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ABSTRACT

The variational principles and computational methods of analysis
of initially slackened and stiffened structures are discussed.

The simulation of clearences or internal dry friction in the
structural elements by eigen distortions is applied.

Presented considerations will be used in the problem of nonstan-—
dard design of structural setting (with clearences or friction in
the structural joints) for load capacity maximization.

I. INTRODUCTION

The aim of this paper is to discuss the variational principles
and computational procedures for the analysis of initially
slackened and stiffened structures. The considerations are
restricted to the truss structures. However, they can be easily
generalized for any rod structure C(eg. frame structure).

The initially slackened structure is composed of elements with

mechanical characteristics shown on Fig.1a. The clearences’z
introduced into the elements can be caused by some special design
of joints in the truss structure - Fig.1ib (or in the case of frame
structure - Fig.1.c). On the other hand, the initially stiffened
structure is composed of elements with mechanical characteristics
shown on Fig.2.
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The computational procedures of slackened and stiffened
structure analysis will be very helpfull in the next stage of the
planned research on optimal setting design [Bl. The setting design
problem deals with nonstandard design of ldoints (making use of
clearences and friction) in order to obtain some demanded
macrostiffness characteristics of the structure (eg.the case of
supporting structure [71).

Some examples of slackened elastic-plastic beams and frames
treated as the problem of unilateral boundary conditios were
considered by Gawecki [&6J. The unilateral problems in structural
mechanics are mostly explored in appl!ication to the von Karman
plates. Duvaunt and Lions [1] have presented the existence and
unigueness theorem of the problem. The duality in the case of
obstacle problem have been developed by Bielski and Telega [2].
Numerical results for von Karman plates with unilateral B
displacement constraints have been described by Chtake, Oden, and
Kikuchi [ZJ. On the other hand, the existance and uniqueness of
contact problem with friction have been discussed by Demkowicz
and Oden [4). The survey of variational inequality applications to
unilateral problems 1n continua and structural mechanics can be
found in [S].

In the presented paper the idea of simulation of umilateral con-
straints problems by eigen distortions is explored. Therefore con-—
sider an linear elastic body (in particular truss) subiected to an
external body X and boundary p forces (Fig.Za). Assume that besi-

des this loading there is also the eigen distortion field e® in-
troduced inta a structure in order to simulate a nonlinear consti-
tutive characteristics. The resulting governing equations take the
following form:

di vg+X=0 in V

{ %

%ig,X,p) = O {
. v gn = 0 on RAp

5 i i :
1 g = gradu in V
(1) gie) = 0 l

IS u=20 on Au
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g: gt-stateﬁ of stresses and desformations caused by external
load,

gf g¥-states of stresses and deformations caused by eigen

distortions g° (cf.Fig.Tt illustrating the decomposi-—
tion of the strain and stress states),

® —the eguilibrium operator,

¢ —-the compatibility operator,

A -the elasticity (stiffness) matrix,

grad‘—the symmetric part of the gradient.

1f the external load vanishes (X=0, p=0) equations (1) describe

d
the selfequilibrated state of initial stresses ¢ = ¢’ and the com-

patible state of initial defarmations g = ¢! caused by the diszto

tion state ¢°:
%(c’) =0

(2) Bilph =0

a= A= g%,

Substituting constitutive relaticns (1)3 to the virtual work
principle:

(&t § gsedV = § XsudV + § pSudfie

the modified princigle of potential energy ns a

(4) M= % § sheav

d¥ = j Xud' - 5 pudfe

can be octained 7?1, The principle says that the deformation of

the body subaect to external lcad X, p anc eigen distorticns :
takes the compatitle form (satisfying (1):) which mirpimizes the
functional (4). I+ meansz thet the stationarity cenditions of mi-
nimum of the functicnal (4) subject to the constraints (1):2 take




the deformation sia-—

¥ complementary

§ gAT'gav + § ge®av

4]
=1
]
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can be obtained. The principle says that the siress state of the
Eoay subiect to external load X, p ( wu=0 on fAus and eigen distor-

tions go takes the form 2quilibring the external load and minim:—
zing the functioral (8). It means that the stationaritiy conditions
of minimum of the functional (S) subiect to the constraints (1)
take the form of compatipility cornditions (1):.

