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1. Introduction

In the continuation of [5] we study in this paper the asymptotic behaviour as t — oo
of a regular solution to the following Cahn-Hilliard system coupled with viscoelasticity:

wy = V[ We(e(u)v) +vAde(u) =b in Q% =Q x(0,00),
(1.1) w(0) = uy, w,(0) =12, in §,
u=0 on 5% =58 x (0,00),

ve—Ap=0 in Q%
(1.2) \W0) = o i Q,
n-VYu=0 on 5%

= =AY 9 () + W (e(u),y) in 2%,

(1.3)
n-Vy=20 on S,

where Q@ ¢ R? is a bounded domain with a smooth boundary S; the unknowns are the
fields w : Q% — R, v : 2° — R, and p : 2% — R, representing respectively the
displacement vector, the order parameter and the chemical potential; e(u) = ${Vu +
(Va)?') is the linearized strain tensor; functions W(e(w), y) and 9(y) are specified below,
12,y are positive constants,

The system arises as a model, regularized by a viscous damping, of phase separation
process in a deformable two-component a — b alloy cooled below a critical temperature.
In the previous paper [5] we have proved the existence and uniqueness of a global in time,
regular solution to this system. Moreover, we have shown the existence of an absorbing
set. Owr objective in the present paper is to study the asymptotic behaviour of the
solution as ¢ — oo.

System (1.1)-(1.3) represents balance laws of linear mementum, mass, and the equa-
tion for the chemical potential. The associated free energy density has the Landau-

-Ginzburg form

(1.4) Fletu)n, 1) = Wie(u) 1)+ 500 + 5[V
where

1
(1.5) Wie(u). x) = ;(elu) —&(1)) - Ale(u) - E(\)),
and
1.0 b=ty
(1.6) P=gl-n )
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represent respectively the elastic energy and the double-well potential; positive constant
5 is related to a surface tension.

The order parameter \ characterizes the material phase. In case of a binary alloy it is
related to the volunietric fraction of one of the two phases, characterized by different
crystalline structures of thie components. We shall asswune that v = ~1 is identified with
the phase ¢ and \ = 1 with the phase b.

The elasticity tensor A = (A,;x) and the eigenstrain tensor €{y) = (£;;(\)) are given by

Ag(u) = Atre(u)l + 2fie(u),

(1.7) i . i
E(\) = (1 = 2(x))Ea + 2(\ )&,

where I is the identity tensor, A, ji are the Lainé constants satisfying ji > 0, 3\ -+ 21 > 0,
£,.€p are constant eigenstrains of phases @, b, aud » 1 R — [0,1] is a sufficiently smooth
imterpolation function such that
(1.8} 2(\)=0 for \<—-1 and :(\)=1 for y2>1
The term v Ae{u,), with v = const > 0, represents a viscous stress tensor; v is a viscosity
coetficient. The derivatives of W{e(u), ) with respect to € and y, given by
Wele(u) ) = A(e(u) — €(x)).
Wile(u),x) = —&'(x) - Ale(u) - &(x)),

il

denote respectively the elastic stress tensor and the elastic contribution to the chemical
potential, For a detailed description of system (1.1)-(1.3) and the discussion of related
literature we refer to [5}.

By introducing the luear elasticity operator

(1.9) ur Qu =V -(Ae(u)) = gdu + (A + 5)V(V - u)
with the domain D(Q) = HQ(Q)/I'I(I,(Q), aud the auxiliary constant quantities
(1.10) B=-Ale, —e,), D=~-B-(g,—&,), E=-B- g,
we have
Weletu)\) = Ae(u) — Ag, + 2(\)B,
{1.11) Wle(u)) = < (x)(B - e(u) + Dz(x) + E),
VoW elu)\) = Qu+ £'(\ ) BV,
On account of (1.9)-(1.11) it is conveuient to recast system (1.1)-(1.3) into the following
concised form
wy — Qu — vQu, = ' (\)BVy +b in Q%
(1.12) w(0) = uy. w(0) = u; 0,

u=0 ou 5%,

I
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yvi—=Ap=0 1 Q%
(1.13) \(0) = vo in Q,
n-Vu=0 on 5%,

=12+ ¢ () + OB - e(u) + D:(x) + E) in Q%

(1.14) -
n-Vy =0 on S°.

It Lias been proved in (3] (see Theorem 2.1 below) that system (1.1)-(1.3) admits the

unique global solution (., y, 2) such that

w e CH|0,00): H?(Q) n H ()N C?([0, 00): H}(Q)),
v € C0 o) HE()) N CH{[0,00); Ly(R2)).

jue Cl[0,00); Hir(Q)), f\'[t)d\r =\ = f,\u(ll' for all t € [0, 00),
Q Q

for initial data satistviug

{w(0), 2 (0),w (0), \(0), i (0)) €W
= {LEPQ) N HQ)) x (H(Q) N HY(Q)) x HYQ) x Hi(Q) x Ls{Q)},

where

Hi(Q) ={€:€c HQY),n-VE=0on S).
Thus, the solution defines the noulinear, strongly continuous semigroup

Sty W 3 (w(0).we(0), w1 (0), \(0), \r {0))
{a(t) wt), w(t), (D xi(2)) €W, t€0,00)

In this paper we prove that for any initial data belonging to W the trajectory of the
solution converges as t — oo to the w-limit set of these data.

