= +tb; and when |z| = the integrand
vanishes.

Take the same contour as in the last two cases, with the addition of a
small semicircle of radius p, with centre at the origin, to exclude the pole
at z=0.

Integrate, as before, round the boundary CDEFABC, and equate to
the integral round the small circle encircling z=tb in the same sense.

o (b2 7 Jfor real and positive values
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Thus
f—P 1% g ¢um“ tpe®df RrCE . v gaRe? pd g
& .l'(bi-i—.’t") .O(bg_,_pgcm) j x(bﬂ.{_@d) Renﬂ(b2+me2&0)
ela(lb) I{' it
ST - it < A

Then writing —z for # in the first integral, it combines with the third
bt “ 2 sin az
o give | 2P+
0
Since p is infinitesimal the second integral = f éd&: —:—:
”

The fourth integral vanishes for the same reason as in the last two cases.

sin az Ry S
Hence ’ x(b3+z’)dx_ T a7eY);
f &% 3 e
1310. Consider JEn dz, a and b being real and positive.

The poles are given by

z2”+b’"-=“=ﬁ—l(z’—2bzcos Bl 1r+b’)=

X 8=0 2n
2l+l
e z=b(c0528+l1r;i:tsin2’+l ) be
2n 2n

and lie upon a circle of radius b at equal angular intervals ;’—:, the 2-axis

being an axis of symmetry with regard to the poles and not passing
through any of them. Also if |z|=c the integrand ultimately vanishes.
We take the same contour as before, viz. an infinite semicircle of radius
R (=) and centre at the z-origin O, the z-axis and infinitesimal circles
of radius p drawn round each pole as centre.
1 s=n-1 g 1

m 3 pen TsF1_\2n—1 oS+ 1
24+ b §=0 2"(be‘_2: r) (z—-be‘ 2: r)

Now

s=n-1

A g 2'+1 T (o)

+
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the poles of the second group lying outside the contour of integration,

2c+1
and therefore contributing nothing. The pole z= be' 20 " contributes
2o+1
cabc T2 "
2w _ml—m.
@ (be‘ 2n ')
Hence the poles within the contour contribute in the aggregate

28+1

' 2n

s=n—1,r guabe
“ n _23+1 -1’
8=0 ( be o n')
241
28+
te - Sy P ¢ 2n ‘“”’l .
5" IRbAL
2s+1
n=l ¢ —absinT2= [ (2&+1 2s+1 )
= - 2n
> ab=i e cos(—5- +ab cos o T
+zsin(2a2:11r+ bcos ) (1)
For the outer contour we have
x ¢aRe® b0 10

/!1 ecaz enas d
[ gt pmpamdnt [ G g

0 0

Fig. 411.

-az

o

The first integral, by putting —« for z, becomes f’ dz, and

combines with the second integral to make : b%;%_s—:%dm.

The third integral vanishes when R=<0, as it contains the vanishing
factor ¢~%R*0 . anqd since the integral round the outer boundary of the
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contour is equal to the sum of the integrals round the small circies which
contain the poles which lie within the great semicircle,
2s+1

cosar ,  w ncl —absin=osa [2s+1 2s+1 >]
| P da'_2nb2"—1 }6‘, e sin | =5 T+ab cos( ek AL (2)
which is the result established in Art. 1067,

It will be noted that in the summation above in equation (1), that the
imaginary portion vanishes, the poles being symmetrically situated about
the y-axis.

The arrangement of the poles in the cases n=1, n=2, n=3, n=4, n=5,

is shown in Fig. 411.

sinh az
sinh 72’

Since the limit of this expression when |z|=0 is ?r, there will be no pole

1311. Consider w=

a real, positive and <.

at the origin ; and when |z|=c the integrand ultimately becomes zero,
since a < .
g L ¥ 22
Since sinhrz=mz (1 + T‘)(l +5
z=+3, ..., which are all situated on the y-axis in the z-plane.

) , there are poles at z=+¢, 2= %24,

Take for the contour round which the integration f wdz is to be
conducted :

(1) the complete z-axis ;

(2) the ordinates = + R, where R is infinitely great ;

(3) the portions €D ; F'G of the line y=1 shown in Fig. 412 ;

(4) the semicircular arc, convex to the origin, centre at z=¢ and of
infinitesimal radius p, viz. DEF as shown.

Then all poles are excluded from the region thus bounded, and the
function is synectic in this region.

dz for

The contribution to the integral for the z-axis is /-m s'mhax
& J_o sinh 7z
sinh a2’

z=zand dz=dz ; or, what is the same thing, 2f
0

sinh mz
7 :
G FID C
: E :
: :
] '
] ]
z' A 0 B ~
Fig. 412.

The ordinates BC, G'4 at infinity yield no contribution.

. ) ! sinh a(R+y)
For, along BC, we have fo m«. dy,
and R being large, sinh a2 and cosh a? may be written 4¢°%, and sinh w22
and cosh 7 may be written 4e"E,
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eaReuw

E ml:.dz/, z.e.