The variational principle and computational method for the slac-
rened structure analysis will be discussed i1n Sectiorms II and III
while the proolem of initially stiffened structures will be consi-
aered in Section IV. Finally, 1n Section V the application of
the presented method o an optimal structural dezign problem will

be discussed.

II. VARIATIONAL FRINCIPLES FOR SLACKENED STRUCTURES

A slackened structure can be defined as a structure with the
following constitutive relations (written for the one-dimensional

case — cf.Fig.1la):
o =0 ‘{or et €
(&) o =A te - &) for € oz
o =A (6 + &) for € ¢¢
where € - O describes the initial clearance in the considered ele-
ment.

Generalizing the concept of slackened structures for an elastic
body, the local clearances can be simulated by & field of eigen

distortions ¢° . The variational principle of maximization of the
complementary energy na (Fig.1a) of the body with eigen distor-

tions and relation of the steticnarity conditions obtained in this
way to the const:itutive equations for the slackened structure will
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be discussed. In such a way a general! description of the constitu-
tive relat:ons for the slackened bedy (structure) and the corres-
pond:ng variational principle will te obtained.

Therefore consider the folloving:

(7) max [ 5( ghg + ge°’dv 1
o

[ L

subject to the constraints (1)t and:
(8) K ¢ e

where the scalar function ¥ describes the local energy measure ot

distortion field, while € describes the maximal adm:ssible value

of local distortions. The acove problem can be refcrmuléted making

use of the principle of minimum of the complementary energy (S):
. 1 o T
@) maz.min C £ 5(gAg + ge“)dv ]
e® o £

subject to (1)2 and (8).
Let us i1ntroduce now the augmental functional:

(10) J(GyE°y hs) = §¢ % oA 'o + 0e®+ Midive + X) ¢

+ Yle-K(e®)13dV + { Mlgm-p)dAp

where %, 4 are vector and scalar Lagrange multipliers.
Substituting the relation:

(11) Adivg = diviArg) - (grad’Mg

and making use of the-DStrogradsky’s theorem the functiornal J can
be expressed as follows:

(12) J(g,e% %W = §<3 gAT'g + ge®- (grad®Mig + AX «

+ ¢ [e-K(g®)13dV + § Mogn—p)dAp + § randA.
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Now the variat:on of the functicnal can te written:

s §J = f'fgih';; + g%~ grad?a) + &g°

cive + X) + &y Le—k(e®)I1idV +

- p t o anézidAp Sankidf.

The tomar.ty cond:tion 83 = O is assured by the following re-
lation within the domain Vi
g = Algrad®xy - g%
g = W
L4 g TE £993 =
: E_‘-".J 4 . B2 O
& + X = 0
and the =gusktig : “he bouncar v integrals:
= b - p v xégnldhRp + § 2Egnds = Q.
The | equation leads for any variations 8 and éc to the
Loundary conditions:
(L&) on = p on Ap and A =0 on Au.

s h 2 pe i1cdentified with the displacement field u, the corndi-
tions (14)1 -5 provide the relation:




that 13 the stres=s T12zl2 is gencsrated by the gregiernt rule s350-
cirated wiin the constraint surface hb(g%)-s=0 where 4 35 & scalar
multiplier expreseing the externsl load intensity. The cc i e

ve relatiorn (17) determines the eigen distortions modeling
ternal clearences and can be written 1n the following form:

-0

g =0 for K(g®) < €
£18)

K(e®) =8, Ag = A Aec for Ki(g®) 2 g./!

The above constitutive law generalizes the one-dimensianal cacse
of the slackened beody (6).

From caomputing point of view 1t 15 important to &k another.
equivalent formulation of the variational principle (7). Decompo-

: L L 7
sing the stress state g = g'+ [=4 (where g¢° describes the strecszes

due to external load) and taking into account the orthogaonal:it,

between the selfequilibrated stress states g‘ and =th

5]

caompatible

deformations gt ( 5g'§LdV = 0 ) one can express the functignal S
in the form:
$19) J = % 5[(g'+ gL)A_1(g'+ gL) + (g + gL-Q;]dT =
1 La= L = - '
+ & f [g-Ailo” + ofA'o" + 2g°pd + Eofel1dl

where: g = -Ag" -the part of distortion fielcd associated witn

selfequilibrated stresses ¢,

grad°u° -the part of compatible and stressleczs
distortions.

