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Quasi-static problem of a crack in an elastic strip subject to antiplane
state of strain(*)

M. MATCZYNSKI (WARSZAWA)

THE PAPER considers the quasi-static problem of an infinite elastic medium weakened by an
infinite number of semi-infinite, rectilinear, parallel and uniformly spaced cracks. Edges of
these cracks are acted on by identic forces harmonically variable in time and satisfying the con-
ditions of an antiplane state of strain. The stress intensity factor at the crack tip is determined.
The solution is applied to the analysis of the problem of an infinite elastic strip containing a
semi-infinite crack.

W pracy rozwazono quasistatyczne zagadnienie nieograniczonego o$rodka sprezystego ostabio-
nego nieskoticzong liczba potnieskoriczonych, prostoliniowych, rownoleglych i jednakowo od
siebie odleg!’ych szczelin, Bmgl tych szczelin poddane sa dzialaniu jednakowych sit zmlema,;q-
cych si¢ harmonicznie w czasie i spelniajacych warunki antyplaskiego stanu naprezenia. Wyzna-
czono wspdlczynnik intensywnosci naprezenia w koficu szczeliny, Rozwigzania zastosowano
do analizy problemu pasma nieskorficzonego ostabionego péinieskoriczong szczeling.

B paGote paccmoTpena KBasycTaTHUecKas 3ajaua o GECKOHEUHOM VIIPYroMm Tele, ocinabneHHomM
GECKOHEUHBIM YHCIOM MOJTYDECKOHEUHBIX NPAMOMMHEHHBIX NAPA/UIENBHBIX TPEUIHH, Pacmo-
JIOXKEHHBIX HA PABHBIX PAcCTOAHMAX APYT OT Apyra. Kpas TpeupH NOABEpyKeHbl Bo3feii-
CTBHAM OJIMHAKOBBIX YCHJIHI, M3MEHSIONINXCA TAPMOHMYECKH BO BPEMEHHM H Y/AOBIETBOPA-
HOLMX YCJIOBHAM aHTHILIOCKOrO AeopMHPOBAHHOTO COCTOAHMA. A cryyas Rarpy3Ku ¢ Ipo-
HM3BOJIBHON ammmMTyRoit KoneGaHmil onpefeneH KoahUIMERT HHTEHCHBHOCTH HAIIPAMHEHUIL.

1. General formulation

IT 1s KNOWN that in the antiplane state of strain the only non-vanishing component
of the elastic displacement vector is, in a rectangular coordinate system (x, y, z),
displacements w parallel to the z-axis, @ = w(x, y, t); the non-vanishing stress components
are 0., = 0y,(x, y,t) and oy, = 0,,(x, y, t). These stresses are expressed in terms of @ as

ow ow
(11) Uz—ﬂ_a—x‘: Uyz—“ﬂ‘gs

and the equations of motion reduce, under the assumption of zero body forces, to the
single equation

2
(1.2) Vg s D0

¢t oa?
Here ¢, = J/ /o denotes the velocity of propagation of transversal elastic waves.

(*) The paper has been prepared by the author during his research visit at the Munich Technological
University, Chair for Mechanics A, sponsored by the A. von Humboldt Foundation.
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In this paper we shall use the complex integral Fourier transform defined by the rela-
tions

F(a,y) = ‘l/?zl;_ ff(x, y)e=dx,

(1.3) sikids
flx, ) = —'—~l=—— f F(a, y)e~=*do
, ]/2.7'6 —w+ic = '

Here « is the complex transform parameter and the path of integration in Eq. (1.3), lies
within the strip a;, < Ima < a, which represents the region of regularity of F(a, y). o,
and a, denote certain real constants.