Hence the integration along BC reduces to }

fl sa=mR (a- n)zy'.dy’
0

which vanishes by virtue of the zero factor e(®-™% in the integrand, since
a—m is negative and R is infinite. Similarly for the portion G 4.
For the portions D and FG we have respectively
» sinh a(t+2) f“” sinh a (L +2)
f sinh (¢ + r)dl i » smh (L +x)
Considering the first of these integrals,
sinh @ (¢ +2)=tsin @ cosh ax + cos a sinh axz,
sinhw (1 +2)= - sinh 72 ;

¢ sin @ cosh ax 4 cos @ sinh aw 3
’

" the integral becomes _/: sinh 7w

and writing —« for # in the second integral, it becomes

f" sinh a(t —x) ,"’ ¢ sin @ cosh ax — cos a sinh ax o
Bl e CANT O st - .
p sinhw(t—wx) sinh w2 i
and CD, F@G together yield 2 cosa f sgnh g

p sinhwz

To cousider the contribution of the infinitesimal semicircle DEF, put
- 0 i e .
z=t+pe’, and integrate from =0 to = —.

Thus sinh az=sinh a(t+ pe'®)=¢ sin a, p being infinitesimal,
sinh rz=sinh (s + pe'®) = mpe'? cosh 7o = — wpe’,
The yield from this part is therefore

"f ”sma(pe" vdf) = 3‘""/ df= —sina.
0

Hence, as the total mtegra.l round the contour vanishes;

2/0 s.mh“dx+0+2cosafs.mhaxdx+(—sina)=0;
o sinh 7wz b sinhwa

and p being ultimately zero,

sinh ax ad sinh ax a
.[: sinh 2 tan 2 and - sinh wxd'l sl 9

1312. Now take w—::::;: az’ a being real, positive and <.

Since coshrz=(1 +4z’)(1 +4z)>(l + 5 ), ..., the poles of w are at

3
=:!:';'1 ﬂ:?”x

If we take a contour consisting of the z-axis and a parallel, Y=z l with

z f;,etc

bounding ordinates #= + R at infinity, and a small semicircle, convex to

the origin and radius p, described about z=-;-; the region thus defined
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excludes the poles, and w is a synectic within it, so that fwdz=0 when

the integration is conducted along the contour of this region.
The points B, C, shown in the figure, are supposed at ®, and 4, G

at — o, and DEF is the infinitesimal semicircle about z=% (Fig. 413).

The z-axis contributes f goaliax dz, that is, 2 f M
3 -w cosh m o coshma
y
G Fi{D C
: E :
5 ;
i A [e) é &
Fig. 413.

The ordinates at infinity contribute
T

i R

and, as in the former case,
cosh @R, sinhaR, coshwR, sinhwR

may be replaced by 4e*¥, 3% 3em™®  1e™® respectively,
since R is infinitely large ; and we may write

cosh a(R+1y)=4e"Re®, coshm(R+1y)=}e R et™,

cosha(—R+uy)=3e*Re™*¥ and coshmw(—R+wy)=4eRe™";

and the two integrals become

f e(a-—fr)R etla—my d_?/ and _/.’ e(a—w)R e—;(a—rr)y " dy,
0 (]

which both vanish when R is infinite by virtue of the ultimately zero
factor =™ in the integrands, a being <w. Hence the yield from the
two ordinates is nil.

The parts CD and F@ respectively contribute

P cosh a(.r+ -2-) * cosh a(x+%)
e dr and 5 L ([,
coshm(z++ cosh x+—)

) 2 -P 2

and cosha(x+ 2) cosha.z'cosz+v. sinh az‘sm;,
cosh 1r(x+-;—)= ¢sinh 7,
5 a a
cosh ax cos 3 + sinh a2 sin 3
and the first integral becomes — : dz ;
o tsinh
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and similarly writing — 2 for 2 in the second integral, it becomes
0 el
[ a . o G
cosh a(— - x) cosh ax cos 5 — ¢ sinh ar sin 5
2 2 2
do=
P

v ¢sinh o
coshrw( —= W
P 2
sinh az

: ’ Sl
Hence, in the aggregate, these two terms yield —2sin 3 ft et

da.

To find what acerues from the semicircle DEF, we put 2= +pe and
integrate with regard to 6 from §=0 to 6= —.

Thus, since cosh a.(§+ pe‘°>=cos-2- to the first term, p being infinitesi-

mal, and cosh = ( é + pe‘°>=1rpte‘°,

cosh az i coa%
f———— dz round the semicircle= — pet? df = —cos ; 2,
cosh 7z 0 pze"

and the total integral round the contour=0, since w is synectic
throughout the region bounded ; hence

cosh ax . @& [®sinhax
2.[005!1 ﬂ_xdx+0—2sm§/ smhrrxdx cos§=0

and p being ultimately zero,

Q/WCOStha,—cos +2smg' -1~ta11(—l=sec—(£,

cosh Tz 2 CAED, 2 2 y
and therefore f soeh Wir = sec and icdeid de=sec.
cosh T 2’ - cosh ra 2

LAz

1313. Consider w=——3———, where a is a complex constant =a+1f3, in
cosh 7z

which 3 18 not negative.