(]
0o

The first component % § g'Atg'dv is constant

.
considered variational principle can be equivalently
the functiocnal:

(20) 3= gegte® + 4 g®atg’ - g"ed dav.

Expressing g; by ¢"and g; by u® and using the Clapeyron’s theorem,
one can finally formulate the variational principle sguivalent
(7), (8) as follows:



(21) max ( § Xu®dv + § pu®dAy - 5 § g"AT'gtav )

subiect to the constraints (2)i1, (8).

1I11. COMFUTATIONAL FROCEDUFE FOR SLACKENED STRUCTURE
ANALYSIS

Applying the constitutive conditions (17) to a truss structure
under increasing loading process one can see that each element
remains in the unloaded state (o = 0) up to the moment when its

deformation exceedes the value €. Then the element reacts purely
elasticly for further load increments ( Ac = E Ae ).

The analysis of the slackened structure includes in the general
case the first Ttage, when the structure behaves like a geometri-
cally variable system. Tne corresponding state of deformation is
equal to a geometrically compatible state of eigen distortions

g = gg (cf.(1B)1), which describes the solution of the variational
problem (21),(1)1,(B). When the capacity of stressless deformation
of the structure i1s exceeded then the first substructure with all
clearences taken out and able to carry the external load can be
defined. The evolution of the loaded substructure can be analyzed
following the increments of external load and taking into account
the constitutive law (18).

The program MOLD presented below analyzes the stress redistribu-
tion in the slackened trusses (with clearences in Joints) while
the external load increases. From computing point of view it is
easier nowever to analyze the problem during the unloading pro-
cess. Therefore the algorithm starts when the structure is fully
loaded. It means that all clearences are reduced to zero and tne
internal forces appeared in all elements. The algorithm of the
program can be described as follows.

L

{a} Detaermination of the stress state g caused in the structure

without clearences by the external load.

{b} Introducing of the eigen distortions modeling clearences in
all” elements "i":

http://rcin.org.pl
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S G 2 L
(22) gL cLsgn(ai)
where E;” the clearence available in the rod "i" .

{c} Determination of the stress state in the slackened structure:

= L 1% o
(23) o, =g+ EJEL(DLJ 6”).:‘j

where: El—the modulus of elasticity

Dtj—tne influence matrix describing the deformation e

"

r
1
caused in the member "i" by the unit distortion aj=1
forced into the element "i"
6‘j~the Kronecker’®s symbol.

{d} If there is an element "i" that atct < 0y
then the scaling of the external load has tc be done. The scaling

means multiplication of the stress state gL

efficient: a = (/- 0,) / o/,

by the following co-

{e} Initialization of the A set (4 = {03).

L

{f} Determination of the stress state g’=g describing the propor-

tions of stress decreasing in the unloading process.

{g} Determination of the element "i" (or the set of elements) with

the minimal value of the coefficient {3 = ci/c: and inclusion of

i
this element to the set 4. The element defined above will be eli-
minated from the structure as the firet one during unloading

process.

{h} Reduction of the external load: g‘:= B gL, where B = l—ﬁh.

{i} Determination of the stress state in the set A caused by eigen
distortions ot the elements outside of the set A (the eigen dis-
tortions in the elements of the set 4 are asumed to vanish):

1 o
(24) o= EtD”.eJ iedAd, J¢g4iA .
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{1} Determination of the distortions in the =lements of the set 4
from the following equations:

25) E£(DlJ— aiJ)EJ =S s O i,J € 4.
These distortions simulate the total unloading of the elements
from the set { (elimination of the set A from the structure).

{k} If the distortions determined above increased too rapidly it
means that the structure starts to be a kinematic chain (after
elimination of the set A of elements). Adding the last elemnt "i"
Joined to the set 4 to this kinematic chain, the isostatic sub-
structure is obtained. Determination of this substructure ends

the program. If the substructure remained after elimination of the
set 4 i1s still geometricaly well definesd, go to the step {1}.

{1} Calculation of the modified stress state of the structure
with the set A eliminated:

(26) o=t t E DG SRS e & i,j - all elements

of the structure
and determination of the modified state of the comparative

? .

stresses o

(27) o’ =o' +E (D — &5 2% i e 4

s i - all elements
v 9 v (] v J

of the structure.
Then return to the step {g).