Moreover, we show that the w-limit set is compact, connected subset of the space
Zi= HYO) x HY(Q) x Lo(02) x HY(Q) < (H1(Q))',

and enjoys the standard properties, namnely it is positive invariant under semigroup S(t)
defined by the solution and the total energy functional is constant on this set. We prove
also that every element of the w-limit set is a solution of the corresponding stationary
problem.

In the proof of these results we use arguments similar to that applied in [7] for the
sinple Cahn-Hilliard equation, and the procedure of long-time analysis devised in [1], [2]

for phase-field models.
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We use the same notation as in [5]. Vectors and tensors ave denoted by bold letters.
A dot desipnates the iuner product irrespective of the space in question, e.g. for vectors
a = (a;).a= (&) and tensors B = (By;), B= (B,])we write @ @ = a;d;, BB = B”B,Ju
Here and throughout the summation couvention over repeated indices is used.
The symbols ¥ and V- denote the gradient and the divergence operators. For the diver-

genee we use the convention of the contraction over the last index, e.g. V. e = <zi']’ )
For simplicity, the space and time derivatives (material) are denoted by f, = 0f/0x;,
fe=0af/ot.

Moreover, for € = (g,,) we write VW (e,\) = (0‘(‘9_;'5)‘—)) We use the standard Sobolev
spaces notation. In addition, the spaces of vector- or tensor-valued functions are indicated

Ly bold letters.

2. Main results

First we recall the existence and uniqueness result for (1.1)-(1.3). proved in [5] under

the tollowing assunptions:

(A1) € R®is a bounded domain with the boundary S of class at least C*. T > 0 is
an arbitrary fixed mumber.
(A2) The Lamé coefficients fi, \ satisty

>0, 334+22>0
whicl assures that the elasticity tensor A is coercive aud hounded, 1.e.,
(2.1) coel’ <e-Ade < ctle)?

for all symmetric second order tensors € in R®, with positive constants ¢, and c¢*.
Morveover. due to this condition the operator @ given by (1.9} is strongly elliptic and

satisties

B~
SV}

2) collullgzny € I1Qulir,a) for weDQ)=H(Q)NHy(R)
with a positive constant ¢).

(A3) W(e(w).\) is given by (1.5): the function z : R — [0,1] is of class C? satisfying
(1.8) aud

O+ =" (00 € ¢ forall v € R,

The auxiliary quantities B, D and E are defined m (1.10).
(A4) (\) is given by (1.6).
(A5) 7 and v arve positive coustants.
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The uext assumption concerns the initial data. In addition to
u{0) = uy, wd0)=wuy, \(0)=rxyp in €,

we infroduce i compatibility with (1.12)-(1.14) the initial conditions corresponding to

U (0) and \{0):

wy 1= un(0) = Quo + rQuy + ' (\¢)BVxo + b(0),
V= (0) = Ap{0)
= 1A+ AP (Vo) + () B e(u) + De(vo)+ E)) in Q.

Il

We assmme

(AB) wy.uy € HY QN HQ), us € HY(O),

o € H () i={€€ HY Q) :n-VE=0o0n S} v = f \vode < 0o, \1 € La(Q),
y

wlicl implies that
wy € Q)N HL(Q), o € HHQ) N HL(Q).

As regards the external force, we require
(AT) b e Li(0.00: Ly(2)) 0 TFL(0, 00; La(S2)).
The existence theorem is as follows:
Theorem 2.1. (see [5], Thin 2.1, 2.3) Let assumptions (A1)-(47) hold true. Then prob-
lewn (1.1) (1.3) (in sinplified formulation (1.12)-(1.14)) acdmits the unique global solution
{w,\, 1) on [0,00) such that

we CH[0.o0) H*(Q) N H(N)) N CH0,00); H (D)),

\ € Cl0,20) HE ()N C([0,00); Lo (12)),
{2.3) e C([0.00): HLQ), / Vtde = \m  for all t€[0,00),

Q
w € Ly(0.00; HA()) Vi € Ly(0.00; Lu(Q2)),

(2.4) w(0) = uy, w{0)=u1, uy(0)=1uy, x(0)=xu. \i(0)= 1,

aud. for any t € [0, 00) and any fixed number T > 0,

wy € Ly(tt + TP HP(Q)NHY(Q)), wyy € Lot t + T (H(Q))),
(2.5) € Lyt t + TV HE(Q)), Ve € Lot t + T (HE(QD),
jE Loyt ¢ + T HY Q) pe € La(t t 4+ T Ly(2)).
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Furthermore, the solution satisties the following estimates:

unifornn in time
il morrrycn + 1udlci oLz
(2.0 + I leqvconmricy + 1wl Lo comi )
IVl Log0.00in0000) S o

||"Hc"lt[u.ooJ;H‘2(m) + i|urt||c'([o,oo);H;mn
{(2.7) + 1IN o monaz oy + Il ego.oonzaten
Fllelleosernz o < o
wliere
co = colllwollmrycay- 1 ipyny: ol o) 0L, w0z ,000 ),
o = clllugl gz e lazey lu2llm @ divollrz ) I, @ ol 0,0052220)
are positive constants distinguishing dependence on the data;

for any t € [0, 00) and any fixed T > 0,

{2.8) Il Lot s irzian + Il o mimay < cleo T2 + 1),
(2:9) el o rmzan + Nl ragan < o+ 1),