The poles are, as before, 2= ié y i'; ¥ :{:52 , ete., and in addition, since
(et B z+ W) = g—Pr—aygi(az—PY)
the function becomes infinite if fx+ay= —w. Hence we must take a
contour which excludes all such points.
b4
i
N = 0-"
ot =05 B
E(D
(o) T
Fig. 414.

The region bounded by the positive direction of the z-axis, an ordinate
x=R where R=w, the straight line y=4, the quadrant of a circle of

I Yelr
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centre z=; and infinitesimal radius p, viz. CDE and the portion EO of

the y-axis, contains no pole and the function w is synectic throughout it
(Fig. 414).

B ,— BT L0l
5 - e P
The x-axis contributes f co—h_d.v.
o coshrx

The ordinate AB at infinity contributes nothing, for the integrand
contains the factor e P2, which vanishes when 2=

The path y=4 from x= R to x=p contributes
@ B
P e e—Prg (u_!) [ '
f T £ ¢ dz, for cosh 1r(§+.v)=¢smh .
For the infinitesimal quadrantal arc with centre %, put z=;—+pe" and
integrate from =0 to 6= —1—; !

”
i et(u+tﬁ)(§+w“’)
ipet do,

This yields
¢ (0]
cosh 7 ( 5tpe

i.e. p being infinitesimal,

. bl dh= — pe—tetd),
0 m™

The portion EO of the y-axis contributes
-/\) —avcrtpy }—p e—u-ze—nﬂz
t-p coshimy s, ity j Tcoswx
Hence, as the total integral [ w dz vanishes,

/ ¢ P¥(cos ar + sin ax) de Jm e';e‘ﬁ“[cos (M— g)‘*"' sin (ax - g)] i
0

cosh wx vsinh 2

® Lo
i ¥ o (cos__‘sm ) f* Po—agCOSPBr—tsin Bz ,
2 cos T

Hence, equating to zero the real and imaginary parts and proceeding to
the limit when p=0,

58 " 47 sin (a:v— '1—23)
'/; D e I
0

cosh ma

i sin B g8
Vi —aZ oLy ot
dz A il ﬂ_xd.z'— 2c Tcos s g

i cos(tw—- : A
f e sin az R 7J; e‘ﬁ"——-—dx f _“Mdﬁ='le—’sing.
0

cosh ra sinh 7z cos Tx 2
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If we put =0 in the first, we have

@w a [fn H a
cos ax 2 sin ax &
————dz—e * } - de=3%e ®
];) cosh ra o sinh7z 3 ¥

and changing the sign of a,

el a w0 2 a

cos sin a
dr+e” f : dv=%e®

Jo cosh rz 0 sinh 2 ie’,

and solving these equations,

] D
Cos a.r 1 a sin az
———dz=_sech > j d.z'— tanh &
,[) cosh g 2’ Jo sinhmra )

»

1314. Consider w=—,;—z—.,, where 1>p>0, a real and

2% —2az coso.+a*
T>a>0.

There are poles at z=ae*“*=acosa+tasina. Take as contour an
infinite semicircle, radius R (=w) and centre at the origin O; the
z-axis ; and a small circle, radius p and centre at z=ae'*, .e. (a cos a, a sin a)
(Fig. 405).

The contribution from integrating along the z-axis is

e il gk B
j—eo 2% —2ax cos o+ a? x__( 5 g o ).7:"~_—2a.7z'cosa.+a2 2

and putting —z for # in the first integral,

2 riat g LI et

=.[o 22— 2ax cos a+a? 0 2%+ 2ax cos a+ a®

Round the infinite semicircle we have
24 R pe;po
ﬁ R%*® —2ale cos a+a? Be?.cdo,
which vanishes, since p <1.
For the infinitesimal circle put z=ae‘> 4 pg!. The result is, by Art. 1286
(acm i Petﬂ)p "
aem._*_pew__ ae—u’
and p being infinitesimal, this becomes
aPeP™

2me

ap-—ler.pa.

2m —=
a(e*—e ') sinu

and since the integral round the outer contour is equal to that round
the inner in the same sense,
x? ‘-P"’/‘s—w’— AR TIVER T D0 Apa.
o :x;"‘—ancosa.+0¢"’d$-'-e 0 .z*3+2axcosa.+a2dx—smaa ol
and equating real and imaginary parts,
j"' x? dz 2P dx

————————————— 408 s =—— aP Y cos pa,
2axcosa+a’+ P P lazcosatal sina P

sin f———»L—— a?1sin
PT ) 2T %azcoso tat sina %
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Hence
/” aPdx i X o sin pa
Jo @®+2axcosa+a? sina sin pr’ 15>p>0,
jn : 22dx Low by sin p(1r —a)’ T>a>0,
o @°—2ax cosa+a® sina sin pr

the latter of which follows also from the former by writing = —a for a.
az
1315. Consider w= ~-L———~, where a and b are real. (0<b<m.)
cosh z—cos b

The poles are given by cosh z=cos b, that is

e*—2cosbe’+1=0, e=cosbxisind, 2=¢(2nmw+b),
where # is any integer.

