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MODELLING OF THERMOELASTIC MATERIALS.
PART I: THEORY

IRENA PAWLOW

ABSTRACT. The goal of this paper is to work out a thermodynamical set-
ting for phase-field models with conserved and nonconserved order para-
meters in thermoelastic materials. Our approach consists in exploiting the
second law in the form of the entropy principle according to 1. Miiller and
L. S. Liu which leads to the evaluation of the entropy inequality with mul-
tipliers.

As the main result we obtain a general scheme of phase-field models which
involves an arbitrary extra vector field. We explain the presence of such a
field in the light of Edelen’s decomposition theorem asserting a splitting of a
solution of the dissipation inequality into a dissipative and a nondissipative
part. For particular choices of this extra vector field we obtain known
schemes with either modified entropy equation or modified energy equation.
A detailed comparison with several known phase-field models, in particular
Caln-Hilliard and Allen-Cahn models in the presence of deformation and
heat conduction, will be presented in Part II of the paper [Paw07].
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1. INTRODUCTION

1.1. Motivation and goal.

Phase-field approaches to modelling phase transitions in various conserved
and nonconserved systems have gained a lot of popularity during the last
years. Among the mostly known and broadly investigated we mention the
Caginalp model of solid-liquid phase transitions [Cag86], Penrose-Fife models
with conserved and nonconserved order parameter [PenFife90], [PenFife93],
models due to Fried-Gurtin [FriGur93], [FriGur94], [FriGur96), [FriGur99],
Gurtin [Gur96], Frémond [Frem02], [FremMi96], and Falk [Falk82], [Falk90] for
phase transitions in solids, in particular phase separation, ordering in alloys,
damage and shape memory problems.

The phase-field (or diffuse-interface) models postulate one or more quan-
tities, named order parameters, as indicators of the state of the material, in
addition to the usual ones such as temperature, elastic strain etc. In models
of this type — on the contrary to sharp interface ones — the order parameters
vary continuously in the medium, including the interfacial regions between the
phases where they undergo large variations.

In accordance with a postulate of a smooth phase transition phase-field mod-
els are based on a free energy functional, called Landau-Grinzburg functional,
which accounts not only for a volumetric energy but also for a surface energy
of phase interfaces.

In most of the literature the derivations of phase-field models are based on
variational arguments and adapt concepts from classical equilibrium thermo-
dynamics in nonequilibrium situations.

Having in mind several objections to variational derivations, in particular
not sufficient generality of postulated constitutive equations, E. Fried and M.
E. Gurtin have developed in a line of their papers [FriGur93], [FriGur94],
[FriGur96], [FriGur99), [Gur96] a thermodynamic theory of phase transitions
based on a microforce balance in addition to the basic balance laws and a
mechanical version of the second law. Parallel to that theory M. Frémond
[Frem02], [FremMi96] has proposed a theory based on microscopic motions as
a tool of modelling of various phase transitions, specifically shape memory and
damage problems. Despite of different ideas Frémond’s approach bears some
resemblance to the Fried-Gurtin theory.

Another approach to modelling phase transitions has been proposed in
[AltPaw95], [AltPaw96] and applied in [Paw00a], [Paw00b], [Paw00c]. This



4 IRENA PAWELOW

approach consists in exploiting the second law in the form of the entropy prin-
ciple according to I. Miiller [Mul85], complemented by the Lagrange multipliers
method suggested by I. S. Liu [Liu72]. Such method leads to the evaluation of
the entropy inequality with multipliers, known as the Miiller-Liu inequality.
Recently the multipliers-based approach was applied for deriving generalized
Cahn-Hilliard and Allen—-Cahn models coupled with elasticity (see [Paw06al]).
A comparison with the Fried-Gurtin theory based on a microforce balance
showed coincidence of results and several interesting connections.

We point out that the above mentioned thermodynamic approaches allow
to obtain models with much more general structure than those introduced by
variational arguments.

The goal of the present paper is to work out a general thermodynamic setting
for phase-field models with conserved and nonconserved, scalar order param-
eters in thermoelastic materials by means of the multipliers-based approach.
Our ultimate aim is to obtain a general class of thermodynamically consistent
schemes for Cahn-Hilliard and Allen-Cahn models — two central equations in
materials science — in the presence of deformation and heat conduction. This
will be presented in Part II of the paper [Paw07] where we discuss the general
thermodynamic scheme in several special situations and compare the results
with the mentioned above well-known phase-field models. In particular, we
shall consider there the Cahn-Hilliard and Allen-Cahn models coupled sepa-
rately either with elasticity or with thermal efects. The latter case allows
to enlighten a general question of particular interest in phase-field modelling
whether to modify the energy or the entropy equation (for related discussion
see e.g. [FGMO6]). In this respect the answer given by the present paper
is that both variants of the schemes with extra energy or extra entropy flux
are thermodynamically consistent and arise in dependence on whether there
appears or not a nondissipative (anomaly) thermodynamic flux in the system.
More precisely, in the present paper we show that one can choose a nonsta-
tionary part (depending on the time derivative of the order parameter) of the
energy flux in an arbitrary way not restricted by the entropy principle. This
property, characteristic for models governed by gradient-type potentials, was
observed firstly in [AltPaw96]. Here we explain this freedom in the light of
Edelen’s decomposition theorem [Ede73], [Ede74] which asserts a splitting of
the solution of the dissipation inequality into a dissipative and a nondissipa-
tive part. Clearly, a final selection of this flux must follow from an additional
analysis of the resulting model equations.
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1.2. The multipliers-based approach.

Prior to presenting a general scheme of phase-field models we describe briefly
the Miiller-Liu multipliers-based approach. The application of this approach
to phase transition models requires a special procedure which consists of three
main steps.

In the first step we consider the system of balance laws with a set of constitu-
tive variables relevant for the phase transition under consideration. Distinctive
elements in this set are variables representing higher gradients of the order pa-
rameter and its time derivative. The presence of such variables is characteristic
for theories involving free energies of Landau-Ginzburg type. In accordance
with the principle of equipresence we assume that all quantities in balance laws
are constitutive functions defined on this set of variables.

In the second step we postulate the entropy inequality with multipliers con-
jugated with the balance laws. Again, we assume that all quantities in this
inequality, including multipliers, depend on the same constitutive set. Next,
making no assumptions on the multipliers, we exploit the entropy inequality
by using appropriately arranged algebraic operations. As a result we conclude
a collection of algebraic restrictions on the constitutive equations.

In the third step we presuppose that the multipliers associated with the
equations for the order parameter and the energy are additional independent
variables. Then, regarding algebraic restrictions obtained in the previous step,
we deduce an extended system of equations including in addition to the balance
laws the equations for the multipliers. Moreover, we require the resulting
system to be consistent with the principle of frame indifference.

1.3. A general scheme of models.

We summarize the main result of the paper which yields a general scheme for
phase-field models with conserved and nonconserved order parameters, gov-
erned by a first order gradient free energy in the presence of deformation and
heat conduction.

We use the following notation: x — order parameter, u = (u;) — displacement,
F = (F;;) - deformation gradient, - chemical potential, # > 0 — absolute
temperature, f — free energy, e — internal energy, 7 — entropy, q = (g:) —
energy flux, ¥ = (¥;) — enropy flux, j = (ji;) — order parameter flux, 7 — order
parameter production, 7 — external source of the order parameter, g — external
heat source. R

We assume that there are given a free energy f = f(F,x, Dy, ) which is
strictly concave with respect to 0, and a dissipation potential D = ﬁ(X;w)
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with
X = (g, DL, D%, X,:) — thermodynamic forces,
w = (F,DF, x, Dy, D%, 0) — state variables,

which is nonnegative, convex in X and such that D(0;w) = 0. Here Dy, DX, Xt
etc. denote variables corresponding respectively to V, V2, X; superimposed
dot denotes the material time derivative.

The unknowns are the fields u, x, /6 and > 0 satisfying the following
system of equations in  C R*:

(1,1) l‘i—v-f'p=b,
x+V-j—r=rm,
g 88 o1 ea
8= ox +V0 h™ + a“,
é+V-q-frF=yg

subject to appropriate initial and boundary conditions.

The subsequent equations in (1.1) represent respectively the linear momen-
tum balance, the mass balance, a generalized equation for the chemical poten-
tial (equivalent to a microforce balance in Gurtins theory, see |Paw06a]) and
the energy balance. Equation (1.1); combines various types of dynamics of the
order parameter:

— mixed type if j # 0, 7 # 0;

— conserved if j # 0, r = 0;

— nonconserved if j = 0,7 # 0.

The expression 8U/9 denotes the first variation of the rescaled free energy

ox
£/0 with respect to x:
5(f/0) _ (1 f.px
1.2 == v L
(1.2) dx 0/, v 0 )’
the internal energy e = &(F, x, Dy, 0) is given by the Gibbs relation
(1.3) e=f—0fp,

and the energy flux q splits into a dissipative, q¢, and a nondissipative, —xhnd
(possibly zero), parts:

(1.4) q=q"—xh"
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The dissipative quantities

(1.5) r=rd=rX;w), j =j¢ =jj\d(X;w),
¢ =P Xw), o= (Xw),

denoting respectively the order parameter production, the order parameter
flux, the heat flux, and a dissipative part of the rescaled chemical potential
/0, are given by

oD oD
1.6 e i O
(1.6) 3’ )~ aD(u0)
o P . 0D

an(/e)  * T oxe
The dissipative quantities contribute to the dissipation inequality whereas
nondissipative ones do not. The nondissipative flux h™ = fl"d(X;w) is an ar-
bitrary vector field which is not restricted by the entropy principle. It should,
however, like all other constitutive quantities in (1.1), be consistent with the
frame indifference principle. This principle restricts the dependence on the
deformation gradient F. In particular, the free energy should satisfy

7(F, x, Dx,6) = F(C,x,Dx,6)

where C = FTF is the right Cauchy-Green strain tensor; other quantities

should transform appropriately (see Section 4).
It will be shown (see Corollary 4.2) that solutions of system (1.1) satisfy the

following entropy equation and the inequality

; _ o ta_ gt ey gl gty et Bt
(L.7) N+ V¥ = -G =Vg '+ Vg dixa +57 g
H g
> = Z
> 6‘r+0,
with the entropy flux ¥ given by
H.q 1 d .fxDx_h"d
1. U= - e
(1.8) LA S S

The quantity

1
S(X;w) = —brt = DE . j 4+ D - q* + xea 20
0 0 0
represents the dissipation of the system.
Another important property of system (1.1) is the Lyapunov relation (see
Corollary 4.4) which asserts that if the external sources vanish, i.e. b =0,
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7 =0, g =0, and if the boundary conditions on S imply that

. 22 s g d ctandy
(1.9) (firn) -0 =0, 511'.1—0, 1—5 n-(q* - xh™) =0,
in ° f,Dx = 0>

0
then solutions of (1.1) satisfy the inequality

d 1. =
(110) % [ eF D) + 510~ F(F, x, Dy, )i <0

for some constant @ > 0. This provides the Lyapunov relation.

The distinguishing elements of system (1.1) are nonstandard energy and
entropy fluxes, q and ¥, which contain extra nonstationary terms. As seen
from (1.4), (1.5) and (1.8), the fluxes ¥, q and j are related by the condition
(1.11) o+ 9J - ;q xf’:;"
This condition shows that in phase-field models with a first-order gradient
energy (i.e. f,py# 0) at least one of the fluxes must include an extra nonsta-
tionary term with x. We point on the two extreme choices of the nondissipative
flux hm¢:

(i) h"* =0
leading to models with extra entropy flux

14 . fox,

d H.a
= U=
q=q, 0J+0q +X9

(if) hrd = f,px
leading to models with extra energy flux

a=q'-Xfiox, ¥=- ZJdJr;

With the above special choices of h™¢, assuming standard forms of the free
energy f = f(F,X,Dx, ) and the dissipation potential D = D(X w), we
can derive from system (1.1) several known phase-field models, in particu-
lar Penrose-Fife models (corresponding to h™ = 0), and Fried-Gurtin and
Frémond models (corresponding to h™ = f,p,), see [Paw07].

1.4. Plan of the paper.

The paper is organized as follows:
In Section 2 we introduce basic physical quantities, the balance laws, the
entropy principle, the entropy inequality with multipliers and the state spaces
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relevant for phase field models under consideration. We present thermody-
namic Gibbs relations formulated alternatively either with respect to free en-
ergy or reduced free energy. Moreover, we present duality relations expressed
either in terms of internal energy or entropy. These relations generalize the
classical Legendre transformations to the case of gradient type potentials.

They are of a general importance in phase-field modelling as they allow
to formulate equations equivalently with respect to temperature, entropy or
energy as independent, thermal variables.

In Section 3 we evaluate the entropy inequality with multipliers to select a
class of thermodynamically consistent models. To this purpose we use there
the state space with entropy as an independent variable and internal energy
density as a thermodynamic potential. The obtained restrictions are stated in
Theorems 3.1 and 3.2.

In Section 4 we introduce an extended model (M), with the multipliers cor-
responding to mass and energy balances as additional independent variables.
The model combines various types of dynamics of the order parameter and is
expressed in terms of entropy as an independent variable. Next, making use
of the duality relations, we give its equivalent formulation (M)e in terms of
absolute temperature as an independent variable. The thermodynamic con-
sistency of both formulations is stated in Theorems 4.1 and 4.2. Besides, we
present, the formulation of the model within the linearized elasticity theory.

In Sections 5 and 6 we present an alternative derivation of model (M) by
starting with the state space with internal energy as an independent variable.
In Theorems 5.1 and 5.2 we state restrictions on the model in which entropy
density plays the role of a thermodynamic potential.

In Section 6, following the procedure of Section 4, we introduce an extended
model (M), with the multipliers corresponding to mass and energy balances as
additional independent variables. Finally, with the help of the duality relations
we show that model (M), can be transformed to the form (M), expressed in
terms of the inverse temperature ¥ = 1/0. It turns out that models (M)y and
(M), are identical.