Neeeell e e mcmrsiann + el o, (ormionz e
Hlle a0y < TV 41y

with constants cg. ¢ as above,

(2.10)

Let us introduce the spaces
W= (H2() 0 H Q) x (HAH) N Hy(2)) x H) x Hy(0) x Ly(0),
Zoi= H Q) < H(S2) = Ly(S2) x HYQ) < (HY(Q)).

[ view of (2.7) it is seen that the solution in Theorem 2.1 generates the strongly contin-

(2.11)

nous, noulinear semigroup
(2,12} S(t):eWrmt)e W, t20,
where
Co 1= (Up . ur Uz \us Vo ) Ct) = (u(t) ue(t) upld), (1), i (t)).
Let us introduce the w-limit set of the initial data ¢y € W:
WlCo) 1= {Coo = (Bne Yooty Uoo i \oos \oort) €W C 2
(2.13) 3t} C(0.00), ¢, — o0 and
C(ty) = S(1,)C0 — Coo strongly in Z}.

The main result of this paper is stated i the following
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Theorem 2.2, Asswme that (A1)-(A7) hold. Let S(t) : W — W, t > 0, be the nonlinear
senugroup genevated by the unique solution of system (1.1)~(1.8). Then

(1)

(if)

(iii)

The w-lnnit set w(¢y) of the initial data {y = (wg.uy,us, v, \1) € W C Z is a
nouempty, compact and connected subset of the space Z. Furthermore, w((y) is

positive Invariant under S(t), 1e..
Sithe(Gy) C wlCo) for any t > 0;
If'b = 0 then the map Fy : W — R defined by

(2.14) Fmgm):/ {;Ju'(f)l‘+H’(E(U(f)-\(t))+u"(\(f))+%!V\(t)l‘ dx,
2

is the Lyapuuov functioual for the sewigroup S(t), i.e.,
Fo(S(t)Gn) < FalG) Forany GeWw, =0

Fo is constant ou the w-limit set w((y).
Every element (oo = (Uoc, Yoo t, Yoo 17y \ oo \oo,r) OF the w-limit set w((o) is charac-

terized by
(2.15) Coc = (U6 0,0,V 0. 0)

with fimetions wa .\~ independent of time, solving the stationary problem corre-
sponding to (1.1)-(1.3):

— VW e(e(us ) Voo ) =0 e in Q,
(2.10) Vo)

Use = 0 a.e. on S,
3 A s F 0 (Ve ) F TV (8 ua ) N oo ) = jt e in 2,
N\ =0 a.e. on S,
(2.17) . .
// Ve dd = \ g = % voda,
Q 0

where ji is a constant to be determined along with functions e, Voo

I the proof of Theorem 2.2 the crucial role play uniform in time estimates (2.6) and

(2.7). In particular. the estimates on uy and Vi in Lo-norms on the infinite time interval

(0. o) (which are due to the mechanical and diffusive dissipation) assure that v, and Vi

vanish at the linit 7 — 0.
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3. Outline of the existence proof. Basic estimates

In this section we present the main ideas of the proof of Theorem 2.1 (see [3] for
details) with complementary estimates needed in the study of the asymptotic behaviour.
The proof consists in prolonging the local solution on the intervals (KT, (K +1)T], T > 0,
ke NU {0}, up to b = co. The existence of a local solution is obtained by iinplementing
a Galerkin method and passing to the limit with the approximation. The crucial role in
prolongiug the local solution play absorbing type estimates with the property of exponen-
tially time-decreasing influence of the initial data. We use two kinds of such estimates:
the energy aud the regularity ones. The energy estimates are derived on the basis of the
original form (1.1)-(1.3} of the system whereas the regularity estimates on the basis of

its time-differentiated form.

3.1. Energy estimates

3.1.1. Energy identity
A characteristic property of system (1.1)-(1.3) is the mass conservation
d

dt
Q

\(tide =0 for ¢ >0,

which follows from (1.2); and (1.2);. and shows that the mean value of y is preserved,

1.0

(3.1) :/\(f)d.z' = / Yodu =1\, for >0

Y2 Q
Another property is the energy identity

%FH) + v /s(ul(t)) CAe(u())de + / IVu(t)rde
Q Q

= /b(f) cug(t)de for ¢ > 0.
Q
where function £ [0, 00) = [0, 0c). given by

1 , g .
Fit) :/[gluuf)f'+I‘V(s(u(t)>.\(f>)+rzvt,\u))+ %lV\(t)I‘ dx

€
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corresponds to the total energy of the system. The two nonnegative integrals on the
left-liand side of {3.2) correspond to the mechanical and diffusive dissipation.
Formally, (3.2) vesults by testing (1.1); by w(2), (1.2); by u(#) and (1.3)1 by —v«(1).
nitegrating over  and by parts, and sumnming up the resulting identities.
From (3.2) we infer the Lyapunov property, namely if b = 0 then
d

—FP(t) < 0.