In the general case, for the n-redundant structure one can obtain
up to n stages of the structure degradation. Each stage of the de-
gradation eliminates a set of elements and redistributes the state
of stresses. The last stage of degradation determines an isostatic
substructure.

The unloading process for the slackened structure shown on the
Fig.4 was calculated and exposed on the Fig.S5. The succesive sta—
ges of the structure degradation are merked by the bold line on
the Fig.Sa-f respectively. It is possible now to interprete the
behaviour of the structure during the loading process as well. If
the intensity of the external load is less than « = 0.034P, the
substucture carrying this load is isostatic (Fig.Sr). When the
load increases (for a € <0.034FP,0.049P>) the active substructure
grows up to another isostatic truss (Fig.Se). When the external
load increases more, some new elements are succesively included to
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the active substructure because the clearences vanish in this pro-
cess. Therefore the stages of growth of the structure are shown

on the Fig.S5d,c,t,a for the load intensities o € <0.049F,0,078F>,
<0,078P,0.096P>,<0.096F, 0.235P>, <0, 235P, 0. 995F »,<0.995P,P> respec-
tively.

v INITIALLY STIFFENED STRUCTURES

An initially stiffened structure (structure with internal dry
fiction) can be defined as a structure with the following consti-
tutive relations (written for the one-dimensional case-cf.Fig.Z2Za):

e =0 for |o| < o
(28) e =A"'oc - o) for o : =
e =A"'"(c + ) for c ¢ -7
where o > O describes the maximal stress carried by dry friction

in the considered element.
Dually to the discussion from the Section 1II, simulating the

internal friction by the selfequilibrated state of stresses o), let

us determine the eigen distortion field ¢° which maximizes the po-
tentiel energy LU of the body (Fig.2a). The variational principle
defined here leads to the general description of the initially

stiffened structure. Therefore, define the distortion state g°
satisfying the following conditions:

(29) max ¢ 3 ) (cAg - 2g°- XwdV - § pudhp
subject to the constraints (1): and:
(30) Kt(z®) ¢ g

where ¢°= A ¢°.
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Taking into account the minimum of the potential energy principle
(4) and discussing the problem analogously like in the Section I,
the following statioparity conditions can be obtained: ‘

- -] ==
= ey K(g®) = o
- g o°
3 = a-1 D~ | -
= O SRR S T 0 K(g®) € &
L8

Conditions (31) describe the deformation field generated by'the

gradient rule associated with the constraint surface K(g®) - g = 0
and the coefficient 4 is a scalar multiplier expressing the load
intensity. The constitutive relation (21) determines the eigen
distortions simulating the internal frictions and can be written
in the form which is & generalization of the one-aimensional

case (28):

g=-¢g°, g=0 for Kig) < g

(32)

K(g®) = o , Ag = A Ag for Kig) % g,

Similarly to the considerations from the Section I the alternative
form of the variational principle (2%), (30) can be formulated. Ma-—

r

king use of the orthogonality between selfequilibrated (o' ) and

compatible (g') states and taking into account the Clapeyron’s
theorem the following variational principle equivalent to (29},
(30) can be obtained:

(33) max (- 5 § e"Ag"dV - § Xu®dV - § pu®dRp ) =
= min (3 § e"ATAV + § Xu®dv + § pudRp )

subject tc the constraints (2):, (30).
The first stage of evolution (during loading) of the stress state

defines some selfequilibrated state o = —g; (cf. (32)1), which
describes the solution of the variational problem (33), (2):, (30).

The prcgram MOSF presented below analyzes the stress state evo-
lution analogously to the program MOLO from the Section III. Ana-—
lyzing the problem during unloading process the procedure should
start from the step {1} of the following algorithm.
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{ay Determination of the deformation state gt caused in the struc-
ture without internal friction by the external load.

{b} Introducing of the eigen stresses o= Azf modeling the inter—
nal friction in all elements "i":

5

(Z4) ¢%= g sgnl(o
- 13

v
where: 5‘— the yield value of the internal friction in the rod "i"

{cy Determination of the deformations in the initially stiffened
structure:

= gl o
(3u)_ ; Coo=liey EJ DLJEJ

{d} I+ there is an element "i" that cfchi O than the scaling of
the external load has to be done. The scaling means multiplicat:on

L L

of the deformation state g by the ccoefficient a = (s:— EL)/ e/ .