In Section 7 we are concerned with solutions of a general thermodynamic
inequality which appears in all models. We recall two results on representations
of such solutions, one due to Gurtin [Gur96] and the second one due to Edelen
[Ede73]. The application of Edelen’s decomposition theorem to the introduced
models yields the splitting of the thermodynamic fluxes into a dissipative and
a nondissipative part with extra nonstationary term.
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In Section 8, taking into account the decomposition of the fluxes, we present
a final scheme of phase-field models outlined above. We give also some stan-
dard examples of free energies and dissipation potentials. Besides, we present
some equivalent forms of the model equations and discuss them for particu-
lar choices of the nondissipative energy flux. This way we prepare a stage
for a comparison with phase-field models known in literature, to be presented
in [Paw07).

In Appendix we present proofs of representation lemmas for solutions of a
general thermodynamic inequality.

1.5. Notations.

We generally follow the notation in [Gur00]. Vectors (tensors of the first order),
tensors of the second order (referred simply to as tensors) and tensors of higher
order are denoted by bold letters.

Tensors of the second order are linear transformations of vectors into vectors.
The unit tensor I is defined by Iu = u for every vector u;

ST, trS,S™! and det S, respectively, denote the transpose, trace, inverse, and
determinant of a tensor S.

A dot designates the inner product, irrespective of the space in question:
u - v is the inner product of vectors u = (u;) and v = (v;),S-R = tr(STR)
is the inner product of tensors S = (S;;) and R = (Ry;), A™ - B™ is the inner
product of the m-th order tensors A™ = (AT ) and B™ = (B} ; ).

In Cartesian components,

(Su)i _ Sijuj, (ST)lj _ Sji: trS = Si, u-v=uv;,
S-R=S;Ry, A" -B"=A} Bil..

11 dm

Here and throughout the summation convention over repeated indices is used.
The transpose of a tensor is defined by the requirement that

u-Sv = (STu) - v for all vectors u and v.

By A = (Au) we denote the fourth order elasticity tensor which represents a
symmetric linear transformation of symmetric tensors into symmetric tensors.
We write (A€)y; = Aijrién-

The term field signifies a function of a material point x € R? and time ¢.

The superimposed dot, e.g. f, denotes the material time derivative of the field
f (with respect to ¢ holding x fixed), V and V- denote the material gradient
and the divergence (with respect to x holding ¢ fixed).

For the divergence we use the convention of the contraction over the last index,

e.g. (V . S)l = 0Sij/8l'j.
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We write f 4 = 0f/0A for the partial derivative of a function f with respect
to the variable A (scalar or tensor). Specifically, for f scalar valued and A™ =
(A7 . ) a tensor of order m, fam is a tensor of order m with components

1. dm

fam . .
.
Finally, for a function f = f(x, Vx) we denote by 0 f/dy its first variation
with respect to x:

of
& = .X(X) VX) -V f.Vx(X: VX)
In situations that may cause confusion we shall distinguish between functions
and t,heirAvalues. Functions are denoted then by superimposed “A” symbol,

eg. f=f(x,Vx)

2. THERMODYNAMIC FOUNDATIONS

2.1. Basic quantities.

Let  C R? be a bounded domain with a smooth boundary S, occupied by a
two-phase body in a fixed reference configuration. Let x € § be the material
point. The motion (deformation) of the body is denoted by y(x,t) = x +
u(x,t), where u is the displacement. Further, let

F=Vy=1+Vu,

subject to det F > 0, be the deformation gradient, and C = FTF, in com-
ponents Ci; = (0ym/07:)(0ym/0x;), be the right Cauchy-Green strain tensor
corresponding to F.

We use a scalar order parameter to characterize the notion of a phase and
identify phase interfaces with thin transition zones within which the order
parameter exhibits large gradients.

We consider the following fields in material representation:

p — mass density, assumed constant normalized to unity, p = 1,
S = (S;;) - first Piola-Kirchhoff stress tensor,

b = (b;) — external body force,

X - scalar order parameter,

j = (ji) - order parameter flux,

r — order parameter production (scalar),

7 — external source of the order parameter,

e — internal energy,

q = (¢:) — energy flux,

g — external heat source,

0 > 0 — absolute temperature, ¥ = 1/6 — inverse temperature,
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v — chemical potential, It = 1/6 — rescaled chemical potential,

7 — entropy, f = e — fn — Helmholtz free energy,

¢ = f/6 — rescaled free energy.

Moreover, depending on the choice of thermal variable (see Section 2.5), we

denote:
e, €€ — internal energy respectively as a function of 6,9 and 7,
n,7,7 — entropy respectively as a function of 6,9 and e.

2.2. Balance laws and the entropy principle.
Letting p = 1, the balance laws for the linear momentum, the angular mo-
mentum, the order parameter and the internal energy read as follows (see e.g.
[Silh97)):
u-V-S=hb,
(2.1) SFT = FS”,
x+V-j-—r=r,
6+V.q-S-F=g
We point out that equation (2.1); combines various types of dynamics of
the order parameter:
~ mixed conserved-nonconserved (mass balance with production term) j # 0
and 7 # 0,
— conserved (mass balance without production) j # 0 and r =0,
— nonconserved (evolution law for the order parameter) j =0 and r # 0.
Balance laws (2.1) are closed by constitutive equations for the quantities

S,j,r,eand q:
22)  S=8(v), j=i), r=rY), e=&Y), a=4a)
where Y denotes a set of independent constitutive variables (so-called state
space) and S J, 7,€,q are smooth functions of their arguments. The set Y has
to be chosen so that to reflect properly the material properties (see Section
2.3). As common we do not assume constitutive equations for the external
sources b, 7 and g.
The entropy principle is used to derive restrictions on constitutive equations
(2.2) and this way to select a class of thermodynamically consistent models.
We apply the entropy principle due to I Miiller [Mul85]. This principle
states that there exists an entropy 7 and an entropy flux ¥ given by the
constitutive equations

(2.3) n=7Y), ¥=¥({),
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with smooth functions 7j, ¥ depending on the same set Y, such that for all
solutions of the system of balance laws (2.1) with constitutive equations (2.2)
(called thermodynamic processes) defined in a space-time domain Q% = Q x
(0,to) the following implication holds

(2.4) b:O,T:O,g=0inQ‘“=>U:=7';+V~l1120inﬂt".

Remark 2.1. We recall two stronger versions of the Miller entropy principle
introduced in [AltPaw96]. They can be useful in the proofs of the ezistence
of the multipliers in the ezploitation of the entropy principle by means of the
Lagrange multipliers method due to I. S. Liu |Liu72].

In a slightly stronger version (2.4) is replaced by the following postulate: For
all thermodynamic processes and all points (x,1) € Qt it holds

(2.5) b(x,t) =0, 7(x,t) =0, g(x,t) =0= a(x,t) > 0.

An even stronger version asserts that there ezists a scalar field oo with a con-
stitutive equation o9 = Go(Y, b, 7,9), such that for all thermodynamic processes
defined in Q% the following two conditions are satisfied

(2.6) o > 0 in U and 55(Y,0,0,0) = 0.

for all variables Y. This version of the entropy principle describes the way
it is used by Coleman and Noll [ColNol63] where, however, in contrast to the
entropy principle formulated above it is assumed that ¥ and o are given by
explicit formulas. W

2.3. The Miiller-Liu entropy inequality.

The main step in the exploitation of the entropy principle is based on intro-
ducing the Lagrange multipliers with the purpose to replace the inequality in
(2.4), which holds for all thermodynamic processes, by an inequality (called
entropy inequality) which is satisfied for arbitraty fields. This idea is due to I

S. Liu [Liu72].

For system (2.1) the entropy inequality reads as follows: There are multi-
pliers
(2.7) A=), A =AY), Ae=AY)
conjugated respectively with balances (2.1);, (2.1); and (2.1)4, such that the
inequality
(2.8) 1'7+V-\Il—)\u-(ii—V~S)—)\x(X+V~j_r)—)\e(é+V-q—S~F) >0

is satisfied for all fields corresponding to the state space Y.
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Remark 2.2. Entropy inequality (2.8) implies the entropy principle with the
strongest property (2.6), that is for solutions of (2.1) it holds

29)  o=n+V-¥>X,(Y) b+ AY)7+A(Y)g=:Fo(Y,b,7,9).

Hence, entropy inequality (2.8) implies all three versions of the entropy prin-
ciple. m

Remark 2.3. In a rigorous approach it has to be proved that entropy principle
(2.4) implies entropy inequality (2.8). The proof requires a characterization of
admissible sets of the system of partial differential equations under considera-
tion and the verification of the Liu lemma [Liu72]. For particular systems this
question has been addressed in [Liu72], [AltPaw96] by means of the Cauchy-
Kowalevsky theorem. Another approach to this question is to admit arbitrary
sources in balance equations and postulate stronger version (2.5) of the entropy
principle (see [AltPaw96], Sec. 4). m

As common in the literature (see e.g. [Wilm98]) in the present paper we do

not prove the entropy inequality (2.8) but take its validity for granted.

2.4. State spaces for phase-field models.

For phase-field models governed by a first order gradient free energy f=
f(F, x,Dx,0) the appropriate are the following state spaces which differ only
by thermal variables:

(2.10) Yp:= {F,DF,...,DF,x,Dy,...,D"x,6,D4,.. ., D0, x4},
Ye = {F,DF,..A,DA/IF,X,DX,...,DKX,E,DE,...,DLE,X@},
Yn = {Fv DF7 RS DN1F7X’ DX! rery DKX7 U DTL AR DLT’) X,t}

with integers M, K, L satisfying conditions M,L > 1 and K > 2. Here x
denotes a variable corresponding to the time derivative x,

D*Y = (Xoirin)inymin=1 23, 0 < k<K,

is the k-th order tensor of variables corresponding to the k-th order gradient

] O x
Vix = (a P ) ’
Tiy - OFiy )4y, in=1,2,3

similarly D*@, D¥e, D*n. Further,

D™F = (Fijiy.cim )it nim=123
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is the (2 4 m)-th order tensor of variables corresponding to the m-th order
gradient of tensor F

oo = (52 ) .
0x;, .. .05, iGyienim=1,2,3

We use the convention Dy = x.

Remark 2.4. Tensor F and its gradients represent mechanical properties, X
and its gradients — chemical properties due to material heterogeneity, 6,e,n and
their gradients — thermal properties, and x, — viscous effects due to material
heterogeneity.

The distinguishing elements in (2.10) are variables corresponding to higher
order space derivatives and the nonstationary variable x ;. In [Paw00a] it has
been shown that in order to admit the free energy depending on DPy,p € N,
the set of constitutive variables has to include DP~'y ;. Since our goal in the
present paper is to construct models with free energy depending at most on Dx
we must admit x; as a constitutive variable.

The kinetic variable X, appears also in Fried—-Gurtin’s theory based on a
microforce balance, see e.g. [FriGur93], [Gur96]. In this theory X, is related
to the working of internal microforces.

The higher gradients of ¥, x,0 (ore, n) arise due to the first variation of/ox
which appears in the model. In particular, in case f = f(F,x, Dy, 6),

of
6_)z=f,x_v'f.Dx
3

3
=Jx~ Z(f,x.ep Fi+ foaxd + fxaota) — Z Fixaxs Xogio
i=1 ij=1
which generates the variables DF, DX, D2y, D0 in the state space Yy. For the
clarity of further presentation we admit in (2.10) M,L>1and K 22. =m

Remark 2.5. The arbitrariness in the choice Yy, Y. or Yy, results from the
duality relations (Legendre transformations) presented in Section 2. 5. We have
found the choices of the state spaces Y. and Y; more straightforward for the
exploitation of the entropy inequality in comparison with the space Yy, We
mention that in some particular situations the state space Y, has been used in
[Paw00b), Yy, in [Paw00c] and Yp in [AltPaw95]. =

Remark 2.6. From the point of view of the aziom of frame indifference the ap-
propriate measure of the strain is for instance the right Cauchy-Green strain
tensor C. However, as underlined in [Gur96] the ezploitation of the second
principle is simpler using deformation gradient F as the constitutive variable.
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The restrictions imposed by the frame indifference are accounted for after de-
riving consequences from the second principle. ®

In Section 3 we shall work with the state space
(2.11) Y=Y,

In such a case the internal energy € = ?(F, X, Dx, n) expressed as a function of
entropy 7 will play the role of a thermodynamical potential. In view of the du-
ality relations such potential is equivalent to the free energy f = f (F,x,Dx, 0)
(see Section 2.5). For later purposes let us split the state space

(212) yﬂ = {Yoa Yl}
into two subsets
(2.13) Y® .= {F,DF,..., D"F,x,Dyx,...,D¥x,n,Dn,...,D"n}
and
Y= {X,t}7

which dinstinguish between stationary variables and the nonstationary one
vanishing at equilibrium. According to (2.2) the constitutive equations are

2.14) S=8(Y,), i=iY,), r=Y), e=eY,), a=a(¥),

where 8,3, 7, g,a are smooth functions of their arguments and 2 denotes the
internal energy expressed as a function of the entropy 7.

Because of the presence of tensors of order higher than one we supplement
(2.14) by the following convention: Any constitutive function defined on the
set Yy, say 3(Y,), is understood in the sense of the following extension:

3( Fij, ... Am (AZ'LSkew:--wX:“w
Bk+(Bk)s‘cew,...,'f},...,cl+(Cl)s,cew,...)
:j(F‘ij:--‘)A:r"v'~'>X7"':Bk7"'>77)"'1Cl:"')7

where AT} with 2 < m < M, 1,j = 1,2,3, stands for the m-th order ten-
sor correspondlng to D'"F,],B with 2 < k < K for the k-th order tensor
corresponding to D*y, and C' with 2 < I < L for the I-th order tensor cor-
responding to D', and where (A7)*kew, (B¥)skew (C')** denote respectively
the skew parts of AT, B* and C".

Such extension is used for all other constitutive functions. Consequently, for
instance in case of D2y, we can treat the variables x ;; and X ;i as independent
despite of the equality 8%x/0z;0z; = 0%x/0x;0x;. This fact is used in applying
the chain rule in Theorems 3.1 and 5.1.
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2.5. Basic thermodynamic relations.