3
(3.3) dt -

which shows that /' is nonincreasing on solutions paths, i.e.,
Pty < P(0) for t>0.
On acconnt of structure assmunptions (A3)-(A5),
(3.4} Pty = "i"(““(“”iﬂ(ﬂ) + e (DT 0y + I ny) = o

with some explicitly computed positive constants cp and . Hence, F(t) provides esti-
wates for (u(t), w (1), (1)) in energy norms H () x Ly(Q) x H'(Q). Integrating (3.2)
with respect to thne from ¢ = 0 to t € (0,00), we get

lll

(3.5) Lostvsesiryia)) + el 00iLa00y) T INH D (0,001 (2))

il Ly 000y H VAL,
wit]) constant cy = (‘(”(’ll'o"ll"l‘\VO)HHE(Q)XLQ(Q)XH‘lﬂ)?||b||Ll(U,OG;L2(ﬂ)))' Since F() is

contintous ou [0, 50) this shows estimate (2.6).

3.1.2. Additional estimates

From (1.14) it follows, on account of (3.5), that

(3.6) 1//1(/1

Hence, by the Poincaré inequality. estimates (3.5} and (3.6) imply that for any ¢t > 0 and

any fixed T > 0.
>( ,

<e /}\I‘+}Eu|+1(h <eley) for t =0
!

+T

WeellZ o vy < € / <HV;1||L @) j/;zd,
/;L(Z.T
o

13.7)
< IVl

Lot ¥TsLo 0 T €T sup
te[1, 14T}

eleg T+ 1).
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Lt‘/\n

Thus,
”“Iliz(i.t+’]‘;l-11(ﬂ)) el (T +1)

which: shows the second estimate in (2.S).
The first estimate in (2.8) follows by testing (1.14) by Ay and using the Cauchy-Schwarz
lvqunlit): which on account of (3.7) and (3.5) yields

AN Lot sy < Wi mian + IV = Alesco i)
+elletw)ll Ly rpann + 1)< cleo(THZ 4 1),

This together with {3.1). by the ellipticity property of the Laplace operator, shows (2.8);.

3.2. Energy estimates of absorbing type

3.2.1. A differential inequality for a modified energy function

Let G : [0.00) — [0.0c) be the function defined by

(3.8) Git) = F(1) + ”“,;‘ll / [um-u(m De(u(t)) - Ae(u(t))| da

2

with constant ¢, > 0 given in coercivity condition (2.1) and d; > 0 denoting constant

from the Norn inequality
v/ .
d Nl gy < lletullip,in for ue H(82).

By definition of G(#). it holds

1 2
G(t) = F(t) - 1”"1(0“22(9)‘

Hence. siilarly fo Fi(t). the function G(t) provides estimates on (w, u¢. \) in energy
norms HY(8) < Ly(2) x HY(Q).
It has been proved (sec [5], Lemma 3.3) that solutions of (1.1)~(1.3) satisfy the

differential inequality

ve.dy
8
SAOG, 0y + A2 for >0,

d , ” 1 Y
;/;Glf) + IG(t) + Hut(t)H}Ié(m + 5 IV, o)

(3.9)

with sonse explicitly computed positive constants Jy. A, Ay,
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The proot of {3.9) is based on the three identities: the energy identity (3.2), the

7/ [V de +/[1/*'(\)\ + W (e{u), v\ ]de = /u\d.r,
! !

Q

Identity

vesulting from testing equation {1.3); by \{#). and the identity

d

Jf wy o wdy / Welelu)\) - e{u)dr +1.// e(u)- Ae(uy)dr
[t

7]
/b wda +/!u,| dr,

following by testing (1.1); by u(t). An appropriate teclinical construction based on struc-
ture assumptions on W {e(w), \ ) and () and using straightforward calculations allows
to deduce {3.9) from the mentioned above identities,

2.2. Absorbing estimate for Git)

From (3.9) it follows that
(3.10) Git) < 41— e Py Go)e P >0,

where

1
:11 = 3 (/\1 sup “b “L,(Q 1\2).

1 1E(0,0c})
Tlis estimate 1s of key importance for prolonging the solution step by step on [AT, (k +
DT ke NU {0} wp to b = oo. In particular, it provides the estimate
el ey oy + ez + IOl aa) < G+ cp

{3.11)
_~:11 +G( )+(‘p:(‘1

ou cach time interval (AT, (4 - 1)T] with constant ¢; independent of k.