These poles are all situated upon the y-axis at distances from the origin
+b, +2r+b, ete.

Take as contour the entire z-axis, the ordinates =+ R (R=w), the
straight line y=m, and an infinitesimal circle, radius p and centre z=1b.
Then the function w is synectic in the region thus bounded, the only pole
(2=1b) which lies within the outer boundary being excluded by the inner.

i
C B
: 4
. 1
: E ]
! (;C) B :
il '
D -~ (o] A =
Fig. 415.

The contributions from the various parts are :
em@

(1) From the z axis DA,Ede.

(2) From the ordinate 4B,

" ea(R+w) ™ ¢~ % (cos aR+isinaR)
f A ] ‘dy=2‘-/; Mt e~ _9 cos bdy=0,
0

Al s Chite. . PEMINCLAREY Y Py

2

where R=o; therefore AB contributes nothing. Similarly CD gives
no contribution.

(3) From BC, viz. y=m, we have
z=x+ur, dz=dx, coshz=—coshz and ¢'%=¢~™, ¢4
Hence B( renders

/—‘” c—raemz
Jo —coshz—cosb

2 i el
e I b s L
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(4) The integration round the small circle gives
gad) o—ab
ARy einhibn: = o s sin b’
and the integration round the outer contour is equal to that round the

small circle in the same sense. Hence

f 2 e dx e f 2 e % dy _ 2w e—ab

—o coshz—cos b —w coshz+cosb sinbd k
oy cos ax { ® sin ax

Kot o —w cosh 2 —cos bd'r’ o= —w cosh z —cos bdx’

’ e cos ax f"’ sin ax
I'_fmcoshx+cosbdx v Ja8 —w cosh z+cos b

2
Then Li+edpte (1 +ob) =g 6%
And tharafors Il +e""‘1,' =Bi2l_17rb e~ and I-‘ + e—rqﬂ' =0.

Also, if we write w—b for b, the accented and unaccented letters are
interchanged. Hence

I eman = 2T a=b and [+e""1,=0

and solving these four equations,

. cos ax _ 2m sinha(r-10)

Il= —w cosh 2 —cos b x—m 1 TR ik (1)
e cos ax _ 2r sinhab

Il f_m cosh 2+ cos b x_sinb o U R R (2)

and I,=1,'=0, as is indeed obvious beforehand, since, in integrating from
— o to « elements of the integrands for which x only differs in sign cancel
each other.

Obviously other results may be deduced from these by various selections
of a and b, combined with addition or subtraction of the results.

For instance, in the formulae for I, and I,’, the integrands are not
affected if the sign of 2 be changed, so that

f‘ cos ax __m sinha(r-b) 3
o coshaz—cosb ~ sinb sinhagr >TTTTTTTTTUT )
f‘ cos ax __m sinhab @
) Gosh 21005 b P TR sinhgm: e
Changing b to 32-'— b in (3) and (4),
. m
[ ot g sba(F+)) %)
b cosha—sinb ~ cosb sinhar
5 sinh a(E - b)
L o B e o s ©
cosh z+sin b cosb  sinhar
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Putting a=1 in (3) and (4),

f" cos z __m sinh(r-b) )
Ry oy g T el
[ i cos _ _m sinhb ®)
L soah s eced " BTN R Soran iy it skt e
Adding (3) and (4),
f‘" cosaxcoshw .,  mw sinha(r-b)+sinhab
o cosh 22 — cos 2b =%sinb sinh ar
cosh a(;—r - b)
P (R o AT (i WO, Wil (9)
4sin b ar
cosh?
Subtracting (4) from (3),
" sinba( - b)
P A R (10)
o cosh 2z — cos 2b 2sin 20 CTNPATAR R T b o i
sinh—-

Writing g— b for b in (9) and (10),

j'” cos axcoshz i ! cosh ab (1)
o cosh 22+ cos 26 4 cos b """""""""

ool X )
P cos ar m  sinhab
fo el dr=a T BB a2)
sinh )

and so on with other. cases.

Z -
1316. Consider w=1e e being real and 1>a>0.

Here there are poles wherever e'=1, 7.e. 2=log (¢**™) =2Am for any
integral value of A.

Take as contour a rectangle of infinite length, one side along the
z-axis and extending from #= - to 2=w; two ordinates, one at «,
one at —w ; the line y= and an infinitesimal semicircle excluding the
origin, Then, integrating round this contour, no pole being in the region
surrounded, we have, with the notation of preceding cases,

—p A% /0 0g, w (R+w)
/ @ ‘Pe 0+/ 01— B+ 1dy

e ea(z+ur) ' [0 #(—R+w) P
+fw [ gm0 f,m‘ i

In the limit, when p is indefinitely small and R infinitely great, the
dx.

first and third integrals together give the Principal Value of ]

_ez

The second integral = ]0( —1)d6f when p becomes indefinitely small, = .
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The fourth vanishes, since it is ultimately

AT
—LtR“”Jo e@—DR+) gy and a<l.

: _ [~ (cos am 4 sin am)ed®
The fifth integral = L A 7 ISR dz.