We present here some basic relations for continua characterized by a first order
gradient free energy density

(2.15) f=f(F,x,Dx,0).

In particular, we recall from [AltPaw96] the duality relations generalizing the

classical Legendre transformations to the case of gradient energy (2.15).
Throughout this section, in order to avoid confusion, we distinguish between

functions and their values by using superimposed “A” symbol for functions. Let

1
2. Q==
(2.16) 5>0
denote the inverse temperature, and
~ ~ 1
(2.17) #(F,x,Dx, ) :=10f (F x, Dx, 5) '

or equivalently
~ 1
F.v.Dy, =

[ ( 26 Dx g
be the rescaled free energy, known as the Massieu function (see e.g. [Silh97],
Sec. 10.2.2).

The lemma below gives equivalent statements of the thermodynamic Gibbs
relation formulated alternatively in terms of the free energy f = f(F,x, Dx, 0)
or the rescaled free energy ¢ = #(F,x, Dx, 7).

) = %fA(F,x,Dx,B),

Lemma 2.1. The Gibbs relation
(218) E(F7 X5 DXY 9) - f(Fl X DX: 0) = eﬁ(Fv X> DXy 9):
Ai(F, x, Dx,0) = —fo(F, x, Dx.0)
1s equivalent to
(2.19) 3(F,x, Dx, V) +7I(F, x, Dx, 9) = ¥&(F, x, Dx, ),
&(F, x, Dx, ) = 6,9(F,x, Dx, ?),
where
~ ~ 1
e(F,x,Dx,9) =¢€ (F,X,Dx,5> ;

~ ~ 1 1
ﬁ(F’X’DX”&) =1 (FVXyDX75> ) P = 5
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Proof. (2.18)=>(2.19)
Relation (2.19); results from (2.18), directly on account of the definitions of
9, ¢,€ and 7. The equalities

Il

3omxDx0) = (97(FuDxg))
9

f (F,X,Dx, 5) +9f4(F,x,Dx,0) - (_W>

= f(F,x,Dx,6) — 0fo(F,x,Dx,0)
1 J(F X, Dx, 0) + 67(F, x, Dx, )
2(F, x, Dx,0) = &F, x, Dx,?)

Il

(@18,

show that (2.18) implies (2.19)s.

(2.18)<=(2.19)
Relation (2.18); results from (2.19); directly by the definitions of ¥, ¢, € and
7. The equalities

29(F» X5 DX’B) = (95 (F7 X, Dx, %))
0

¢ (F,X,Dx, 5) + 64 4(F,x,Dx,0) - (_ﬁ)

#(F, x, Dx,9) — 9 5(F, x, Dx, )
1. 9(F, X, Dx,9) + U&(F, x, Dx, ¥)

ey, —E, X, Dx,9) = —7f(F, x, Dx, )

show that (2.19) implies (2.18),. This completes the proof. m
Let us introduce now, in accordance with the classical definition (see e.g.
[Wood75], p. 31), the specific heat coefficient (heat capacity) by

(220) Co ZEO(F, X DX’G) = E,G(F7XlDX)g)‘

Due to Gibbs relation (2.18), (2.19) the equivalent expressions for ¢o are as
follows:

(221)  @(F,%,Dx,0) e, (FF,x,Dx,6) +0i(F, x, Dx, 0))
(2.1=ss)2 07,6(F, x, Dx,0)
(2.?;)2 —0fe0(F,x,Dx,0),
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and
~ N 1
(222) EO(FY X DXvﬂ) = G (F|X1 DX; 5)

el _02€|0(F1X7DX7"9)
= 920 49(F, x, Dx,?)

(2:19)2
= —9(es(F,x,Dx,v))
(2,1=9)1 ’0($,ﬂ(F:X, Dy, 1)

7 9(F, x, Dx,9) — &(F, x, Dx, ¥))
a1 —V10(F, X, DX, 0)-

We shall assume now the standard thermodynamic condition
(223) 60(F7X1DX)H) >0
which is known as a thermal stability (see e.g. [Wood75], p. 34). In such a
case the duality relations generalizing the classical Legendre tranformations to
the case of gradient type potentials hold true. They allow to use alternatively
the absolute temperature @ (or the inverse temperature ), the entropy 7 or
the internal energy € as independent thermal variables.

Firstly, let us note that as a direct consequence of relations in (2.21), (2.22)
we have

Lemma 2.2. Assume Gibbs relations (2.18), (2.19). Then the following state-
ments are equivalent:

(i) G(F,x,Dx,0) >0 and 6 >0,

(ii) e(F,x,Dyx,0) is strictly increasing in 0,

(iii) 7(F,x, Dx,0) is strictly increasing in ¢,
(iv) f(F,X, Dy, 0) is strictly concave in 0,

(v) g(F,x,Dx,ﬁ) is strictly decreasing in U,
(vi) 7(F, x, Dx, V) is strictly decreasing in 9,

(vii) $(F,X,Dx,19) is strictly concave in 0.

In Lemma 2.3 below we present the dual formulations of Gibbs relations
(2.18), (2.19) expressed respectively with respect to entropy 7 and internal
energy € as independent thermal variables.

Under thermodynamic condition (2.23), it follows from Lemma 2.2 (iv), (vii)

that 8 — — f(F, x, Dy, 0) is a strictly convex function and ¥ — ¢(F, x, Dx,?)
is a strictly concave function. Therefore the following conjugate functions are

well-defined:
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— the conjugate convex function

(2.24)  EF,x,Dy,n):= sup {fn+ F(F,x,Dx,0)} < +oo,

0<B<+oo
which is a lower semicontinuous strictly convex function of n € R, and

— the conjugate concave function

(2.25)

~

A(F,x,Dx,) = inf {e— §(F,x,Dx,9)} 2 —o0,
0<¥<+o00
which is an upper semicontinuous strictly concave function of € € R.

Lemma 2.3. Assume Gibbs relations (2.18), (2.19) and the condition
@(F,x,Dx,0) > 0. Let the conjugate functions ?(F,x,Dx,n) and
%(F,x,Dx,E) be defined respectively by (2.24) and (2.25). Then the unique
supremum in (2.24) is attained at

6 = O(F, x, Dx, ),
and is characterized by the following relations
(2.26) &(F, x, Dx,n) — f(F,x, Dx,6) = 01,
2,(F,x, Dx, 1) = 6.
The unique infimum in (2.25) is attained at
9= ﬁ(F,X,Dx,E),
and is characterized by
(227) 7(F, x, Dx,@) + $(F, x, Dx, ) = %,
72(F, x, DX, &) = 9.
Proof. By Lemma 2.2 (iii) the map 6 — 7(F, x, Dx, 0) is strictly increasing.
Therefore, there exists the inverse map
(2.28) 1+ 6(F,x,Dx, 1),

and the property 0 < < +oo is equivalent to 7. < n < 7* with 7, =
A.(F,x,Dy) > —oo and 7, = M(F, x,Dx) < +oo. If 5, <7 < 7" then the
supremum in (2.24) is uniquely attained at

6 = 6(F, x, Dx, ),

and then
(F,x, Dx,n) = 00+ f(F,x, Dx,0).
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This shows (2.26);. To deduce (2.26); note that the supremum in (2.24) implies
the condition
(2:29) n = —Fo(F,x, Dx.0).
Hence, from (2.26); and (2.28), (2.29) it follows that
%(F, X, D, 1) + 10,1(F, x, DX, 1) = 6 + 10,4(F, X, Dx, 1)

which actually shows (2.26)3.

We shall prove now (2.27). By Lemma 2.2(v), the map 9 %(F,x, Dy, 9)
is strictly decreasing. Therefore there exists the inverse map
and the property 0 < ¥ < +oco is equivalent to e, < € < e* with e, =
e.(F,x,Dx) > —oo and e" = e(F,x,Dx) < +oo. If e, <& < e" then the
infimum in (2.25) is uniquely attained at

9 = J(F, x,Dx, ),
and then
ﬁ(Fv X DX)E) = e - ¢(F> X DX1 19)
This shows (2.27);. To conclude (2.27); note that the infimum in (2.25) is
characterized by
(2.31) z = 6.0(F, x, Dx,9).
Hence, (2.27); and (2.30), (2.31) imply that
72(F, x, Dx,€) +80(F, x, Dx,8) =9 + &0 +(F,x, Dx,®)

which shows (2.27)2. This completes the proof. m

Let us note that in view of Gibbs relation (2.18); the equality (2.26), implies
that

(2.32) &(F, x, Dx, 0) = e(F, x, Dx, i(F, x, Dx, 9))
which shows that € is the internal energy expressed as a function of the en-
tropy 7.

Moreover, differentiating (2.26)1, with respect to f we see that
eqne—fe=n+0ne
with appropriate arguments. Hence, by virtue of (2.26), it follows that
(2.33) A(F, x, Dx,0) = — fo(F, x, Dx, 0),
that is Gibbs relation (2.18)3.
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Similarly, in view (2.19); it follows from (2.27) that
(2:34) 7(F, x, Dx, 9) = 7(F, x, Dx, &(F, x, Dx, 9))

which shows that 7 is the entropy expressed as a function of the internal
energy €. Moreover, differentiating (2.27); with respect to ¥ leads to

Nelw + ¢ =€+ 08y
with appropriate arguments. Hence, on account of (2.27)s, it follows that
(2:35) E(F, X, Dx,9) = $(F,x, Dx,9),

that is Gibbs relation (2.19),.

The above considerations show that under assumption of thermal stability
¢o > 0 the statements in Lemmas 2.1 and 2.3 are equivalent.

The presented duality relations allow to use instead of temperature 6 (or
inverse temperature ) the entropy n or the internal energy € as thermal vari-

ables.
If 7 is considered as an independent variable then we have to insert into all

constitutive equations the relation
6 = 0(F, x, Dx, ),
together with the corresponding expression for the space derivatives
(236) 8i="0p Fi+0,x:+0ny Dxi+0,ms,
which is equivalent to
n:=1p Fi+7TxXi+ 7Dy Dxi+ 060

Similarly, choosing  as an independent variable we have to insert into consti-
tutive equations
9 =J(F,x,Dyx,e),
and
(2.37) 9 =D Fit D0+ 9oy DX+ Va8
which is equivalent to
i =2r Fi+2,Xi+2nx Dx:+esd

At this point it is of interest to note that if 77 does not depend on Dx (in
Section 6 such a case is called energetic one) then the transformation between
n and 6 does not involve Dy, and the transformation between Dn and D6

does not involve D?y. Similarly, if 2 does not depend on Dx (in Section 6
such a case is called entropic one) then the transformation between € and ¥
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does not involve D, and the transformation between De and D9 does not

involve D%y.
Below we express the specific heat coefficient in terms of the entropy and

internal energy as independent variables.

Lemma 2.4. Assume that duality relations (2.26), (2.27) hold.

(2.38) (F,x,Dx,0)| = —0fg0(F,x,Dx,0)|
0=0(F,x,Dx,n) 0=0(F,x,Dx,n)

= 6(F,x,Dx,n)

)

€.q(F,x, Dx, n)
and

—92,90(F, x, Dx, )

9=0(F,x,Dx.®) 9=3(F,x,Dx.E)

—{’?Z(Fv X DX:E)

Il

(2.39)  %o(F, x, Dx,?)

%,EE(FY X DX,E).
Proof. By (2.21); and (2.26); we have

EO(F1X7DX19) (2_?1)2 Bﬁg(F,X,DX,H)

0=8(F x,Dx,m) 0=0(F x,Dx,m)
~ 1

O(F,x,Dx,n)=——""——
6.,(F,x, Dx,n)

— o~ 1
o 0 F7 X) DX) 77)/—\?——
e % & m(F, x, Dx, )

I

which shows (2.38).
Similarly, by (2.22)2 and (2.27)2,

—192%’19(}?, X DXv 19)

%O(Fyx‘DXﬂ?) 2:2);

9=3(F x.Dx.®) ¢ 9=3(F x,Dx.E)
= —0(F,x,Dx,8)=——""—
( Yz(F, x, DX, €)

(2-;7)2

_@(Fv X> DXvé):;
7],EE(F: X5 DXv E)

This shows (2.39) and completes the proof. m
For further use we recall also the formulas which relate the first variations

with respect to the order parameter X of the thermodynamical potentials

F(F. . Dx, 0), 8(F, x, Dx, ), &(F, x, Dx,n) and il(F, x, Dx,2).
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Lemma 2.5. The following relations are satisfied
5f 3 8 >
(240) E(F)DF)XaDX7D X)B:De) = S;(FiDF)X)DXyD X DTI))

%(F, DF, x, Dy, D%y, 9, DY) = _;5_;7{(5‘, DF, y, Dx, D%y, &, D),

where 6, DO and n, Dn are related by the formulas
6 = 9(F,x, Dx, ),
O;=0p F;+ Oxx,i+0py-Dx:+ e,nﬂm

and ¥, DV and € De by
9 = 3(F, x, Dx, @),
9, = 1/9\,1? -F,+ 5,xx,, -+ an -Dxi + {jgé,i.