{e} Initialization of the A set of rigid elements (4 = {0J).

{f3 Determination of the deformation state g’= g‘ describing the
proportions of the deformation decreasing during the unloading
process.

{g} Determination of the =lement "i" (or the set of elements) with
the minimal value of the coefficient ﬁ‘= e, / & and inclusion of
this element to the set A . The member defined above will change
for the undeformable, rigid element as the first one during the
unleoading process. j

fh} Reduction aof the external load: QL:= B gL. where B = 1- B .

{i7 Determination of the deformation state in the set 4 caused by
the eigen distortions of the elements outside of the set 4 (the
eigen distortions inside the set A are asumed to vanish):

(3&) s:= DlJej e At A

http://rcin.org.pl
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Determination of the eigen distortions in the elements of the
‘s2t A from the following equations:

(37 D. %= - ¢el- ¢’ Vel € Wiw

These distortions simulate the total stiffening of the element
from the set 4 (the substructure A4 is changed for the set of rigid
bodies).

{k> If all elements of the structure are i1ncluded into the set 4

1t means tnat the whole structure has changed for the rigid body

with the selfequilibrated stress state g = -g; = -Ae® ctored ir-
side and that the first stage of undeformed structure is reachec.
If there are elements of the structure not :included i1ntc the set 4
the procedure is not finished. Then go to the step (1.

{1} Calculation of +the modified deformation state of th= structu-

re with the rigid substructure 4 :

(28) € = e§+ DiJej t,J —all elements of the structure
and determination of the modif.=2d state of comparative

deformations g’:

o
+
©
]
o
<
m

Ay i=all elements of the structure.

Then return to the step {g2.

In the general case for the n-redundant structure. cne can obtain
up to n stages of the structure stiffening. Each stage of
stiffening includes a set of elements into the rigid part 4 of the
structure and redistributes the state of deformatione.

An example of initially stiffened cantilever and the stages of
its deformation development are presented on Fig.é.
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vV DISCUSSION

The standard computational metnod of analysis of initially s laz-
kened and st:ffened structures ics based on following of the exter--
nal load increments. Everytime when the local clearernces or friczc-
tion 1s drained, the global stiffness matrix should be actualized
and the static analysis repeated. The method of simulation by
eigen distortions presented in the paper allows toc calculate the
modiTtications of local stiffness characteristics without numeri-—
cally Zostly renew=d global analysis of the structure.

Analvsing examples of slackened and stiffened structures (eaq.
the cantilever presented on Fig.&) one can aefine the macrostif-—
fness characteristic d=scrib:ng the relation between the esxternal
force F and the displacement of the point A where this force 1s
acting. For the truss (once redundant} with clearences tne
sti1ffness characteristic takes the form precented by the

on Fig.7 while for the initially stiffened case the macrost:ffness
is described by the line b. The line c describes the case af li-
near behaviour of the elastic structure without clearsnc=ss and
friction.

Now, a new prob'em of wodeling of macrostiffness charzacteristic
can be formulated. It i1s obvious that playing with clearencezs & or

friction capacities g in elements of the structure. the macrostif-
fress p-u relation can be modified. This nonstandard approach *o
structural design can be called the setting design and is applica-
ble for example to supporting structures [7]. There iz = wide
class of engineering structures that can he decompose into the
main structure and the supporting structure. The problem o+ ma:i -
mizati:on of load capacity of the main structure (for variable ex-
t2rnal load and local stresses constrained) requires some deiinec
macrostiffness characteristic of the supporting structure. Iin tre
second stage of the optimal setting design problem the stzt

o€

0

clearences & and friction capacities o to be introduced inte the
structure (in order to create the macrostiffness character
defined above) is analyzed.

istlc
The problem of application of initial slackening and stiffenirg

of structures to optimal setting design will be discussed in de—
tails in the next paper ([81.

_http://rcin.org.pl
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FIGURE CAPTIONS

1. Mechanical characteristics of elements with clearences.

o Mechanical characteristice of elements with internal dry
friction.

3. Deccmposition of strain and stress states.

- An example of truss structure. -

. The stages of stress state evolutioh in the initially slac-
kened structure.

4. AN example of initially stiffened structure.

7. Modifications of mascostiffness characteristic.
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Fig.2

Fig.3
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Fig.6

Fig.7
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