3.2.3. Absorbing set in energy norms
Inequality (3.10) nuplies that

lmsup G(t) < Ay
[t
Thus. for any positive number 4] satisfying 4} > 4, there exists a time moment #; =

HOG0) AL given by
G(0)

fo= Loy 0
S N ST
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such that Gty < A for all 7 > ¢y, hence
{3.12 IIU(T)HH\.‘](Q) Fllwd D, FINE o) < AL + e =, forall € >4,

This shows the absorbing set for (w,u,, \) in energy norms H{($2) x Ly(Q) x HY(£).

3.3. Regularity estimates of absorbing type

3.3.1. A differential inequality in higher norms

Let N1 [0.00) — [0.00) be the function constructed on a regular solution, defined as
a lmear combination with appropriately chosen coefficients (depending on the constant

e (3.11)) of the moditied euergy Gif) and > norms

1Quit) T, 0. Q' wih)F,ia) NQud )7, ), “Ql/!un(f)“'}:gm)’

)
||\(“Ni._,u_'z)- H‘—\\(””iﬂm‘ ||\1(““";,3(m-

Here Ql/"' stansds for the fractional power of the operator @ with the domain D Ql/z) =

HE{0Q), satistying
“Ql/')"”iguz) =(—-Qu.u)p,0) = ﬁHVu”‘iQ(m + (A + |V u“iﬂm for uw € D(Q).
By the construction, function N{#) satisfies the bound

Nty = etz gy + Nl o) + lea®iif )

(3.13) ) , ,
+ ||\(f)[lf1;-;,(o) B, 0)) — N

with explicitly computed, positive constants ¢y and ey dependent on ¢;. Thus, N{t)
provides estimates for (ee(#). 2w, (1), @ (1) A (). (1)) in the norms of H*(§) x H*(Q) x
H(Q) < HL(Q) < LaiQ).

[t Lias been proved i [5). Lemmna 4.5. that solntions of {1.1}-(1.3) satisfy the differ-

entiad nequality

l ) 5 - N 9
(3.14) :Tf_\'(f)+,}5,\’(1‘)+/i51\'(f)Sj\.;;]]b(t)uzlm—I»;’\,ll[b,(t)H‘Lm»”—I»J\f, for t>0,

where
N(t) = ||“n(f)||;12(m + ”\t(f)”';#(ﬂ)»

and 75, Js. A, Ay A5 are explicitly computed positive constants depending on ¢;.
The derivation of such inequality is based on differentiating system (1.12)~(1.14) with
respect to thie. A straightforward but technical procedure consists of the following main
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steps. In the fivst step we derive a differential inequality corresponding to the elasticity
system (1.12):

d [

TfH(f) + A () + By H ()

«

(3.15) < cpl [[V\H)| %2(()) + H\I(”v\(‘t)“i;(m + Hv\f(.f-)”izm) + ”b(t)”%,(m
+ 3,0 for >0,

where H ¢ [0,00) — [0.20) is a linear combination of the norms
1Quit)I7, - §Q P uilF e 1Quet)Ziqy ”Qlﬂu”(””%z(m’

and
H(t) = a0 + 1QualbiT, q)-

3y, Ty cp ave explicitly computed positive constants.
L thie second step we derive a differential inequality corresponding to system (1.13).
{1.14) whicl allows to handle the terms on the right-hand side of (3.15). The inequality

has the form
d ~ s ) . .
(3.16} Eun+mﬂw+¢ﬂwgcm¢mmnmﬂm+\ﬁ+u1mt>u
where JJ 0 {0, 20) — [0.00) 15 a linear combination of the norms
||\(:f)||v_;,_.m)‘ ”A\(t)”!uz(m- “,\i(t)“ig(ms

and

T = IOy )

iy, 15 ¢ are positive constauds.
In the third step we combine (3.15) and (3.16) to conclude the differential inequality

d .-

LR+ AR + AR

(3.17) 41”)+/’“?+"”) | |
<eptlletwdiDNL g UBENE, @) + 10T, o, + 1) for &> 0,

where v [0,00) — [0, 2¢) is a linear combination of the terms of H(t) and J{t);

Ki{t) = H(t)+ J(t),

and . 1[ ¢y are positive constants.
Finally, combining inequalities (3.17) and (3.9) allows to absorb the term
letwdF, () on the right-land side of (3.17) and thereby conclude (3.14).
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3.3.2. Absorbing estimate for N(t)

Ou account of {3.14) we have

13.18) N{t) € Ao — 7751y 4 N(0)e 7!
wliere 1
Ay = —(\y sup “b(f)”f)m) + .\, sup ||b,(t)”i,,lm + As).
I5 (€(0,%0) : {E(0,00) :

Estimate (3.18) allows to prolong a regular solution step by step on the intervals
[MT.(k+ 1)T), k € N. Tt provides the following uniform in & hound

(3.19) N({) < Ay + N(O).