Proof (see [AltPaw96], Sec. 11). We use duality relations (2.26), (2.27).
From (2.26); it follows that
F(F.x, Dx, 6) = —0A(F, x, D, 6) + &(F, x, Dx, I(F, x, Dx, 0))-

Hence, using (2.26),, we infer the equalities

(2.41) Jr=—00p +er+eqip=2¢r
fx= 'eﬁ,x + g,x + Emﬁ,x = g,x:
fpx = _Bﬁ,Dx + an + E,n'ﬁ,Dx = €Dy

with appropriate arguments. From (2.41),3 we deduce that

5]’;4’\ R = ‘Jg
i =PV Foc=? -5

which shows (2.40);.
Similarly, from (2.27); it follows that

#(F, x, Dx,¥) = 9&(F, x, Dx,9) — ii(F, x, DX, &(F, x, Dx, ).
Hence using (2.27), it follows that

3

(242) = Uer —Np—Neer =i,
bx = ﬁg,x NMx — ﬁ,ng =~
$px = 0€,Dx Nbx — ﬁEng = ";IVD,U

with appropriate arguments.
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From (2.42)2’3,
~ 677

56~ ~ = N
a=¢,x_v'¢.Dx:_T’,x_v'n,Dx:_C;X

which shows (2.40)y. Thereby the proof is completed. ®

3. EVALUATION OF THE ENTROPY INEQUALITY — ENTROPY AS AN
INDEPENDENT VARIABLE
3.1. The entropy inequality.
Let us consider balance laws (2.1) with constitutive equations (2.14) and the
state space Y, defined by (2.10):
u—-V-S=b,
SFT = Fs”,
XH+V-r=m,
§+V-q-S-F=g,

where

S=8(v,), i=j¥y), r=7Y,), =&Yy, a=a(),

Y,= {YO,YI},
Y® = {F,DF,...,DMF, x,Dy,...,D"x,n,Dn,...,D"n},
Y= {x.}-

To select a class of thermodynamically consistent models we impose the
entropy inequality with multipliers (2.8) which in case of state variables Y
reads as follows:

(3.1) 1‘7+V-\I’—)\u-(ii—V-S)—/\x(X+V-j—r)—/\e(??+V‘q——S-F) >0
for all fields u, x and 7, where

(3.2) oY), A=Aaly) A=20h) A= AdYy)

are respectively the entropy flux and the multipliers conjugated with the bal-
ance laws for the linear momentum, order parameter and energy.

3.2. Algebraic preliminaries.

We prepare some simplifying notations. For f= f(Y,,) a smooth scalar func-
tion of its arguments, we denote by oy °f,i =1,2,3, the algebraic version of
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the spatial derivative f /0, restricted to the set of variables Y? (applying
differentiation by the chain rule):

YO f = wa D"F, +me - Dy, +Zf13! -D'n,,
m=0
and by vf = (8,»‘," f)i=12,3 the corresponding gradient V f restricted to the
set YO.
Similarly, for a smooth vector-valued function ® = @(Yn) with values in R?
we denote by VY° . & the algebraic version of the divergence V - ® restricted
to the set Y0, viz.

3

L
ORTES ol pr e DmF,ﬁz@m it Yo,
1=0

i=1 [m=0

Moreover, we introduce the following subset of Yo

(33) Y°:=Y°\{D"F,D"x,D"n}
= {F,DF,...,DM"'F,x,Dy,...,D"'x,7,Dn,...,D" 'n}.

yo

For a function f = f(Yn) we denote by &

f/6x the algebraic version of the
first, variation d f/dy restricted to the subset Yo

67 f o

T TV
3 K-1

:f‘x—-z[zfxr)mp DF+fo,D" DX +ZfX|D‘ D?]:i
i=1 | m=0

Let us note that V¥ . - fpy does not exceed the set Y;.
If the constitutive dependence of f is restricted to f = f(F x,Dx,n) then
the above definition coincides with the algebraic version of the first variation

§f/6x:
6}70 3 3 5
(34) (SX =Jtx— Z {f,xﬂF : F,i + Zf,xv,x._,x,ji + f,x‘,nn,i 5£

i=1 j=1

—~

Moreover, in such a case it holds

v =vf.
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3.3. The restrictions.

We impose the following two structural assumptions:
— the nondegeneracy condition for the internal energy

(3.5) €n(Yy) >0 forall Yy

_ the relation between stationary entropy, energy and mass fluxes
0 _ 10:0 4 100

(3.6) = \j +Aa

27

where °, j°, ¢°, A and 0 are stationary quantities defined by setting X = 0

in Y, that is ¥° := T (Y, Y")|y1=(0}, and similarly for other quantities.

We underline that assumption (3.5) expresses the strict positivity of the
absolute temperature 0 (see (2.26);). The relation (3.6) is standard in the

classical thermodynamic theory without gradients (see e.g. [Mul5]).
We prove the following

Theorem 3.1. (Consistency with the entropy inequality).

Let us consider balance laws (2.1) with constitutive equations (2.14). Suppose
that entropy inequality (3.1), (3.2) is satisfied and assumptions (3.5), (3.6)

hold true. Then the following relations are satisfied:

(i) multiplier of the linear momentum Auw =0y
(i) internal energy € = e(F,x,Dx,n);
(iii) energy multiplier

~ 1
3.7 Ao = Ae(F, X, DX, 1) = =————< > 0;
3.7 (F,x, Dx.m) eq(F,x,Dx,n)

(iv) stress tensor
(3.8) S = 8(F,x, Dx,n) = €r(F, x, Dx,7);
(v) entropy fluz
1
(3.9) W= Xj+Aeq+ Xy [,\ea,Dx - / (Mxe DO, X dT|
0

(vi) compatibility conditions

1
(3.10) Xt [—/ ()\X‘x‘tji)(yﬂ’ TX,t)dT] + )\X,DMFji =0,
0 ,DMF
1
Xt [—/ (Ax.x,tji)(YOvTX.t)dT] p + A piyJi = 0,
0 )

DHx

1
Xt [—/ ()\X‘x‘tji)(YO,TX‘g)dT] + M, Ji =0
0 DL

n
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fori=1,2,3.
Moreover, there exists a scalar quantity a = a(Y,) such that
(vii) multiplier A\, = A\ (Y})) satisfies the equation

6e r v [ N (YO :
v VA €py +V' - | P DY, TX)dT + a5
(viii) the quantities v = T(Y,), j = 'j\(Y,,), q = q(Yy) and a =a(Y,) satisfy the
residual inequality

(3.12) AT+ Vf/o)\x J+HVAerq+ x>0

(311) A=A

for all variables Y.

Remark 3.1. By assertion (ii), 6¢/6x depends on the variables {F, DF, x,
Dy, D2y, n, Dn}. For that reason it was assumed in constitutive sets (2.10)
that ML >1and K > 2. m

Remark 3.2. In view of thermodynamical relation (2.26)y assertion (i) im-
plies that the energy multiplier )\, corresponds to the inverse of the absolute

temperature
1

/\e Ad 5
Moreover, in view of thermodynamical relation (2.40),, equation (3.11) for
—\, resembles the ezpression for the chemical potential in the classical Cahn—
Hilliard theory which for @ = const is given by p = 0f/0x. Thus, the form
(3.11) suggests that the negative of the multiplier —X, corresponds to a gener-
alized (rescaled) chemical potential
A o = %
The above correspondences will be precised in Section 4. m
Proof of Theorem 8.1. By inserting constitutive equations (2.14), (3.2) into
entropy inequality (3.1) and applying the chain rule we arrive at the following
algebraic inequality

(313)  me+ P, -Dx,+ VW — Xy uy 4+ A (S, Dx)
FAu (VY 8) = Axe = Adie - DXt = A VY 5+ Aer

M K L
“Xe > Epmp - D"Fy— A Epky - D = A D €ty - D'
m=0 k=0 =0

_/\eg,x.tx,tt - )\eq,x_g ° DX,t - )‘evy'J q + /\eS N F,t Z 0
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for all variables {W,Y;}. Here

W= {uu, xu, (D™F )ogmen, (D*x 1<k<rcs (DM o<i<r DMHF, DRy,
DL+1,,7}

denotes the set of variables (called higher derivatives) in which the left-hand
side of (3.13) is linear. The evaluation of (3.13) consists in deriving conse-
quences from the linearity in the variables belonging to W. The linearity per-
mits to conclude that the coefficients preceding these variables have to vanish
identically. We proceed stepwise in the following order:

Step 1. By the linearity of the left-hand side of (3.13) in u it follows that
the corresponding coefficient has to vanish, that is Ay = 0. This shows (i)

Step 2. By the linearity in the variables (D™F )1<menrs (DFX)2<rk,
(D'4)1<i<L, X we read off that gpmp =0for 1 <m < M, €pey, =0 for
2<k<K,Epy=0forl <I<L and &,, = 0. Hence, the constitutive

dependence of € is restricted to € = §(F, x, Dx,n) which shows (ii).

Step 3. The linearity in 7, implies that

1— A€y =0,
s0, in view of assumption (3.5) and (ii) we infer (iii).

Step 4. By the linearity in F,

AeS — A = 0.
Hence, since )\, > 0, assertion (iv) follows.

Step 5. From the linearity in Dx . we deduce that
(3.14) T — Ao = Aoy — el = 0.
Let us define the vector
(3.15) T =0 - \J—Aea
By virtue of assumption (3.6),

(3.16) W0 =0.
From (3.15), using (3.14) and (iii), we get
(3.17) i’,x.: =¥, - ’\x.x,,j = Mdoe = Aelixe

= Ae€Dx — )‘x,x,:j'
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Hence, in view of (3.16) and (ii), (iii), it follows that

(3.18) T

Il

X, t
AZpxxs - / Crea )Y, €

Il

1
Xt [)‘EE,DX_/ ()‘x,x_‘j)(yoxTX,t)dT .
0

From (3.15) and (3.18) we conclude (v).

Step 6. It remains to examine the linearity in the variables DMAIE D&+
DX+, In view of the results obtained in the previous steps, inequality (3.13)
is reduced to

3.19 —Oy A AE )X AT ATV T AV A VY q 20
X s X ) X X

for all variables {DM*1F, DX+1y, DL*1y,Y,}. We rearrange now the sum of
the last three terms on the left-hand side of (3.19) to the form

(3.20) VARSI J5 VA v VA VA S
=V (- A= Ae@) + VATV N q
=V T+ VN j VN q

Further, in view of (3.18), using the definition of the restricted divergence
VYO-, we obtain

e 0 ! .
(321) VY. ¥ =y, [V"“.(/\EEDX)—V’ /0 ()\X'x‘t‘])(yo,rx,t)d'r].

Consequently, by combining (3.20) and (3.21), inequality (3.19) is transformed
to

1
(3.22)  xu [—)\x A+ VY (AEpy) = VY / M DY, Tx‘t)d‘r]
0
AT+ VAV A q 20

for all variables {DM*1F, Df+1y DI+lp Y, 1.

From (3.22), performing differentiation by the chain rule in terms involving
VY. and VY’ (restricting now to the subset Y9), the linearity in the vari-
ables DM+1F, DX+1y and DE*1y implies that the coefficients preceding these
variables have to vanish. Hence, recalling (ii) and (iii), we conclude (vi).
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Step 7. We shall derive conclusions from inequality (3.22) which remains
after taking into account (vi). It reads

P _ 1
(323) X |[“M = ABx+ V7 () =V / o DO, X )T
0
AT+ VTN VA g2 0

for all variables Y;. Now, let us define a scalar quantity a = a(Y;) given by
the squared parenthesis in (3.23), viz.

- _ 1
(324) a:= —A — ALyt V7. (\Epy) - V- /0 P YO, Tx ) AT

= A= AeBx = V7 ) + VT A By

Let us note that on account of (ii) and (iii) it holds

(3.25) V" (AZpy) = V- (AEpy)s V7V A= VA,
so that, recalling (3.4),

T g0 5¢

i =€x— ‘e,Dx=g)—(-

Using these equalities we conclude from (3.24) assertion (vii). Finally, owing
to (3.24), inequality (3.23) takes the form of the residual inequality (3.12).
This shows assertion (viii) and thereby completes the proof. m

3.4. The restrictions in the nonconserved case.

The statement of Theorem 3.1 simplifies greatly in case of the nonconserved
dynamics of the order parameter. Then assumption (3.6) reads

(3.26) o0 = \q°,

and we have

Theorem 3.2. (Consistency with the entropy inequality in the nonconserved
case).
Let us consider balance laws (2.1) with constitutive equations (2.14) in the
nonconserved case j = 0,7 # 0. Suppose that the entropy inequality (3.1),
(3.2) is satisfied and assumptions (3.5), (3.26) hold true. Then the following
relations are satisfied:

(1) Au io;

(i) €= e(F, x, Dx,m);
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~ 1
(111) Ae A/\e(F: X, Dx, 77) E,ﬂ(F, v,Dx, n) >
(iv) S = S(F,x, Dx,n) = €r(F,x, Dx,n);
(V) v = }\eq + X,tAean-
Moreover, there erists a scalar field a = a(Y;) such that

. de
(vi) =M\ = /\EJ—X
(vii) A\yr + Ve - a+ xa > 0 for all variables Y.

- V- an +a;

4. EXTENDED MODELS (M), AND (M)s BASED ON ENTROPY AND
ABSOLUTE TEMPERATURE AS INDEPENDENT VARIABLES

4.1. Multipliers as additional independent variables.

Regarding Theorem 3.1 (and Theorem 3.2 as a special case) we introduce an
extended model in which the multipliers \, and . are in addition to u, x and
n treated as independent variables. Such idea is admissible because theorem
has been proved under no assumptions on A, and A..

Our claim on the structure of the extended model is based on the following
modifications of the statements of Theorem 3.1:
— We replace the state space Y; in (2.10)3 by

(41) ZT] = {F1 DF, x, Dy, D2X7 n, Dn, ’\x, D>‘x7 Aey DA, X,t}~

This set includes all variables which will appear in the extended model. The
higher derivatives D™F, D¥y, D'n for m,l > 2,k > 3 are irrelevant (see Re-
mark 3.1).

— Regarding ), as an independent variable we set all expressions involving
its derivatives with respect to x., DMF, DKy, Dy identically equal zero and
consequently replace VYD)\X by VA,.

Formally, with such modifications the statements (i)-(iv) of Theorem 3.1
remain unchanged, (vi) is automatically satisfied and (v), (vii), (viii) are re-
spectively replaced by:

(9) ¥ = A+ Ad + X AE D

(Vi) —A, = /\ei — VA by +a

(viii) the quantities r = 7(Z,), j = E(Z,,), q =q(Z,) and a = a(Z,) satisfy
the inequality

(4.2) Ar+DA - j+ DA -q+ x>0
for all variables Z, in (4.1).
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In Section 4.3 it will be proved that the above mentioned modifications lead
to a model which is consistent with the entropy principle.

4.2. Model (M), — formulation with internal energy ¢ = g(F,x,Dx,n)
as a thermodynamic potential.

The extended model, referred further to as (M), is based on the following
postulates:

(MT1),, The unknowns are the fields u, x, 7 and Ay, A > 0.
(M2), A thermodynamic potential is the internal energy
(4.3) €= e(F,x,Dx,n),

subject to the condition

(4.4) &, > 0 for all arguments (F, x, Dx, n).