The sixth integral ultimately vanishes when R increases without limit.

”
:
ey
o x
Fig. 416.
Thus, Prin. Val.of [ £ 4 TR gt welf 0
us, Prin. Val. of — dr+ cosa1r+v.sma1rf —dx + 7 =0.
i Jow ] - ( )oo 1+€* 5
0 eaz
Hence / dx =1 cosec ar,
—»l+4e®

and the Principal Value of

0 eaa;
f —— dx m cot am.
0] -

This result is, however, only a tmnsformation of that of Art. 1306.

1317. Effect of Pole-Clusters within a Contour.

If several poles, say m, be clustered together at one point of
the z-plane, the point is said to be a pole of multiplicity =, or
to possess polarity of the »'™ order at the point z=a.

It is useful to note that in applying the theorem

¢(ﬂ_1)(a)=(n_l)!.[ ¢(Z) dZ

271 (z—a)*
to the case in which
- (2) 1
i )_(z—a)” (z—a)”
where n is a positive integer, we have ¢(z)=1, and all its
differential coefficients with regard to z are zero.

Hence I

(——z(—ifz)" round the multiple pole z=a is zero for all
positive integral values of n except n=1, and when n=1 we
have J. dy
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It follows that if w be of the form

$(2)
(z—a)y(z—b)i(z—c)"...
where ¢(2) does not contain any of the factors z—a, z2—b,
z2—c¢,..., but is rational and algebraic, there is polarity of
order p, q,"r, ete., at the respective points z=a, z=5, z=¢, ete,,
and in putting w into partial fractions to prepare for integra-
tion round closed infinitesimal contours surrounding these poles
it will only be necessary to retain those partial fractions in
which z—a, z—b, ete., occur to the first power.
And supposing that the result of putting into partial
fractions is

w=K, o4 Kyt A Ko b Bt 2 By O

El

B, L z(z by +

r=2
then, in integrating round any closed contour which encloses
all these critical points and no others,

jw dz=2mi(4A+B+C+...).

1318. Moreover, when the numerator of w, supposed rational
and algebraic, is of degree in z at least two lower than the
degree of the denominator, 44 B+ C+-...=0 (Art. 149), and

therefore in such cases j w dz=0, however many critical points

may be enclosed within the contour, and whatever the degree
of their polarity, provided the contour of integration contains
all the poles.
It is worth notice that if
@y, ay, g, ... be the zeros, of multiplicity p, g, 7, ete.,
and a, a,, ag, ... be the poles, of multiplicity p,’, ¢, , ete.,
of a function f(2), so that
_ (z—a)P(z—a,)1(z—a,)"...
fe)= (z—a, Y (z—ay)¥ (z—ag)"...
[(2) P

[A9). el U .
we have 7 zz—al Ez—al"
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whence, if ¢(2) be any other function of z which has none of
the factors z—a,, z—a,, etc.,, then

1 ’ ’
or: | @ 5E) ds=(Zppta) '),
the integral being taken round a contour which contains all
the poles without passing through any of them ;

or if ¢(2z) be unity, 2; j.‘j;((:; dz=(Zp—Zp).

1319. If, for instance,
fR)=(—a)’(z—a,)(z—ay)...,
FO7LS iy P s

f&) z—a, ' z—a, z—a,

L

and if we integrate round any contour which contains some
or all of the roots,

o J;(%) 2w,[pj o szizaf'”]’

for all the roots within the contour

=p+q+...
=the number of roots within the contour,

counting each root as many times over as it occurs in f(2).

1320. Again, if in integrating round the perimeter of a closed
curve which possesses no singularities and lies entirely in a
region of the z-plane in which w is a synectic function, then if
w be constant along the boundary of this curve it is constant
for all points lying in the region thus bounded ; for if z=¢ be
any point of this bounded region, then if f({) be the value

of w at the point ¢, then
~L e
2m)z—¢

where z is a point on the boundary; and if f(z)=const.=4,
say, at all points of the boundary,

1= ZH §dz—— Al gwi=a, "
f@)
2—¢’

for ¢ is a pole of the functlon
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Hence, for all points ¢ which lie within the boundary, the
function w=f({) has the same value as when { lies on the
boundary.

1321. Further, if we are given the value of w at all points of
the contour of a region within which w is to be assumed synectie,

the equation 2

1O =5r: [ L ag
may be used to find the value of f(¢) at all points within the
contour For if f(2) takes the form x(z) at the boundary, the
value of f({) for a point within the boundary is

i

1322. Ex. Supposing that at all points of the circular contour r=1 a
certain function known to be synectic within the circle takes the value
cos 30 — a® cos 6+ (sin 36 — a?sin §), what is the function ?

27t

Putting this into the form €3 — a%e*, and writing z=e*, dz=1e",
2m o310 _ ;2010
e’—a
J(§)= 21“ o we? dg
20 red p2_ g2y ((( —a )] 0
2m./ [ b N S il
1 eﬂLO

HE (- a2>e"’+c<c2—a2>log<e'°—a-)]:"

=2_1r1.