S max
kelufo) TERTR+1)T)

Moreover, by integrating (3.14) with respect to time. it follows that
(A1) T

{3.20) s1p G N(t)dt < TAyfs + As + N(O).
reru{o)

i view of detinitions of N(#) and ./\f'('t). estimates (3.19) and (3.20) imply the correspond-
ing bounds on w and \ in (2.7)-{2.9).
Furtherore, testing (1.2)) by Ap and using estimate (2.7} on v, gives

sl o o0 a00y) < €

Hence, recalling (3.6), the elliptic property of the Laplace operator with homogeneous

//L(Z.T ) <e

Q

houndary condition implies that
3 1

litllercgomonierz cany < f‘((||AI'UC‘([U.ooj;L2m)’) + sup
’ 1€[0,00)

which shows estimate o goin (2.7).

3.3.3. Additional estimates

Oun the basis of {2.6)-(2.9) we can deduce additional estimates (2.10) which are used
in the long-tine analysis, The estimate on j¢; in (2.10) follows from the identity (resulting

by differentiating (1.24); with respect to time)
pe= AR O OO OB e(u) + D)+ E) S OOB - elud) + D (V)

=
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by festing it by g and applying the Caunchy-Schwarz inequality. Then

el o s rinscan € el Lo 7 L2000
I N o rizacay + INllLag s rizaen
+ [\ retulf
< (T4,

where we nsed (2.7) aud (2.9), in particular the bouuds

N Lotz S eTV20 I

Lottt TiLocan el L0 Tinaan)

[ttty < (T2 4 1),

Estimate on wyyy in (2.10) follows from equation {1.12); differentiated with respect

to t. Then for any test function n € Lyt & + T, H' ().

1+ +T

i

(2. z;)Lz(mdf’I
Y t

+ ("N BY N+ OBV )y + (b ) pyayldt!

[—(Ae(u) + vAe(uw),e(n)), )

< cllleCuwill Ly minwan + He(wea )l oy ri V0l L, s Tizaay

Lottt Ty + BVl Lo s Tz )

+ el Vi
F 6l Loy Tipa) I e 7L
< AT+ D0l yrrs momt i)

where we used (2.7) and {2.9). This shows (2.10);.

Similarly. by testing equation (1.13), differentiated with respect to time by a function

e Ly T H;{,(Srl)), and using (3.21) we get

+1 t+T

/ (\u-f)L?(Q)(H’ /U’(-AGL;(QJ‘H,
t t

SrellLac mieacanlél

S AT 4 DNEN Lt s 72,000

1411,:+T;1~1“{.(51|J

This shows (2.10),.
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3.3.4. Absorbing set in stronger norms

For completness we recall also (see [5], Thm 2.2) the absorbing set in the norms
mcuced by the funetion N (1),
On account of absorbing estimate (3.12) in energy norms we can infer from inequality
(3.18) that for alt ¢+ > ¢,

(3.22) N{1) < Apa(l — €701y 4 N (0)e Foe!

where 4y, and As, are positive constants independent of the initial condition N(0),
obtamed by replacing in corresponding expressions constant ¢1 from (3.11) by ¢1, from
(3.12). From (3.22) it follows that.

1hj})105111) N(t) i:lg,,. i

Thus, for any positive number 4 satisfying 4, > A,,, there exists a time moment
ty = H(N(0) AL )

1 N(0)
1y = El()g —_12—_—_1;

such that N{#) < 4} for all 1 > t, = max{t;,t,}. Hence. on account of (3.13),

Nl ”u“)“i]’-’lm + ”“l(f)”iﬂ(m + ||'U'H(t)||§15(m + “\(t)”‘izfv(m
+ ”\/(f)“‘_;,g‘ﬂ)) < ’Vz +(‘Z‘Vu for 'ﬂH t 2 f*

where ¢y, and ¢y, are positive numbers independent of N(0). This shows the absorbing

set for (uw g o) in HIQ) x HAQ) x o () x H{) x Ly(§Q).

4. Proof of Theorem 2.2

(1) Due to estimate (2.7) the orbit UfZU S(t)y starting at Co = (wy, Uy, Uz, Yo, \1) 18
bounded m the space W, thus is relatively compact in Z. Hence, the w-limit set
gy is a nonempty and compact subset of Z. Moreover, since by (2.3),

fu g wg o) € C0icop W) C C([0.00): 2).

the kuown results of the theory of dynamical systems (sce e.g. (3], Prop. 2,1) show
that this set is counected in Z, and positive invariant under S(t). Indeed, if ¢ € w((y).
say ¢ = iy, — o S{t, )¢, then
Sty = Jim S(0S(t)6 = T S(E 44,00 € wl(Go)
¥ n—

n—no

17 z50 26— 8- 2008



(i) The map Fg given by (2.14) coincides with the function F(?) defined in energy
identity ¢3.2). Thus the Lyapunov property of Fy results immediately from (3.3).
The claim that Fyy is constant on w((y ) follows from a general result in [3], Proposition
2.2, due to the continuity of Fy. Indeed, let Fuoo 1= liny oo Fu(S(t)Ce). Choosing
any ¢ € w((y), say ¢ = limy—eo S(tn )y, we deduce by the continuity of Fy that

Fal¢) = Fa( lim S(t,)0) = lim Fa(S(t,)¢) = Fase

whicle shows that Fy s constaut on w((y).
e shall characterize the elements of the w-limit set.
Let (Toe. Uoe v Uag 16 Noos Voout ) € w(Wy, U1, U, \o, \1 ), and ¢, be a sequence of pos-

itive nuntbers such that +, — oc and

(1ii

(ulty ) weltn) w(tn) () xe(2a)) —

(Ui Uoo ts Ueo 1ty Noos \aovt)  Strongly in Z.