(M3),, The fields u, x, 7, Ax and ). satisfy the differential equations

(4.5) i-V-S=bh,
x+V-j-—r=m,
A= /\egg - VA €px ta,
[E(F,x,Dx, M) +V-a-S - F=g,
’\ean -1=0,

where S is given by

(4.6) S=¢p,

consistent with the condition

(4.7) SFT = Fs”.

Moreover, the quantities 7 = 7(Z,), j =3(2,), a=d(Z,) and a = a(Z,), with
Z, given by (4.1), are subject to the dissipation inequality (4.2).

(M4), In addition, in accordance with the principle of frame indifference, the
constitutive equations

&=28(F,x,Dx,m), S=S(Fx,Dx.,n),
¢ = E(F, x,Dx,n) == 2 px(F, x, Dx, ),
j = j(Zr])r q= a(zn)> = ?(Zn)u a = a(zn)



34 IRENA PAWLOW
are assumed to be invariant under changes in observer, i.e. under transforma-
tions (see e.g. [Gur96], Sec. 4.2)
e§—€8S—PS £€—¢ j—jqoaq rorna—a
{F,DF, x, Dx, D*x,n,Dn, Ay, DAy, Ae, DAc, Xt}
- {PF> PDF1 X DX; DQX» U DW /\x: D/\xy )\e: DAe: X,t}
for all proper orthogonal tensors P(PPT = PTP = I with detP > 0). This
leads to the following restrictions
(4.8) &(F,x,Dx,n) =¢€(C,x,Dx,7),
S(F, x, Dx,n) = FS(C,x, Dx,),
£(F, x, Dx,n) = £(C, x, Dx,7),
(2 =32y, A& =a(Z,), T(Z)=7(Z,), a(Z,)=7(Z,)
where
zn = {C’ DC, X Dy, DQX) 7, Dﬁ, )‘xw D)‘xy Ae, DA, X.t})

with C = FTF the right Cauchy-Green strain tensor. We note that by virtue
of (4.8), condition (4.7) is automatically satisfied (see e.g. [Gur96]).

4.3. Thermodynamic consistency of model (M),.
We shall prove that model (M), is consistent with the second law of thermo-

dynamics.

Theorem 4.1. System (4.5) with relations (4.3), (4.6) and (4.2) satisfies the
following entropy inequality with multipliers
(4.9) N+V- WA, (i—-V-S)—A(x+V-j—r)

—As (A + Ay — AV -Epy — VA - €Dy + a)

~A(E+V q-8-F) = A\ (AE,—1) ~ As - (S—E)

= A7+ VA j+Vi-q+xa=0
for all fields u,x,n, Ay, Ae. The corresponding multipliers are given by
(4.10) Au=0, A =), Ay =-x
Ae= )‘e; Ay, = —77: As = )‘eF:

e

and the entropy fluz is
(4.11) T =X\j+Aq+ XAe€,Dy-
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Proof. Let u, x,7, Ay, Ae be any fields and Ay, Ay, Ax,, Ae, Ax., As be de-
fined by (4.10). Then, after simple rearrangements, we arrive at the following
identities:

Ag-(i—V-S)+AKX+V-j—1)

A, O+ Ay — V- (AEpx) + ) + A€+ V-q =S F)

+Ax, A€y — 1) +As-(S— €F)

A+ V- §=1) = XOx + Alx = V- (Afpx) +0)

FA(Er F+ExX +Epy VX +Emi+ V- -a-5-F)

—(AeEy—1) + AF - (S —€p)

74V (Ad + Xed + XA€Dy) — AT — VA j—VAe-q—Xxa.

This shows the equality in (4.9). In turn, the inequality in (4.9) results by
virtue of dissipation inequality (4.2). Thereby the proof is completed. =

Il

Corollary 4.1. From (4.9) it follows that the solutions of system (4.5) with
(4.3), (4.6), (4.2) (thermodynamic processes) satisfy the following entropy equa-
tion and inequality
(4.12) 7‘7+V~\Il=)\XT+V/\X~j+V)\e-q+)'<a+>\XT+)\eg
> M7+ Aeg,
where the entropy fluz W is given by (4.11). It is of interest to note that the
structure of U remains in compatibility with assumption (3.6) postulated in
Theorem 3.1.
4.4. Model (M)y — formulation with free energy f= F(F,x,Dx,0) as
a thermodynamic potential.
Here we present an equivalent formulation of model (M), expressed in terms
of the absolute temperature ¢ as an independent thermal variable and the
Helmholtz free energy f = f(F,x,Dx,0) as a thermodynamic potential. To
this purpose we assume thermal stability condition ¢o = Co(F, x, Dx,0) >0
under which duality relations (2.26) hold true.
If co > 0 then Lemma 2.4 implies that

(4.13) the map n — &(F,x, Dx,n) is strictly convex,

so the map 7 — €,(F, x,Dx, ) is strictly increasing.
From now on we shall assume that € satisfies (4.13) in addition to (4.4), i.e.
(4.14) €= ?(F, y,Dx,7) is strictly convex as a function of n,

and such that €, > 0 for all arguments (F,x, Dx,m)-
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Under such assumption the duality relations (2.26) are satisfied. Consequently,
by (4.5)s and (2.26),, it follows that

1
4.15 Ae = — = =
(4.15) 5

which means that the energy multiplier can be identified with the inverse
temperature. Clearly, the assumption €, > 0 is equivalent to 6 > 0. Moreover,
the requirement (4.13) means that

(4.16)  the map n §(F, x, Dx,n) is strictly increasing,
so there exists a well-defined inverse map 6 — 7(F, x, Dy, 6).

Further, in view of equalities (2.38), the strict convexity of € = ?(F, x, Dx,7n)
with respect to 7 is equivalent to the strict concavity of f = f(F,x,Dx,0)
with respect to 6. Hence, the assumption (4.14) expressed in terms of f reads:

(4.17) f= f(F, X, DX, 0) is strictly concave with respect to 6 > 0.

In addition, recalling (2.41), we have the equalities

- - - 6  of

(4.18) er=fr, ex=/fx €px=/rfpyv i

with appropriate arguments. Hence, by (4.18);, equation (4.6) takes the form
S w— f’F.

Further, in view of (2.32) and (2.33), we have

= &(F, x, Dx, ii(F, x, Dx, 6))

f(F, x, Dx, 0) + 07(F, x, Dx, )

&(F,x, Dx, )

Il

with
A(F, x, Dx, 8) = —fo(F, x, Dx, 0).

Let us turn to the multiplier \,. Recalling Remark 3.2, we shall identify
— A\, with a rescaled chemical potential

(4.19) N =T= g

Then, on account of (4.15) and (4.18), equation (4.5); yields
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(4.20) F= e - Vg Smte
_wum,,
ox

In view of relations (4.15), (4.16), (4.19) and (2.36)2 the state space Z,in (4.1)
is replaced by

1
(421) Zﬂ = {FyDF’XyDX1D2X)91Dg;ﬁ’D.ﬂvX.t} ) ﬂ: %

The above considerations lead to the following formulation of model (M),
referred further as (M)g, expressed in terms of # as an independent thermal
variable:

(M1)s The unknowns are the fields u, x, 72 = p/0 and 6 > 0.
(M2)g A thermodynamic potential is the free energy f = f(F,x, Dy, 0) sat-
isfying (4.17).
(M3)y The fields u, x,7i = p/6 and 0 satisfy the system of equations
(4.22) i—V-S=b,
X+Vj-r=m,
8(f/0
L),
ox
é+V-q—S-F=g,
where
423)  e=2(F,xDx,0) = f(F,x, Dx,0) + 67(F, x, Dx.9),
n= ﬁ(F7 X Dy, 0) = _f,9(F7 X Dx, ‘9)7
10 S . (L2:)

ox 0 [4
and S is given by
(4.24) S=frp,
consistent with the condition
(4.25) SFT = FST.

Moreover, the quantities r = 7(2e), j = ]:(Zg), q = q(2) and a =
@(Zy) are subject to the dissipation inequality
1
(4.26) —ﬁr—D’ﬁ‘j+D5-q+x,¢a20

for all variables Z in (4.21).
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(M4), The constitutive equations have to be invariant under changes in ob-
server (see (4.8)).

Remark 4.1. It is seen that in both presented above formulations (M), and
(M)g the fundamental problem is that of obtaining all solutions of dissipation
inequalities (4.2) and (4.26) and thereby all possible constitutive relations for
the quantities ,j,q and a. We address this question in Section 5. m

Model (M),, similarly as (M),, is consistent with the second law of thermo-

dynamics.

Theorem 4.2. System (4.22)-(4.26) satisfies the following entropy inequality
with multipliers

(4.27) N+V-O—A,-(i—-V-S)-A(x+V-j-7)
—A(;HQ— fDX+a) (e+V-q—S-F)

—As- (S~ fr)=-pr—Vp- J+V ‘q+xa>0

0
for all fields v, x, 7t = p/0 and 0. The multipliers are given by

F
(4.28) Au=0, Ay=-7, Ag=-X% A= é, As =7,
and the entropy fluz is
1
(4.29) ¥ =i+ ga+ xfg"~

Proof. Let u, x, 7@ and 6 be any fields and A, Ay, Az, A and Ag be defined
by (4.28). Then

Au-(ii—V-S)+Ax(X+V-j—r)+Ag(—ﬁ+%~V~L—0D—X+a)
+A(6+V-q—S-F)+As-(S— fF)

—ﬁ(x+v-j—r)—>‘<<—ﬁ+%‘—v%’l+a)

+= (e-l—V q-S- F)+ (S—=fr) =1
Takmg into account that
¢ = (f+0n) = fr-F+faX+ fox: VX+ fof+00+n6
=6ﬁ+f.F'F+f,xX+f.Dx'vX1
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a simple rearrangements lead to

Sy o . . 1
I=—ﬁV-J+ur+xV~f'—gx——xa+n+f‘gx-Vx+—€—V-q
L .o 1 A

=n+V [m+9q+x 9]

1
+ﬁr+VIZvj—V§~q—)'(a4
This shows the equality in (4.27). The inequality in (4.27) is a consequence of

(4.26). m
Now we collect some important implications of the above theorem.

Corollary 4.2. The solutions of system (4.22)-(4.26) satisfy the entropy equa-
tion and inequality

‘ VN U L L

(4.30) n+V-¥ = 7" VB J+V0 q+xae 97+0
ko9
> f)T+0'

where ¥ is given by (4.29).

Corollary 4.3. The solutions of system (4.22)—(4.26) satisfy the following
availability identity

a31) (o glaP ~Bn) +9-[-STa+a-0%)

1

9-q+)'(a>+ﬁ-b+g—§(~§r+%>,

= g _vE
= 9( i VG j+Vv

where 6 = const > 0.

Proof. Multiplying (4.22); by u we obtain the balance equation for the
kinetic energy

(4.32) (%w) ~v.-(s"n)+S-F=1u-b.

Summing up_(4.32), energy equation (4.22)4 and entropy equation (4.30); mul-
tiplied by —6 we obtain (4.31). =
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Corollary 4.4. The solutions of (4.22)-(4.26) satisfy the Lyapunov relation.
In fact, integration of (4.31) over §) gives

) g [ (e g - %) d
Q
+/s[-(Sn)~u+n.q_§n.(_%H;HXJ‘%)J s

_ g Ht gt - :
= /ﬂ@( gr V0 _]+V q+xa>dx

+/[u btg— 9(—§T+6)]dz
S/n[u b+g-— 9(—§r+0)]dz

where n denotes the unit outward normal to S = 02. Hence, it follows that if
the external sources vanish, i.e.

b=0, g¢g=0, 7=0,

and if the boundary conditions on S imply that
1L [

. ; X
(4.34) (Sn)-u=0, En-Jzo, (1—§>n'q:0, Eﬂ'f’[)x=0,

then solutions of system ({.22)-(4.26) satisfy
d 1 _
439 5 [ (Fx Do)+ 5l ~F(F, x Dy 0)ir <0,
o

This is the Lyapunov relation asserting that the function e + la|* — 01, called
equilibrium free energy, is nonincreasing on solutions paths. m

4.5. Model (M), in case of infinitesimal deformations.

Here we deduce the corresponding model within the linearized theory appro-
priate to situations in which the displacement gradient Vu is small. To this
end it is appropriate to repeat considerations of Sections 2 — 4 assuming from
the outset that the deformation is infinitesimal. Following arguments used in
[Gur96], Sec. 4.4 or [FriGur94], Sec. 6, we redefine F to be Vu, and replace
(2.1); by the requirement that S be symmetric

(4.36) S =sT.

The steps leading to (M1), — (M3), and (M1)s — (M3)s remain unchanged.
Further, as in [Gur96], Sec. 4.4, we conclude that the invariance of the con-
stitutive equations under infinitesimal rotations (i.e., replacement of Vu by
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Vu + Q with Q skew) implies that constitutive functions can depend on Vu
through the infinitesimal strain

1
e(u) = §(Vu + vu®).
Consequently, the set of variables Zy in (4.21) is replaced by

1
2} = {e(w), De(u), x, Dx, D, 6, Dy, LD X}, 7= -
Summarizing, within the linearized theory model (M), is based on the follow-
ing postulates:

(M1)} The unknowns are the fields u, x, 72 = /0 and 0> 0.
(M2)} The free energy is given by

f= f(E(ll),X, DX79)7

satisfying the requirement (4.17) of strict concavity with respect to

6> 0.
M3), The fields u, y, 7 and 0 satisfy equations (4.22), where S is given by
]

S = §(e(u), x, Dx, 8) = f.(e(u), x, Dx,0),

hence consistent with (4.36).
Moreover, the quantities r = 7(Z),j = j(2}),qa=d(Z}) anda = azh)
are subject to the dissipation inequality

1
—ﬁT—Dﬁ-j+D5~q+x,ta20

for all variables Z}.