{({2-a?)log1;

and log 1 being log e®™, where \ is an integer, we have f(z)=A{((*—a?),
where the proper integral value of A is to be chosen; and putting
(=e’, we have the contour value A(e*’—a%*¥). Hence A=1 and
f(2)=2(z*—a®) for any point z within the contour r=1.

2m.

1323. (1) Consider w._—, n being greater than 0 and less than 1, and a
real and positive.

Here there is a pole at z=0. We may avoid this pole by taking a
contour consisting of the portion of the x-axis from z=p to #=R, a
quadrant with centre at the origin and radius R ; the portion of the y-axis
from y=R to y=p, and a quadrant with centre at the origin and radius
p. And we shall choose R to be « and p to be infinitesimal. Then w is
synectic in the region thus bounded, and we have

R 7 ] )
£!a% 7 guaRet ]0 gtape
,/,; ey do+ 3 (_Re"’)"-l +f (Ly)" dy + ,._1 tdf=0.
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—aR sin 8

iy in which sin 8 is

The -second integral contains the factor
positive, and vanishes when R is infinite.
The fourth integral vanishes when p is infinitesimal since n<1.
Hence, proceeding to the limit B=w and p=0,
@ Qla% w0 g—0Y
'[) _____d‘l»__,'l—n’/; d‘/_bl—njo ym e dy,

3/”

w 0
fo c————osax+LSlnde=[cos(l—n)§+bsin(l—n)g]f0 y e Wy

.’U"
mr
SRR St i T S
o . a® ' I‘(n) al™® sinnw 2I)(n)al™® nr
mr cos 5~
/“’sinamdt:sin(l_ r Dl=n) | b Rl v T 1
(e e at—n I‘(n) @ sinnr 2[(n)a*" oo
giving the well-known integrals of Fresnel {Art. 1166). ATy
1324. (2) Consider w= e +11)2)n Fele
Here there are poles of the 7+ 1 order at z=tb and at z= —1b.

Taking the contour to be the infinite semicircle, the a-axis, and the
small circle about z=1b and radius p, as before, we have

w=f(z)= z_digz)),.ﬂ,
-1r 2)...(2
where ¢(z)=<z_+%m and ¢m (=D (n(j:igbz:j) (@m)
ie. $™(b)=(~ l),.(2n)v 1 1(2n)! 1

al @O () @

dz 2r  (2m)!

Henee |G g @ (uly

%5 round the multiple pole tb.

i { s dx 20 de
The integration along the z-axis is /_w g or 2 ) o
«Re'’ do

Round the infinite semicircle we have f ———————, which obviously
vanishes if R be made infinite. o (R4

Hence f T x__ () y
o (22402t (2b)2"‘+‘ (n1)?
The result is readily verified by putting #=btan 6, when the integral
becomes
- j;' cos §.d6.
)
1325. Instead of using the formula d)(z) dz =¢ (a)21rl.,a.s above,
(z—a)yntt n!

1
we might follow the method of Art. 1317, and put GGy

into Partial fractions so far as is required to find the Partial fraction of
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the form ;f%"b We then proceed thus (Art. 144): put z=ub+y. We
then have

1 1 1

P (2Lb+y)"+‘ e (2Lb)"+' I:l (n+l)2 i

(n+1)(n+2) (2n)( 1),.(2 b) ];

1.9
o1 "(n+l)(n+2)...(2ﬂ)_ 1
whence = @by 1) 1.83..8 (2e0)"
il 1 (2n)!

T (20 ()2’
and the value required is 4. 2m, 7.e. round the multiple pole at z=1b the

A X 2r  (2n)!
integral is @y E—m—)),, as before.
az
1326. Consider w=f(z)= (—bz:_e—-———zz)M, a real and positive.

There is polarity of the (= 4+ 1)* order at the points z= +b.
Take the contour as before, viz. an infinite semicircle centred at the
origin, the z-axis and an infinitesimal circle round ¢b.
We I ! i ld(z) e
e have, puttmgf(z)—_—(———-z_‘b)"ﬂ, ¢(z)=(_—_z+:.b)"+"

md GO = (o) = aprtenr O 2 (s (DL

(z+b)n

D=9 @A) D D) er (] (042).... 20)
1.2.3 (z+vb)n+4 (2+1b)2n+1
And since —z—:‘%—;)mdz, round a multiple pole of the ='* order,

21" +(n)(a), we have, putting ¢b for a,

a 1
f e -[ (z ¢"(bz))“+l dz_ﬂ,r [( - (2«.1))""‘l l(m)“_le(lté;lﬂtz :

'n(n D(ca)""’ —ap (n+1)(n+2) e (1) (2n)!

(2ub)nFs 2l (2ub)H
I +(n+l)'n_ ot (n+2)(n+l)n(n §)- ey gk
n! (2b)n+! 1 (2b)"+2 2! (2b)nt3
(2n)! 1 ]
n! (20)+1 ]
Round the outer contour we have
£tz £a% cum(cos 0+.8in @) G
[ wrizmds+ || grizapmde @y

Putting —z for « in the first and combining the result with the second,

we get 2 «lo (b:%-)xmdx. The third integral vanishes as the integrand
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contains the factor e~2%51"® which vanishes when R=w, sin 6 never

becoming negative. Hence we obtain
cosar r e® (n+l)n o
j,, a8y 0= (@ [ @aty+ O
ge !
+(n+2)(n-|2-'l)n(n l) (2ab)"—2+.. +(2n) :I,

n!
which agrees with the result of Art. 1057, writing » for n+1 in the
present result.