(4.1)

For a fixed nuwber T > 0 and ¢ € [0, T} we define functions

un(f) = ult, + f) uu.l(f) = u[(tn + t)- un,il(t) = ul{(tn + t)\
(42) \u“) = \'tn + t) \n,f(t) = \r(tn + t)v /-ln(t) = /U'(tn + t)s
bn(f) = b1, 1),

wlhere (w. . ) is the solution of (1.1)~(1.3) on [0, 0¢). Thus, (wn, X, fin ) solve the system
Upy.1t — Qun - "/Qun,t = :/(\,,)BV\,, + bn in QT =0 x (O,T)‘

(4.3) uu[()) = u”n)~ un.l(o) = ul”n) in &)-
u, =0 on ST =5 x%(0,7),

Xt — A,Un =0 in &2T,
() W) =(t,) i Q.
1 Vi, =0 on ST,

e = =33 o' ) + S B e(u,) + Dz(\n) + E) in 27T,
1Ny, =0 on ST.

(4.2)

By virtue of (2.6) and (2.7) the following estimates hold true independently of T and n:

(1.6} el oy + 1ol compan + e ey
+ H“n,t“Lgm,T;H;,(sm + IVl £y00. 72000200 < Co.
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(4.7)
vl cwriaa il ormzan <o

Morveover. by {2.8)-(2.10).

(4.3) “\,,||1,;.10.'1';1»I};,151); + Ntall Lo,y < o1,
(4.9) Mol pow rmzan H N0, L mmz) < o),

Nwnaell,orqmsny + INaalig ooz @y

(4.10)
+ iz, 150000y < o T)

with constant (7") depending on T but not on .

Newnllivs cormezcoy + leaadle o mmon + alieg o rmzan

The above estimates allow to pass to the wealk limit n — oo in (4.3)-(4.5). In fact,

it follows from {4.6)-(4.10) that there exist functions (@, \, i} with
(4.11)

w e WL 0. T H () n H(Q)), @ € Lool0.T; H(2)) (0 La(0, T H*(Q)),

wy € Lot0. T CH (). V€ Laol0, T H (D)),

Vi € Lot 00T Lot ) N Lot0. T H () e € Lo(0, T {HA(Q))),

B € Loot0.T5 Hi62)), Ji € Ly(0,T; Ly(Q)),

and subsequences of (1w, \y. ) (which we still denote by the same indices) such that

as n — oG,

wu, — weakly —« in WL (0,7 H*($)),

Wy g Uy weakly —# in Loo{0.7; H}(Q)) and

(4.12) . 0o
weakly in L. T H-(Q)).
Wy — Wy weakly in L, Ty (HNQ)).
\n weakly — # in L, (0,7 H:fv(fl)).
113) At = s weakly —# In Lo (0,73 L2(Q)) and
(+.1. .
weakly in Lo(0. 7 H3 ().
Vot = Vo weakly in Zy(0, T (HX Q) ).
I ' weakly — # in Loo{0, T H} ().
(1.14) Ha — N

Joog — gty weakly in Lo{0, T Lo ().

19
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Henee, by the standard compactness results (see e.g. [G]) it follows in particular that for

Ho— 20,

Uy — U, Uy — Uy strongly in C([0.T}: H)(R2)) and ae. in ar,

(4.15) ) . 1 e ) . T
Wy — Wy strongly in L0, T3 Hy(2)) N C[0,T]; L,(2)) and a.e. in £,

{410}
Ve strongly in CHOL T HY(Q) and ae. in 07,

Vit — v strongly in L,(0.T:H' ()N 0. TE(HY(Q))) and ae. in 7,

(4.17) s — g strongly in C([0.T): H'(§2)) and a.c. in 7.

Moreover. due to the bounds on the dissipative ters (see (2.6))
Nl Ly coooimrsin + IV Bl L, 00,0080000) < o

we dedhice that as n — 2o (1, — o0)

(4.18) Uil ) = w{ty +) = 0 strongly in Ly(0,00: HJ(52))

and

Vi) = Vult, +-) — 0 strongly in Ly(0, 00; L4(§1)).
Hewace, in view of (4.15), (4.17).
(419} =0 and Vi=0.

This implies that @ does not deper  Hu time and 7 does not depend on space variables.