5. ALTERNATIVE APPROACH — INTERNAL ENERGY AS AN INDEPENDENT
VARIABLE

To show the role of the duality relations we present in this and the next
section an alternative derivation of model (M)e. More precisely, in evaluating
the entropy inequality we shall use — in contrast to Section 3 — the internal
energy as an independent variable and the entropy density as a corresponding
thermodynamic potential.
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5.1. The entropy inequality.

Let us consider balance laws (2.1) with the constitutive equations

~

(5.1) S=5(.), j=iYo), r=7), a=4q(¥e),
where Y, is the state space with the internal energy as a thermal variable (see
(2.10)2):
Y, := {F,DF,...,DMF, x,Dx,...D¥x,e, De,... D", x,:}
where M,L > 1 and K > 2.
Similarly as in (2.12) we introduce the spliting
(5.2) Yo = {Y(J! Yl}
where
Y% .= {F,DF,...,DMF,x,Dy,...D¥x,e, De, ... D¢}
and
Y= {x.}.
To select a class of thermodynamically consistent models we impose the en-
tropy inequality with multipliers (2.8) which in case of state variables Y, takes

the form
(5.3) 4+ V- W= Ay (1= V-8) = A (X +V-j—7) = A(é+V-q=S-F) >0
for all fields u, x and e, where

(5.4)
F=F1), T=00), A=A, A=), Ac=A(Y.)

are respectively the entropy expressed as a function of the energy, the en-
tropy flux and the multipliers conjugated with the balance laws for the linear
momentum, order parameter and energy.

5.2. The restrictions.
We impose the following two structural assumptions:

— the nondegeneracy condition for the entropy

(5.5) Ne(Ye) >0 for all Ye;
_ the relation between stationary entropy, energy and mass fluxes

0 _ 10:0 , 00

(5.6) =\ +Aq
where °,3°,q%, A\ and ) are stationary quantities defined by setting x,. = 0
in the set Y, i.e. W% := W(Y° Y')|y1_(o) and similarly for other quantities.

We prove the following
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Theorem 5.1 (Consistency with the entropy inequality). Let us consider bal-
ance (2.1) with constitutive equations (5.1). Suppose that entropy inequality
(5.3) is satisfied and assumptions (5.5), (5.6) hold true. Then the following
relations are satisfied:

(i) multiplier of the linear momentum Ay = 0;
(ii) entropy 7 = n(F, X, DX, €);
(iti) multiplier of the energy equation

(5.7) Ae = Ae(F, x, Dx, €) = 71(F, x, Dx, €) > 0;

(iv) stress tensor

. -8 . S D .
(5 8) S S(F7X7DX16) /\e(F,X,DX,E)n'F(F’X’ Xae)x
(v) entropy fluz
1
(5.9) T = )\j+Xed — Xut [ﬁnx + / On ) (YO, X)AT | 5
0

(vi) compatibility conditions
1
(5.10) Xt [—/ (Ax.x,tjf)(Y(’,Tx,:)dT] + Ay prurji =0,
0 DMF
1
Xt [—/ ()‘X,X,tji)(yovTX,t)dT] + )‘x.DKxji = 0>
0 DRy

1
Xt [—/ ()\X,x_,ji)(YO,‘rxvt)d'r] + Aypredi =0
0 Dle

fori=1,2,3.
Moreover, there exists a scalar quantity a = a(Ye.) such that
(vii) multiplier A = A (Ye) satisfies the equation
on yo ! (0
(5.11) Ay = 5 +VE- : O )Y, X )T + @,
where
Y0 .= Y°\ {DMF,D¥x, D’}
= {F,DF,‘..,DM“‘F,X,DX,...,DK‘lx,e,De,...DL"e},
]
x ox
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(viii) the quantities r = T(Y.), j = 3(3@), q = q(Y.) and a = a(Ye) satisfy
the residual inequality
(5.12) A+ VYA G+ VA g+ xea 2 0
for all variables Y.

Proof of Theorem 5.1. By inserting constitutive equations (5.1), (5.4) into
entropy inequality (5.3) and applying the chain rule we arrive at the algebraic
ineqality:

M K L
(5.13) Y fipme-D"F+ 3 fpey - DFxe + 3 fipie - Dey

m=0 k=0 1=0

F X+ W Dxe + VW = Ay ug

+2u - S, Dxe) + A (V7 -8) = Axe = A - Dxe

AT G A — Al — Ay, - Dxe = AV g+ AS-F 20
for all variables {W,Y.}. Here
W = {uu, X, D™F t)ocmen, (D*x )1<k<rc, (D'e)o<i<e,

D1\4+1F DK+1X DL+le}

denotes the set of variables in which the left-hand side of (5.13) is linear.
Further procedure consists in deriving consequences from the linearity in the
variables belonging to the set W.

Step 1. By the linearity of the left-hand side of (5.13) in u, it follows that
the corresponding coefficient preceding this variable has to vanish, i.e. A, = 0.
This shows (i).

Step 2. By the linearity in the variables (D™F ¢)i<m<nt, (D*x 4)2<k<ic
(D'e.)i<i<r, X we read off that ipmp = 0 for 1 <m < M, 7pey = 0 for
2<k<K,fpe=0forl<!<0Land 7lx. = 0. Hence, the constitutive

dependence of 7] is restricted to 7 = %(F, X, Dyx, e) which shows (ii).
Step 3. The linearity in e, implies that
e —Ae=0.
Hence, in view of (ii) and assumption (5.5) we conclude (iii).
Step 4. By the linearity in F,
nr+AS=0,

so0, due to assumption (5.5), (ii) and (iii) we infer (iv).
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Step 5. From the linearity in Dx. we deduce that
(5.14) Tox + P xe = Mdoce — Aelxe = 0-
Next, let us define the vector
(5.15) T =T - \j—A\a
By virtue of assumption (5.6),
(5.16) T = 0.
From (5.15), using (5.14) and (iii), we get

(5.17) W =Py~ )‘x‘x‘gj = Mdxe = Al
= —ﬁ.DX - AX.x,gj'

Hence, in view of (5.16), (ii) and (iii), it follows that

- X3
= o — /0 (e )Y, E)E

(=N
|

(5.18)

1
— %, [ﬁ,m [0 x|
0

From (5.15) and (5.18) we conclude (v)-

Step 6. It remains to examine the linearity in the variables DM*1F, D +1y
and DZ+le. On account of the results obtained in the previous steps, inequality
(5.13) is reduced to

(5.19) (i = A)X + Ar + VY- — AV j =AY g >0

for all variables {DM*!F, DX+1y, DI*le, Y.}. We rearrange now the sum of
the last three terms on the right-hand side of (5.19) to the form

(5.20) VAR D WA L G T VA A

SV (@ =M - A+ I NG+ VA a

IR VG L V265 WS A AP VYT
Further, in view of (5.18), recalling the definition of VY’ (see Section 3.2), it
follows that

1
(521) VT = x|+ O / Crn )Y, 7T |
0
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Consequently, by combining (5.20) and (5.21), inequality (5.19) is transformed
to

1
(5:22) e |- iy =V iy = V- / O ) (Y0, )T
0
FAr+ VYN jH VN g 20
for all variables {DM+!F, DX+1y, DI*le Y, }.
From (5.22), performing differentiation by the chain rule in terms involving
vY°. and V¥" (restricting now to the subset Y°), the linearity in the vari-

ables DM+IF, D +1y and D *!e implies that the coefficients preceding these
variables have to vanish. Hence, recalling (i) and (iii), we conclude (vi).

Step 7. On account of (vi) inequality (5.22) becomes
~ . 1
62 e[ ht iV o =V [ O D
0
A+ VN i+ Vg2 0

for all variables Y,. Now, let us define a scalar quantity a = @(Y.) given by the
squared parenthesis in (5.23), viz.

- _ 1
(5.24) 0= <A+ 7y =V iy =V / P Y0, X 0)dT.
0
Let us note that on account of (ii) and (iii),
(5.25) VY iy =V b VA= VA,

so that, recalling (3.4),

Consequently,
o1 7 ! .
a=—X\+ M _gre. / (/\X,X.tj)(YO,TX,t)dT.
0
This shows assertion (vii). Finally, in view of (5.24), and (5.25)2, inequality

(5.23) takes the form of the residual inequality (5.12). This shows assertion
(viii) and thereby completes the proof. m
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5.3. The restrictions in the nonconserved case.

As in Section 3, it is of interest to distinguish thermodynamic restrictions in
the nonconserved case (j = 0). Then assumption (5.6) reduces to

(5.26) W0 = X\,
and Theorem 3.1 specializes to

Theorem 5.2. (Consistency with the entropy inequality in the nonconserved

case).
Let us consider balance laws (2.1) with constitutive equations (5.1) in the non-

conserved case j = 0,7 # 0. Suppose that the entropy inequality (5.3), is
satisfied and assumptions (5.5), (5.26) hold true. Then the following relations
are satisfied:
(i) Au :AO;
(i) 7 =7(F,x, Dx. €);
(lll) Ae = /\z(F: X5 Dy, e) = T~],6(F: XvDX: e) > 0;
(iv) S =S(F,x,Dx,e) = fe(F, X, Dx; );
(v) ¥ = Xed = Xa7.Dx-
Moreover, there exists a scalar field a = a(Yy) such that

" A(F,x,Dx,€)

: on
() <A = =5 +a

(vil) A+ VA q+xea >0 for all variables Y.

6. EXTENDED MODELS (M), AND (M)y BASED ON INTERNAL ENERGY
AND INVERSE TEMPERATURE AS INDEPENDENT VARIABLES

6.1. Multipliers as additional independent variables.

On the basis of Theorem 5.1, following the idea described in Section 4, we
introduce an extended model in which the multipliers Ay and ). are in addition
to u, x and e treated as independent variables. The extended model is based
on the following modifications of the statements of Theorem 5.1:

— We replace the state space Y in (5.1) by

(61) Ze = {F; DF) X> DX: D2X: €, DE, /\xy D/\x> ’\57 D)\e: X,t}-

This set includes all variables which will appear in the extended model. The
higher derivatives D™F, DFy, D'e for m,1 > 2,k > 3 are irrelevant.

— Regarding ), as an independent variable we set all expressions involving its
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derivatives with respect to x ., DMF, DXy, D’e equal zero and replace v,
by VA,.

Formally, with such modifications statements (i)-(iv) of Theorem 5.1 remain
unchanged, (vi) is automatically satisfied and (v), (vii), (viii) are respectively
replaced by:

(V) ¥ = A\ — Aed — X47,Dx;

(\Tj) A= —é +a; A

(viii) the quantities r = 7(Z.), j = j(Z.), a = d(Z.) and a = a(Z.) satisfy the
inequality

(6.2) AT+ DA j+DA-qtxa=0

for all variables Z, in (6.1).

6.2. Model (M), — formulation with entropy 7 = %(F,X, Dy,e) as a
thermodynamic potential.

The extended model, referred further to as (M), is based on the following
postulates:

(M1), The unknowns are the fields u, x, e and Ay, Ae > 0.

(M?2), A thermodynamic potential is the entropy

(6.3) 7="n(F,x,Dx,e),

subject to the condition

(6.4) 7o > 0 for all arguments (F,x, Dx,e).
(M3), The fields u, x, e, A, and ). satisfy the differential equations
(6.5) ii—V-S=b,
x+V-j—r=m,
on
—/\X = —&‘ + a,
6+V-q-S-F=g,
Ae — 77,6 = 0?
where S is given by
1
6. S=-—-—7
(6.6) Pt

consistent with the condition
(6.7) SFT = Fs”.
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Moreover, the quantities r = 7(Z.), j = i(2.), a = d(2.) and a = a(Z2.) are
subject to the dissipation inequality (6.2).
(M4), In addition, in accordance with the principle of frame indifference, the
constitutive equations

=7 x,Dx¢), S=S5(Fx,Dx.e),

£ = £(F,x,Dx, ) == ox(F, x, Dx, ),

i= j(ze): q= a(ze)1 r= 'F(ZE)) a= a(ze)

are assumed to be invariant under changes in observer, similarly as in (4.8).

6.3. Thermodynamic consistency of model (M)..
We shall prove that model (M), is consistent with the second law of thermo-

dynamics.

Theorem 6.1. System (6.5) with relations (6.3), (6.6) and (6.2) satisfies the
following entropy inequality with multipliers

68) [(F,x,Dxe) + V- ¥ = Ay (ii=V-8) = Al + Vi)

—Ax Ox = Tx + V- fipx + @)

A+ a8 )= AT~ Ase (8457 )

= A\r+ VA j+VAca+xaz0

for all fields u, x, €, Ay, Ae- The corresponding multipliers are given by
(6.9) Au=0, Ay=X, M, =-X
Ao=X, Ay =-¢ As=AF,
and the entropy fluz is
(6.10) T = \j+ Xeq — X7Dx:

Proof. Let u, x, e, Ay, Ae be any fields and Ay, Ay, A, , Ae, As,, As be defined
by (6.9). Then simple rearrangements lead to the following identities:

Au-(1=V-S)+AX+V-i—T)
+A,\x(>\x—17,,(+V‘17,Dx+a)+Ae(‘é'+V-q-—S-F)

. 1.
+Ax, (Ae — 77,5) + As - (S + ~)\—F)
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M +Vj-r) - X = Tix+ V- 7px) +a)
FX(é+V-q—S-F) —é(\e — 7e)
+)\EF-(S+:\—€-'I7,F>

ﬁyF'F+ﬁxX+77,Dx'vX+ﬁ,eé

V- (Ad +Ae@ = Xpx) — M = VA J = VA -a — Xa
[(F,x,Dx,e)] + V- ¥ =\ 7 =V -j— VX -q-xa

I

This shows the equality in (6.8). The inequality in (6.8) is a consequence of
dissipation inequality (6.2). The proof is completed. ®

Corollary 6.1. From (6.8) it follows that solutions of system (6.5) with (6.3),

(6.6), (6.2) satisfy the following entropy equation and inequality

(6.11) [i(F,x,Dx,e)] +V-¥ = A7+ VA - j+ VA -q+xa+ AT + Aeg
> M+ Aefs

where the entropy fluz ¥ is given by (6.10).