1327. Consider the case w=2z""'e~%, where k is a complex constant
=a— b, in which a is positive, b positive and not both zero, and 1>n>0.

Since n <1, there is a pole at the origin. Writing z=re*®, k=pe~*#, where
Bis /2, we have w=rn—1g =10 g—prcos (—B) ,—tprsin (9= F) which cannot
become infinite, except at z=0, unless cos (§—[8) be negative, ..
0>,8+ g or <B—-—, in which case an infinite value of » would make w
infinite.

We shall avoid these poles if we take a contour consisting of a sectorial
area bounded by =0, §=a(<m/2) and by arcs r=R,, r=R,, where R, is
infinitely large and R, infinitesimally small. The region thus bounded
is such that w is synectic within it, and we have

/'m an-lg—@—D)zg, o f’ (R e¥)me=@—DRe?, g9

R ()
Ry a —pe—tBreta 0 0 -—(a—w)R. 0

oF i (€270 e Bty O e“"d7‘+{ (Ryet®)ne~(@—D)Re®, 49— 0.
1 va

O D A £3
Fig. 417.

The second and fourth integrals contribute nothing, for in the second
the integrand contains the factor R,"e~PB1°8=8) which vanishes when
R, is infinite, since we are supposing a<w/2, and therefore, 6 being
<a, §—B<m/2; and in the fourth, the integrand contains the factor
Ryre—PR2¢08(0=F) which vanishes when R, is infinitesimally small.

Hence, proceeding to the limit when R, » «, RB,— 0, we have

[ "1™ by — gt f o " S AR (1)
Jo o
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If now we choose the angle of the sector, viz. a, to be 3, Z.e. tan“g we
have §
j’ x"-le—“’e‘b’dc=e”"j m=1¢=P"dy,  where p=m,
0 o
=™ %) , p being real,

§ # Lol L I'(n)
e jo.x e dx T

F()

which shows that the theorem f an—le~ oy — is true for a complex
0

constant k=a — b as well as for a real one, ¢ bemg positive (see Art. 1159).

Also f an1e= %% cos b do = il 5 . i - C0S (n tan—! 2)
# (a2+b9)?

i k(e SRR R g e I e D R (2)
[ a1 0%5in br do=——"—"— I'() —sin (n tan™! g)
= (a®+ b"’)7 :

1328. Equation (1) of the previous article gives
/w ahle—az bz g, f” an—1p—(acos a+bsin o)z p {na—a(a sin a—b cos }dy -
(] (] !
whence

/Q a1 (ac08atbsine)Z o (g — z(a sin a—b cos a)}do= f a™ e~ cos budx
A o

®
fn an—le—(@cosatbsina)zgin (5 _ 2(asin a—b cos u))d.v=/ 2" 1e " sin bz dx,
0 o

and therefore taking the case when b=0,
[ aM—1¢™ %8¢ oog (na — ax sin a)dr= /; x”-‘e‘“"dz:——ré,’:),

-
/; aM—le =A% o8 e gin (na — ax sin a)dr=0.

If we multiply by cos na and sin za and add,
and by sin na and cos na and subtract,

®
d : n,
we obtain [ aM—1¢—4% %% cog (qx sin a)dr = L) cos na,]

(n)

= T
_/; a1~ 4% %8 e gin (aw sin a)dor= . sin na.J

[Cf. Briot and Bouquet.]
If y be any other angle, we have upon multiplication by cosy, siny

and subtracting, and by sin y, cosy and adding,
l"(

[ a1~ 8% ¢og (ax sin a +y)dx—
Jo

T'(»)
=

cos (na+7y),

©
f gn—1lg @zc0sa
0

(a<m/2, 1>0>0, a +7.)
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PROBLEMS.
1. If w?=2-1, examine the value of rl wdz,
0
(i) via the branch w=+~/z -1 by any path which does not encircle
the branch-point at z=1;
(ii) via a path starting with the same branch and encircling the
branch-point once.

2. Find the values of

sin 2z v sin z - sin z o
Z=agnt ) (gt o) (8= a)80

taken round a small circle whose centre is at z=a.

3. Find the values of

'.g By ERET L
e et e o e

taken round a small circle whose centre is at z=a.

. dz
4. Show that the values of the integral Im), taken

round the circles |z|=1, |2|=3, |2z|=5, are respectively
0, —m¢ and O.

dz
5. Show that the values of the integral j——————
& e 06-6)
taken round the circles |z|=1, |2|=3, |2|=5, |2|=7, arerespectively
me L /()
0, ‘Z) T, 0
22dz

6. Show that the values of the integral ].(—z—_-m,

taken round the circles |z|=1, |z|=3, |2|=5, | 2| =T, are respectively
0, m, —Tm, 2m.