Consequently, by (4.15).

w, — @ =u(0) strongly in C([0,T]; HH(8)),
(4.20) w, — i, =0 strongly in C([0,T]; HL ().
Uy — Uy =0 strongly in C([0, T]; L2(£2)),

awd by (414,

(+.21) Ny = Aji =0 weakly — = in Loo(0.T: Ly(2)).
Siee \ = Sjty, in QT (4.16), and (4.21) imply that

(4.22) Vit — V= AQ =0 strongly in C([0.T); (HY(S2))").
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Heneeo y does not depend ou time, and in accord with (4.16),,
\n = V= V(0) stromgly in C[0.T); HY(Q)).
Now. owing to (4.20)-(4.23) and recalling assumption (4.1), we deduce that

(4.24) w(t) =w(0) = lm u,(0)= Hm u(t,) = v,

= q(t) = uy(0) = limA wn (0} = lim u(t,) = ve,r.

n—oo n--oa

0
0=a,(t)=1,0) = Hm u,(0) = Um w(t,} = e,
[ Ramds o] 00

and

\(t) = ((O) = lim \H(O) = lim \“n) = Xoor
(;1.23) n—o0 == 00
0= \(t) = Te(0) = lm \, ((0) = hm \{tn) = oot
— H— o0

This shows that any element (oo = (Woo Uoc, 12 Uoo, ity Voor Voo,r) € WUy, U, Us, Vo, X1)
satisties (2.15).
It remains to prove (2.16), (2.17). To this end we pass to the limit n — oo in the

weak formulation of (4.3)-(4.5):

T T
/(un,u - Qun - VQun.hTI)(H = /(:,(\rl)Bv\n + bn-TI)(h‘
(] 4]
Vi € L400.T: Ly(2)).
A T

(4.2G) /l\”.n{)(h‘ = /{'A/l,,.{)(lt VE € Ly(0.T; Ly (82)),

0 0

. T
/(./[;1-§)(h = /(—')A\,, + I,/',(\n)'i’ :I(\n)(B : E(un) + DZ(\,,) + E,q)(lt
u a

Yo € L(0.T: La(2))
wheve (-, ) denotes the scalar product in L ().
Clearly, by virtue of the weak convergences (4.12)-(4.14) the linear terms in (4.26) con-
verge to the corresponding limits. The convergence of the nonlinear terms can he con-
cluded with the lielp of the standard nonlinear convergence lemma (see {4], Chapter 1,
Lemma 1.3).
It fact, recalling asswmptions (A3). (Ad) on #(-) and p(-) and using estimates (4.6) we

Lave

[E GV
=" ) BY o mibaon S llVaalloowriraon <
='W B - elw,) + Dainn ) + Bl 0,700

< cllletwalle . roripacan + 1) < eleo).

3 .
Ll Titz() S efl\n ”LN(UI”[‘;LG(Q)) + 1) < eley).
o

o),
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Thanks to these uniform estimates and the pointwise convergences (see (4.15), (4.16),
{4.24). (4.25))
Uy~ U= Uso, \n— L= Voo a€ il or,

the nonlinear convergence lemma implies that

) =0 e R e = 1 (Vo) weakly — * in Loo(0,T; Ly(§2)),

) BY = 2 (Ve ) BV Voo weakly — » in Loo(0,T; L4(§2)),

SN B eluy)+ Dz(\,) + E) —

— 2\ (B Eltse) + Di(\ o) + E) weakly — « in Loo(0,T; Ly(Q2)).

Moreover, since by asswumption (A7), & € Ly(Ry; L,(82)). we have

(4.28)

b,(-)=0blt, +)— 0 strongly in  L;(0,00; L4(£2)).

Cowsequently, passing to the Jimit 7 — oo in (4.206) yields

T I

-~ /(qu,.'l])df = /(:’(\,,O)BV\OO,U)(H V1€ Ly(0, T £2(Q)).
.U o
(429) 4 T
/ BL )t = /(—wl\oo + ' (\oo) + 2 (N (B e(tog) + D\ oo + £), ¢)dt
) v

Vo € Ly(0.7: Ly(A2)),

Shice Uq: and \ o do not depend ou time, it follows from (4.29), that i does not depend
on time as well, thus ji = const. Moreover, the above identities reduce to

~{Quec. ) = (z'(1ec ) BV oo, ) Vi1 € L(2),
(4.30) (i3) = (=92 0 + ¥ (\oe) + 2 (X2 B - £luc)

+ Drinec} + E)g) V€ Ly(f2).

Henee, vecalling that (see (¢.11), (4.24), (4.25)) use € HA(2) N H (), Voo € H3 (), it
follows that w~ .\« satisfy the following system

—Quoe = 7 (100)BV e in (2
(1.31) Q \ o \ oo

Up, = 0 on S,
= 7AV s F 0 o )+ F (N ) B eluns) + Dilxao) + E) = in &,
n- Ve =0 on S,
(4.32)
f\,x,.d'iz' = \in-
1]

where jiis a constant,
Clearly. in view of (1.11) the above system is equivalent to {2.16), (2.17). Thereby

the proof of Theorem 2.2 is completed. O

N
S
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