6.4. Model (M), — formulation with rescaled free energy

¢ = ¢(F, x,Dx,?) as a thermodynamic potential.

Under assumption of thermal stability
=~ N 1
(6.12) =0 (F, x,Dx, ) =% (F,X,Dx,g) >0

model (M), can be equivalently expressed in terms of the inverse tempera-
ture ¥ as an independent, thermal variable and the reduced free energy ¢ =
$(F, x, Dy, ) as a thermodynamic potential.

If ¢, > 0 then duality relations (2.27) hold true. For notational consistency
with (2.27), in view of the transformation between the inverse temperature 4
and the internal energy €, let us set now e = € in the statement of (M Je-

According to Lemma 2.4, if ¢y > 0 then

(6.13) the map & — 7(F, x, Dx, €) is strictly concave,
so the map & 75(F, x, Dx, ) is strictly decreasing.

From now on we shall assume that 7 satisfies (6.13) in addition to (6.4), i.e

(6.14) n= %(F, x, Dy, &) is strictly concave as a function of g,
and such that 7jz > 0 for all arguments (F', x, Dy, e).
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Under such assumption the duality relations (2.27) are satisfied. Consequently,
by (6.5)s and (2.27)y, it follows that
(6.15) Ae=Tzg="7
which means that the energy multiplier can be identified with the inverse
temperature. Clearly, the assumption 7z > 0 is equivalent to 9 > 0.
Moreover, the requirement (6.13) means that
(6.16)  the map € — @(F, x, Dy, g) is strictly decreasing,

so there exists a well-defined inverse map ¥ — %(F, X, Dx, 9).
Further, in view of the equalities (2.39), the strict concavity of 7 = ﬁ(F, X, DX, €)

with respect to € is equivalent to the strict concavity of ¢ = ¢(F,x, Dx, V)
with respect to 9. Hence, the assumption (6.14) expressed in terms of ¢ reads:

(6.17) ¢ = #(F,x, Dx, ) is strictly concave with respect to 9 > 0.
In addition, recalling (2.42),

_ - - o 0
(618) —NF = ¢,Fy —Nx = ¢,x> —NDx = ¢,Dx7 _E = &'

with appropriate arguments.
Similarly as in Section 4, we shall identify —\, with a rescaled chemical

potential

(6.19) =X == Vp.
Then, on account of (6.18)4, equation (6.5); becomes
__b¢
(6.20) = T + a.
Further, by (6.15) and (6.18);, equation (6.6) is transformed to the form
1
21 S=—-¢r.
(6.21) 19¢,F
Moreover, by virtue of (2.34) and (2.35)
(622)  7(F,x Dx,9) = il(F,x, DX, &(F,x, Dx, )

= —4(F, x, Dx, ) + V&(F, x, Dx, 9)
with R
E(F> X DXw 19) = ¢),19(F: X DX> 19)
In view of relations (6.15), (6.16), (6.19) and (2.37); the state space Z, in
(6.1) (with e = €) is replaced by
(6.23) 2, = {F,DF, x,Dx, D%, 9, D0, , Dli, X}, B =Vp-
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Summarizing the above conclusions, we arrive at the following formulation
of model (M),, referred further as (M)y, expressed in terms of ¥ as an inde-
pendent, thermal variable:
(M1)y The unknowns are the fields u, x, 7t = and J > 0.
(M?2)y A thermodynamic potential is the reduced free energy ¢ = qb(F x, Dx, V)
satisfying (6.17).
(M3)y The fields u, x, 7 = Uy and 1 satisfy the system of equations

(6.24) u—-V-S=b,
x+V-j-—r=m1,
_ ¢
= JX + a,
e+V.-q—-S-F=g,
where
(6.25) & =2(F,x,Dx,9) = $,0(F,x, Dx, 9),
$(F, x, Dx, ) + 7(F, x, Dx, ¥) = Ve(F, x, Dx, ),
1
_¢ - d),x V- ¢',Dx:
and S is given by
1
2 S==¢p,
(6.26) 19¢,F
consistent with the condition
SFT = FST.

Moreover, the quantities r = 7(Zy), j = 3(25), @ = d(25) and @ =
@(Zy) are subject to the dissipation inequality
(6.27) —fr—Dp-j+DV-q+ x>0
for all variables Zy in (6.23).
(M4),s The constitutive equations have to be invariant under changes in ob-
server, like in (4.8).
Since
9=L 3(FxD 1 —lf(F Dy, )
- 0$ » X X) 0 - 0 » Xo X: El

the strict concavity of f with respect to 6 is equaivalent to the strict concavity
of ¢ with respect to ¥ (see Lemma 2.2), and Gibbs relations in (4.23) are
equivalent to that in (6.25) (see Lemma 2.1), it is immediate to see that models
(M)g and (M)y are identical.
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Thus, we can conclude that the approaches with entropy or, alternatively,
with energy as independent thermal variables lead to the same final model
with temperature as thermal variable.

7. GENERAL SOLUTION OF THE DISSIPATION INEQUALITY.
APPLICATION TO MODEL (M),
7.1. Thermodynamic setting.

In this section we are concerned with solving dissipation inequalities that ap-
pear in all presented models (M), (M)s, (M), and (M), (see (4.2), (4.26),
(6.2), (6.27)). To be specific, let us consider inequality (4.26) in model (M)e:

s _ 1
— T (29) — DR - j(26) + D5 -

9 G(20) + x,1a(Ze) 2 0

for all variables

1
Zg = {F7DF,X,DX7D2X79.D§,EDE»X,t}1 = %-

Let us identify the variables (7, DR, D1, x,1) with the radius vector, X, of
EN:
1
(7.1) X = <117 DP«:D@X;) )
called thermodynamic forces. Correspondingly, let us identify (-, —j,q,a)
with the radius vector, J, of EV:
(72) Ji= (—Ty ~j1q>a‘))

called thermodynamic fluxes. Finally, let us identify the remaining variables
from the set Z (not belonging to X) with the radius vector, w, of EP:

(7.3) w = (F,DF, x, Dy, D*x, ),

called state variables.
With such notation (4.26) is transformed to the following well-known form

of the thermodynamic inequality
1
(7.4) L(X;w) = -—ﬁr—Dﬁ-j+Dg -q+ Xx@
= X - JX;w) >0

for all variables {X;w} = Ze.
We recall two results on the representation of solutions of thermodynamic

inequality (7.4).
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The first, due to Gurtin [Gur96), gives a representation in terms of a linear
transformation which satisfies in a certain sense the semi-definiteness condi-
tion. The second one is the decomposition theorem due to Edelen [Ede73]
which represents a special case of the Helmholtz theorem in vector analysis.
This theorem asserts a splitting of the solution of the dissipation inequality
into a dissipative and a nondissipative part. The application of this theorem to
problem (M), allows to draw interesting conclusions regarding the structure
of the quantities in (7.2). It turns out that the nonstationary parts of these
quantities may in general contribute to nondissipative thermodynamic fluxes.
In other words, if not excluded, such anomaly fluxes are not restricted by the
second law. In class of models we are concerned with, involving free energy
of gradient type, the key role plays the nondissipative energy flux. The free
choice of this flux together with a relation between energy and entropy fluxes
(see (8.5) below) allows to enlighten a question of recent interest (see [FGMO06])
whether in phase-field models one has to modify energy or entropy equation.

Our answer will be that both variants are correct and arise due to particular
choices of the nonstationary energy flux (see Section 8.3).

7.2. Representation of solutions to the dissipation inequality.

Lemma 7.1. (see [Gur96], Appendiz B).

Let X be a generic element of an N-dimensional vector space EN with inner
product X - Y, let w be a generic element of a p-dimensional vector space E?,
and let J(X;w) := EN x E? — EN be a smooth function satisfying inequality

(7.5) X J(X;w)>0 forall(X;w) € BN x EP.
Then J is given by
(7.6) J(X;w) = B(X;w)X,

with B(X;w), for each (X;w), a linear transformation from EN into EV,
consistent with the inequality

(7.7) X -B(X;w)X >0 for all (X;w) € EN x EP.
The mapping B(X;w) is given by
1
(7.8) B(X;w) = / Ve I (1 X; w)dr,
0
where Vx denotes the gradient with respect to X.

For reader’s convenience the proof of this lemma is given in Appendix.
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We remark that because of the dependence of B(X; w) on X, inequality (7.7)
is weaker than positive semidefiniteness of B(X;w). However, when J(X; w)
is linear in X for each w, then
(7.9) J(X;w) = B(w)X
with B(w) positive semi-definite.

The second lemma yields a decomposition result

Lemma 7.2. (see [Ede73], Corollary p. 220).
Let X stand for elements of an N-dimensional vector space EN with inner
product X - Y, let w stand for an element of a p-dimensional vector space E®,
and let J(X;w) : EN x EP — EN be a mapping which is continuous m w
and of class C* in X. There ezists a scalar-valued function D(X;w) that is
unique to within an added function of w, and a unique vector-valued function
U(X;w) such that
(7.10) J(X;w) = VxD(X;w) + U(X;w),

X -UX;w)=0, U(Ow)=0.

The mappings D(X;w) and U(X;w) are given by

1
(7.11) D(X;w) = / X - J(tX; w)drT,
N ! aJ(rX;w) 8 (TX;w)
nexie) = [ w6 { 250~ o0 jor

Moreover, if J(X;w) is of class C* in X, then D(X;w) is of class C* in X,
and the symmetry relations
(7.12) Vx A (J(X;w) - UX;w)) =0,
where ,A\” denotes the exterior product operation, are satisfied identically on
EN x EP.

This lemma represents a special case of a more general decomposition theo-
rem proved in [Ede73]. Fora clarity, in Appendix we present a direct, simplified

proof of this special case.
We point out important implications and interpretations of the latter lemma.

Firstly, in view of (7.10)2, dissipation inequality (7.4) reduces to
(7.13) (X w) =X I(Xw) =X- VxD(X;w) > 0.
It is thus only the part VxD(X;w) of the thermodynamic fluxes J(X; w) that

contributes to the rate of entropy production. The function D(X;w) can thus
be interpreted as a dissipation potential. In other words, Edelen’s theorem
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asserts that there exists a dissipation potential D(X;w) for every system of
constitutive relations that satisfies the dissipation inequality. In fact, it follows
directly from (7.13) that (X;w) and D(X;w) stay in the relation

(7.14) D(X;w) = / 'sirx; .

By (7.13) and (7.14) it follows that D(X; w) is nonnegative, convex and achives
its absolute minimum of zero for X = 0.

The vector U(X;w) can be interpreted as the nondissipative part of the
thermodynamic fluxes J(X;w) because X - U(X;w) = 0 and hence U makes
no contribution to the dissipation ¥ for any values of X and w.

The symmetry relations (7.12) assert that reciprocity relations are always
satisfied by any solution of the dissipation inequality, although it is J — U
rather than just J that satisfies them. In this sense (7.12) generalize the
Onsager reciprocity relations of linear theory of irreversible processes to the
nonlinear case. More precisely, it follows from (7.12) that

VX/\J:O, i.e. 3J,/8X]=3J]/8X,, i,j=1,...,N,

when and only when the nondissipative part U of the thermodynamic fluxes
vanishes identically on EV x EP.

7.3. Decomposition of the fluxes.

According to Theorem 4.2, the entropy flux ¥ contains the nonstationary term
xfx/0 (see (4.29)). This suggests that one should look more carefully on
other possible nonstationary terms comming from the constitutive quantities
q, j and 7. As mentioned before, of particular interest is the energy flux q.
Let us assume, without loss of generality, the following splitting of q =

d(Ze):
(7.15) a=q"-xh,
where q° stands for a stationary (heat) flux which does not depend on x, i.e.
o« = (2D
with
29 = Zgly—0 = {F,DF,X, Dy, sz,G,D%,ﬁ, DE,O} ,

and h (possibly equal zero) stands for a nonstationary flux, i.e.

~ 1
h= h(zﬂ)1 Zy = {Fs DF1X7DX7 DZX)67D§1ﬁv Dr, X,t} .



A THERMODYNAMIC APPROACH TO PHASE-FIELD 57

Further, in accordance with Edelen’s decomposition theorem, let us assume
that there may exist a nondissipative (anomaly) flux in the system and that
it is due to the nonstationary flux h. More precisely, let us assume that q in

nd
)

(7.15) splits into a dissipative, q%, and a nondissipative (extra), q"¢, parts:

(7.16) q=q*+q",

where

(7.17) qt=q® —xeh?,  qi= —xh™
and

(7.18) h =h?+h™

with h? = h?(Z,) and h™ = h"¢(Z,) denoting respectively a dissipative and
a nondissipative part of the flux h (each of them can be zero).

Similarly, one could select nondissipative parts of the quantities r and j in
(4.26). For simplicity we omit this, however, assuming that

(7.19) r=rd, j=j (=0, j*¢ =0).
With splittings (7.16)—(7.19) dissipation inequality (4.26) can be transformed
into the following decomposed form:

1
(7.20) S(X;w) = - - DE-j* + Dy qt + x,at

1 1
—Dé : (X,th"d) + X,:Dg -h™
X (I(X;w) + U(X;w))
=X -J{X;w) >0,

Il

where
(7.21) == Dj o,
3¢ = (=4, —j%, q% %),
X = (ﬁ, Dﬁ,D%,X,:) )
and
satisfies

X - UX;w)=0 and U(0;w) =0.
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Thus, a® may be interpreted as a dissipative part of the quantity a in the
equation for the chemical potential (see (4.22)3), J¢ as a dissipative part of the
thermodynamic fluxes J and U as their nondissipative part.

Moreover, by virtue Lemma 7.2, the dissipative flux J¢in (7.21) is charac-

terized by
(7.22) J(X;w) = VxD(X;w),

where D(X;w) is a dissipation potential which is nonnegative, convex in X
and such that it achives its absolute minimum of zero at X = 0.
Let us add that an equivalent characterization of flux J¢, according to

Lemma 5.1, is:
JY(X;w) = B(X;w)X,

with B(X,w), being a linear transformation from EY into EV, consistent with
the inequality

X B(X;w)X >0 forall (X;w) € E" x EP.