7. Show that the value of the integral j;—_—‘;%_ﬁ, taken round
a contour cousisting of the x-axis, the y-axis and the arc of the
circle |z| =2, which lies in the first quadrant, is .

22dz

(z-1)*(z8+1)’
round a contour consisting of a semicircle of radius greater than
unity, with centre at the origin and its diameter the y-axis and

8. Show that the value of the integralj taken

lying towards the positive side of the az-axis, is —%, and the
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same integral, taken round the entire circumference of the circle

22+’ +22=0,is ;7. Show also that the same integral, taken round

24
f)
the rectangle bounded by =0, =075, y= +1, is -—"Tm.
9. Show 'that the integral J @ @ taken round a contour

which consists of the y-axis and that part of any semicircle |z|> 1,
which lies on the positive side of the y-axis, is — $me.
[ForsyTH, 7'h. Funct., p 42.]

10. If p and ¢ be positive integers, show by integrating I TTe% dz
round the perimeter of a semicircle of radius a (supposed > 1),
having its diameter coincident with the axis of z and its centre at
the origin, that

a 22p d ™ @20+ o(2p+1) 0 20 T
_al + 2% B 0o l+a%e® © il
qsm-———-—‘)q T,
and deduce that if 1 >a >0,
® 2% o™
o T-2""“siner  [Marm Trie., 1887.]

11. When is a function said to have a pole? Distinguish between
a pole and an essential singularity ; show that a function which is
everywhere regular is a constant.

From consideration of the integral j(—e;i,z—m, where @ and b
are real positive quantities, baken round a suitable boundary, show
that 2. cosx i ey dy _mcosa

0 (z—-a)?+82 )o@+ -2+ daE T b
o ieingy o i ? e Y+ -ytdy wsina
o (x—a)?+02 0o P+ -2 +4a%2 b’

[I. C. 8., 1908.]
12. Determine a function which shall be regular within the circle
|z|=1, and shall have at the circumference of this circle the value
(a® - 1) cos 6 +¢(a®+ 1)sin 6
a* —2a%cos 20 + 1

where a?> 1, 6 denoting the vectorial angle. [L C. S., 1909.]
13. Establish by contour integration the result
j‘ ¥ 22 dx TGy
o (@ —a?)? + 0% 20
b being positive. ‘(1. C. S., 1910.]
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14. By considering the contour integral
ea,z
[Tezdz, (0<a<1),

round a rectangle of infinite length (z= — o to + o), and finite
breadth (y=0 to x) with a small semicircle excluding the origin,

prove that ® gz .
* =1 cosec wa.
J._w | hdelaro [L C. S., 1903.]

15. If a, b be two quantities each of the form a + B¢, explain the
meaning of the integration J-bcb(z) dz, and point out in what cases
the value of the integral is gependent on the path chosen between
the limits. [St. Joun’s CoLL., 1881.]

16. Prove that, @ being positive,

0 L]
J. e cog o2 dy = -‘. sin (a2 - a?) da’ ;
0 0

0 a0
j e~20% gin g2 dz =I cos (@ - a?) da'.
0

0
[SmiTH’S PrIiZE, 1876.]

sin 3 5 dz, taken round the unit circle

17. Evaluate the 1ntegralj‘

in the counter-clockwise sense, where a is any real number other
than + 1. [MarH. TrIp., Pr. II., 1920.]

18. Evaluate the integral J‘log_T(z:;_a) dz, taken round the unit

circle in the counter-clockwise sense, where @ is any real number

other than + 1, and the logarithm has its principal value.
[MATH. TrIP., Pr. II., 1920.]

19. Explain what is meant by a period of an integral of a
function, and investigate the periods of the integrals

_"Hz?, I(l-z?)‘*dz j(l-z2)*dz
[MaTH. TrIP., PT. II., 1913.]

20. Show, by contour integration round an infinite semicircle and
its diameter, that
= Ao T ® o de i
oBta+1 J3' o —x+1

» obda _4_1rsin1_r * by _4r 'n%’f
o@+z+1 39 Joa?-z+1 3 9’
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21. Discuss, by contour integration round an infinite semicircle

»

and its diameter, —zdz_’ where p lies between +1 and
22+ 2z2cosa +1

0<a<m.

22. Prove that I-log cos 6 d0=;—;log;}, by consideration of the
0
integral I]og %(z + ;)d?z taken round a suitable contour.
23. By consideration of the integration Ir““’ dz round the peri-

meter of an infinite rectangle of breadth /a? establish Laplace’s
integral of Art. 1041, @ being real.

24. By consideration of jra‘f dz round an infinite rectangle of

breadth b, a being real and positive, prove that
0 Ib.
j e—0'2' (@' —60") cos {4athy (2?2 - 12)} do= % r'($).
0
ech
2+ 4at
a and % are real and positive, show that
® cos k» ¥
o T+ dab

25. By integration of J. dz round an infinite quadrant, where

z=@e—’“’(sinka+coska);
r’ sin kx — ek

s .
A W de= We"‘“(sm ka - cos ka).
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