8. A SCHEME OF PHASE-FIELD MODELS WITH CONSERVED AND
NONCONSERVED ORDER PARAMETERS

8.1. Formulation.
On account of representation (7.20)-(7.22) of dissipation inequality (4.26),
the formulation (M)g presented in Section 4 leads to the following scheme of
phase-field models with a first order gradient energy.
Let the state space be
1

(8.1) Z= {F DF, x,Dx,sz,ﬁ,D@,%,D%»x,c}-
There are given a free energy f = f(F, x, Dx, 8) which is strictly concave with
respect to 0, and a dissipation potential D = D(X;w) with

x .= (“ pkply

s 0 ) 0 ) 67 R IR
w:= (F,DF,y,Dy,D’x,0), {Xjw}= 2,

which is nonnegative, convex in X and such that D(0;w) = 0. The unknowns
are the fields u,x,7z = p/6 and 6 > 0 satisfying the following system of
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equations:

(8.2) -V fr=Db,
x+V-j-r=m
l_l_(j(f/f)) 1 nd d
9= oy +V9 h™ +af,
é+V~q—f,p-F=g,

where

(8:3) e=f—60fs a=aq*—xh",

—r==r" =D, ~i=-i"=Dbesey
a’=Dpaey, @ =Dxo
and a nondissipative flux h™ = hnd(X;w) is an arbitrary vector field not

restricted by the entropy principle.

Remark 8.1. The solutions of system (8.2), (8.8) satisfy entropy inequality
(4.80) which on account of (7.20) takes the form

: [ B 1 g, . a_ K g
8.4 V- ¥ =--r"=V=- — . - 2
(8.4) n+V.-¥ i Ve j +V(9 q'+xa' - 5T+
where
a1 - .
(8.5) v = —%Jd‘F 5ld —xh 9 +xf—;)1
= !+ xe™
with
a._ M 1 od nd._f.Dx—h"d
vt = g +0q, R4 =

It is of interest to note that the extra energy term, h™¢, and the extra entropy
term, ¥™, defined above, are linked by the Gibbs-like relation

(8.6) h™ + %™ = fp,. m

8.2. Examples of thermodynamic potentials.

To set a stage for a comparison with phase-field models known in literature, to
be presented separately in [Paw07], we collect here some typical models of free
energies and dissipation potentials. Moreover, we discuss system (8.2)—(8.3)
in two extreme cases.
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A general model of free energy describing phase transitions in solids has a
separable Landau-Ginzburg form
(8.7) F(F,x, Dx,0) = fu(6) + W(F, x, 0) +%(x,0) + fo(x, Dx, 6)
with the subsequent terms representing respectively thermal energy, elastic
energy, chemical energy and gradient energy which corresponds to diffused

phase interfaces.
A typical example of f.(f), associated with constant thermal specific heat

c, >0, is

0 _
(8.8) f+(0) = —c,0log 7 +c,0+¢C

1
with a positive constant 6, and some constant ¢ immaterial from the point of
view of differential equations.

An example of elastic energy W (F,x,0) for phase separation in a binary

a — b alloy in case of infinitesimal deformations is (see e.g. [DreyMul00],
[BonCDGSS02]):

(8.9) W(e(u), x,0) = %(6(11) —&(x,9)) - A(xX)(e(w) —E(x, 9)),

where e(u) = (Vu + Vu?)/2 is the infinitesimal strain tensor, A(x) is the
fourth order elasticity tensor (in general depending on x because of different
elastic properties of the phases), and &(x, 6)) is the eigenstrain tensor account-
ing for different thermal expansions of the phases. Tensors A(x) and (x, 6)
are defined by
(8.10) A(x) = (1= 2(x,0)) Aa + 2(x, 0) As,
E(x,0) = (0 — Or)[(1 — 2(x, ) eta + 2(x, ) cxs],
where A,, A, are constant elasticity tensors of phases a,b, o, and « are the
matrices of thermal expansion coefficients of these phases, 0r is a reference
temperature, and z(x, 6) is so called shape function given by
Xa(0) — X
i) = A =X
Xa(6) = xs(6)
It interpolates between temperature-dependent equilibrium concentrations x4(6))
and x,(0)) of the a — b phase diagram.
The chemical (or coarse-grain) energy %(x,0) characterizes the energetic
favorability of the individual phases and typically has the form of a double-well
potential. A well-known example at 6 = const is given by

(811 Yol = 30— 17
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where the values 1 correspond to the pure phases (after rescaling x)-
For nonisothermal phase transitions a relevant form of (¥, ), proposed by
Penrose and Fife [PenFife93], is

612) W00 = b0+ (1 - ,,3) (—ax® + bx + ),

where 0 > 0 is a transition temperature and a, b, c are some constants whose

choice depends on the system under consideration.
A typical example of an isotropic gradient energy is

(513) o, Dx.6) = 570x 6)|Dx?

with a positive function y(x, ) being a small interfacial parameter. In applica-
tions to concrete systems one can distinguish two special cases of temperature-

dependence of the parameter 7.

In the first one, which we call energetic, the gradient term is fully contained
in the internal energy and the entropy is purely volumetric. On the contrary,
in the second case, which we call entropic, the internal energy is volumetric
whereas the gradient term is fully contained in the entropy. More precisely,
these cases can be characterized with the help of Gibbs relation (2.18) as

follows:
— gradient energy of energetic type v = F(x) >0

(8.14) epy = (f —0fe).ox = fpx = 7DX & NDx = ~fopx = —76Dx =0,
— gradient energy of entropic type v = 5(x) >0
(8.15) epy = (f—0fs)px = (y—07e)Dx =0+

Onpyx = —8fepx = —076Dx = —7Dx = —fpx

We present now some standard examples of the dissipation potential D(X;w)
in (8.2), (8.3). For simplicity, let us assume the splitting

=D (. B 1 .
(8.16) D(X;w) =D (0,w> +D, (De,w) +Ds (De,w) + Dals; w),

and restrict ourselves to the situation near thermodynamical equilibrium with
potentials Dy, k = 1,2,3,4, of second degree of homogeneity in the variables
g,D%,D% and ., respectively. The potential D; corresponds to a noncon-
served order parameter dynamics whereas D, to a conserved one. The simplest
examples are

1o 2 1
(8.17) Dy =z (~) . Dy=5M

; o[’
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where o and M are positive coefficients, M representing a diffusional mobility.
According to (8.3) such potentials yield the following laws:

— for the production term

(8.18) = —D () = —-a%, a>0,

— for the mass flux
(8.19) j*=-Dpe = —MD%, M > 0.

The potential D3 corresponds to the heat conduction. A typical example which

governs the isotropic Fourier law is
12
0

where k > 0 is the heat conductivity coefficient. Then, according to (8.3),

D

)

1 1
(8.20) Dy = 51c|Dlogev|2 = 5k62

1
(821) qd = Dyn(l/g) = ]CHZDE = —kJDe, k> 0.
Finally, the potential D, corresponds to viscous diffusive effects with an ex-
ample
1
(8.22) Dy = EﬂXi
where B > 0 is a viscosity coefficient. By (8.3) such potential yields the
following law
(8.23) a’=D,,=PBxy B>0.
8.3. Special forms of model equations.

For a further discussion we collect some equivalent forms of equations (8.2)s
and (8.2)4 for the chemical potential and the internal energy. First, let us note
that (8.2)3 can be rewritten as

uwo 14f 1 P d
.24 =2 _vV:. — h"
(8.20) v Uit
or, using (8.6), as
5
u=—Ji+V6»\Il"d+6a‘l.
ox
Next, introducing the specific heat coefficient (see (2.21))
co = —0f 00,
and taking into account that

e=(f—0fo)p F+(f—0fo) X+ (f—0fe)px VX —0faeb,
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the internal energy equation (8.2); can be rewritten in the following tempera-
ture form

(8.25) cob+ V- (q?— Xh™) + (f —8f0) xX + (f —0f0)Dx VX~ O0for-F =g.
Equations (8.24) and (8.25) suggest two extreme choices of the flux h™:

(8.26) h™ =0, so ¥ = Lg—x (extra entropy flux),
and
(8.27) h™ = fp,, so ¥"¢ =0 (extra energy flux).

The corresponding schemes take then the following forms:
(i) Scheme with extra entropy flux: h™ =0, ¥ = fp,/0
(8-28) u-V-fr=b,

>'<+V~jd——r'i='r7
B M + ¢

0 ox “
b+ V-qt+ (f —0fe)xx + (f = 0f0)ox VX
—0fer-F =0y,
with 7¢,j%, q%, a? given in (8.3). Such scheme satisfies the entropy inequality
of the form

5 _L fDx
(8.29) n+V 0] +0q +x== ]
_ B ok gl gty vat = By
= er V91+V€q+>\a 07’+€
B, 9
> —= =,
275" "%

(i) Scheme with extra energy flux: h™ = fp,, ¥ =0
(830) @-V-fr=b,
X+V-ji-ri=1

p 14f

0 Goy ¢

cof + V- (qd—)'cf.nx) +(f = 0f0)xx + (f —0f0)px - VX
—Ofer - F =g,

with 7%, j¢, ¢, a? given in (8.3). Such scheme satisfies the entropy inequality
of the form
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s P, 1y
8.31 VA Ry L
(8:31) 0+ [0J+9q]
Ba ob wa, ol a,.a K 9
= _Bpd_ gyl Z. _kBE 42
g Vg Vgt Ty
B g
> —Sr 42,
275"y

We remark that, regarding the structure of the energy equation, scheme (i)
with extra entropy flux falls into the frame of Penrose-Fife models with con-
served and nonconserved order parameters [PenFife90], [PenFife93], Caginalp
model [Cag86], and several other models with modified entropy equation, e.g.
models in [AltPaw90], [AltPaw92], [FGMO6].

Scheme (i) with extra energy flux is in turn consistent with models for non-
conserved order parameters proposed by Fried-Gurtin [FriGur93], Frémond
[Frem02] and Miranville-Schimperna [MirSchim05a]. Besides, if higher gradi-
ents of deformation are admitted then scheme (ii) with modified energy equa-
tion turns out to be consistent with the theory by Falk [Falk82], [Falk90] for
shape memory alloys and by Dunn-Serrin [DunnSer85] for higher grade mate-
rials (see [Paw00c], [PawZaj03]).

In view of applications it is of interest to consider schemes (i) and (ii) in
case of entropic and energetic gradient energies. If the gradient energy (8.13)
is of entropic type

7(x,0) = 07(x) > 0,
then scheme (i) with extra entropy flux reduces to the form:
(8.32) -V frp=Db,
x+V-ji-rt=r,
E_tx_g.5 a
=9 VOV +d,
cof + V- q+ (f —0f0)xx —Ofer - F =g
In turn, if the gradient energy (8.13) is of energetic type
706 0) =7(x) >0,
then scheme (ii) with extra energy flux becomes
(833) -V -fr=b,
x+V-jd—ri=r,
p=fx= V- (TVx)+ 00",
ol + Vg +X[fx =V (TN = 0foxX — 0for F =g
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A detailed comparison of the above presented schemes with several models
known in literature will be presented in Part II [Paw07].
APPENDIX
Proof of Lemma 7.1. According to (7.5), for A >0
AX - J(OAX;w) >0 for all (X;w) € EY x E?,

and hence

X-JOX;w) >0 forall (X;w).
Thus, letting A — 0, X - J(0;w) > 0 for all (X;w), which implies that
(A1) J(0;w) = 0.

In view of (A.1), denoting
J=J("X;w),

it follows that

1
J(X;w) = I(X;w) —I(0jw) =/ inT
o dr
1o
= | syt
1
= {/ V(Tx)J(TX;w) dT}X
0

1
B(X;w)=/ VixJ (X, w) dr,
0

which for each (X;w) defines a linear transformation from EV into EV, we
have

(A.2) J(X;w) =B(X;w)X forall (X; w).

A general solution J of inequality (7.5) is therefore given by (A.2) with B(X; w),
for each (X;w) a linear transformation from EV into EN consistent with the
inequality

(A.3) X -B(X;w)X >0 forall (Xjw).

Hence denoting

This proves the lemma. m

Proof of Lemma 7.2. Let D(X;w) be constructed in accord with (7.11);. Since
J(X;w) is of class C! in X, D(X;w) is of class C" in X as well. Further, let

J =I(rX;w).
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Then
1) 1~ a7,
(A4) 3—)(—, = /0 {Jz +TX]8(TXi)} dr
1( 6':
= /0 {Ji +TX10(TX])} dr
1 a7, aJ;
wf {awm ol
= 11 +12
Since B
d5. 2k

Ji= 77—
dr a(1X;)
an integration by parts in I; gives

1
(A.5) I = / {J¢ + TiJi} dr =1J;| = Ji(Xjw)
0 dr o
Thus, from (A.4) and (A.5) it follows that
oD
J,‘(X;w) = —871 - [2

oD [} ENA 07
= X + ) 7X; {—__6(7’)(]-) - 8(TXi)}dT'
When substitution (7.11), is used, we obtain
oD

Ji(X, w) — a—}{l + Ui(X, w)

which shows decomposition (7.10);.
It now follows directly from (7.11), that (7.10), is satisfied:
! (X w)  OJ;(TX w)
X -UXjw) = X X; - L - =
s = [ oo { P50 - SRy e

and
U(0;w) =0.

It remains to show the uniqueness of the decomposition. Clearly,
J = VxDl +U1 = VXDZ +U2

with
X-U=X-U,=0,
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imply that

(A.6) Uy - Uy = Vx(D2 — D)

and

(A7) X (U; — Uy) = X Vx(D; = D1) =0.

Since D; and D, are C! functions of X, the difference D=Dy—DisaC!
function of X. However, the only C" solution of (A.7) is given by
(A.8) Dy = D + D(0;w).
Hence, D is unique to within an additive frunction of w. When (A.8) is
substituted into (A.6), we obtain
(A.9) U; = U,.
This establishes the uniqueness of the decomposition (7.10);.

Finally, if J(X;w) is of class C? in X, then D(X;w) is of class C? in X as
well. Then exterior differentiation of (7.10); with respect to X gives (7.12).
This completes the proof. ®
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