From the theory of Fourier integral transforms [1] it is known that F(«, y) may also
be represented in the form

(1.4) F(a,y) = F~(a, )+ Ft(, y)

the functions

(1]
1
F(a,y) = ﬁ fﬂx. y)e™dx,
(1.5) .
l -~
F+ i = —— jax
(@) 7= J f(x, y)e=dx,

being analytic in the respective lower (Ima < o) and upper (Ime > «,) halfplanes of
the complex variable a. In the quasi-static case when the displacement and stresses vary
harmonically in time, all the magnitudes under consideration may be expressed in the form

(1.6) 8(x,y,1) = g*(x, J")e!ms

where w is the harmonic vibration frequency.
Performing the transformation (1.6) and the integral transform (1.3) in Egs. (1.1) and
(1.2) we obtain

2:’(a’y) = _ial“W*(a’ y)s E;,(E, y) = #L*dfva'y_).’
1.7
d’2
WD —ayr(@,) = 0,

where ¢ = w/c,. Solution of Eq. (1.7), yields then the transforms of functions w, o,;, 0y::
W*(a, y) = A(a)shy ) e — o2+ B(a)chy Ja?—0o?,

(1.8) Z¥(x,y) = —ipa[A(a)shy Y a2 — o+ B(e)chy Ya? —o?],
Z3(, y) = py = *[A(@)chy } a*= > + B(a)shy ) a*— o?].

The unknown functions 4(x) and B(«) are to be determined from the boundary conditions
of the problem considered.
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2. Infinite medium with cracks

Let us consider an infinite elastic medium weakened by an infinite number of semi-
infinite, rectilinear, parallel and equally spaced cracks (Fig. 1). The crack edges are assu-
med to be loaded by identic forces harmonically varying in time and satisfying the condi-
tions of antiplane state of strain.

Owing to the symmetry properties the problem may be reduced to that of an infinite
elastic strip of thickness 24 weakened in its middle plane y = 0 by a semi-infinite crack
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x < 0 (Fig. 2). The strip is rigidly clamped at the sutfaces y = +h, and the crack edges
are acted on by forces o), = po(x)+p;(x)expiwt, an additional assumption being made
that the harmonic vibration frequency @ < mc,/2h.

Making use of the superposition principle which enables the static and quasi-static
problems to be considered separately and applying the symmetry properties, the problem
is reduced to that of an infinite elastic strip of thickness 4 with the following boundary
conditions

w(x,y) =0 for |x] <00, y=h,
w(x,y) =0 for x>0, y=0,
0y:(x,y) = p(x)exp(iwt) for x <0, y=0.

Applying now the transform (1.6) and the integral Fourier transform (1.3) and using, in
accordance with Egs. (1.4), (1.5), the notations

W*(a, 0) = ¥~ () + P*(),
(2.1) 2¥(x, 0) = O (o) + P*(a),

0
1
P(a) = }/E_ ﬂi p(x)e™dx,

the solution of the problem considered [Egs. (1.8) being used] reduces to the solution
of the integral Wiener-Hopf equation

2.2) V-(a) = — %-@i&—{@(u)ﬂ‘(a)l

Va2
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The region of existence of this equation is the region of regularity of functions appearing
in Eq. (2.2). Owing to our former assumption concerning the vibration frequency w, i.e.
for ¢ < m/2h, this region is represented by a strip
~ Y24 —o? < —& < Ima < 0.

Equation (2.2) will be solved by means of the factorization method [2]. First of all,
the function
thh Y a?—a?

=
has to be factorized. Using the procedure described in [3] let us represent the function
(2.3) in the form
24 H(a) = H(o) Hy (@),
The function H(«) is required to behave at infinity (Ja| — o) and at zero (Ja] - 0) in
the same manner as H(e); the auxiliary function H,(«) should be non-zero and possess
no singularities within the strip |Ima| < &;, where 0 < e < ¢, < I/JIT;‘%_’:_(;’.

The function H(ax) defined by Eq. (2.3) has no zeros and singularities in the strip
[Ima| < &, therefore — according to the assumptions concerning H(x) — we may assume

2.3) H(x) =

(2.5) H(a) = R~ (a) R*(w),
Here

G o 1 __
(2.6) R*(x) = —VE}] , A —tgha ;

It consequently follows that the assumptions concerning H,(«) are satisfied and in
view of the fact that H,(a) » 1 in the strip |Ima| < &, for |a] = oo, the function may
be represented in the form [2]

_ Hi(a)
(2.7) Hy(a) = m',
Here
1 @ +iyz InH, (&)
n
InH} (2) = —— _wfw _‘a dt,
@
I InH, (¢)
InHT (a) = i 'J;I? —lac dt.

The parameters appearing here fulfil the inequality —e, < y, <y, < &,.

The functions H# () defined in this manner possess no zeros and singular points within
the respective halfplanes Ima > y, and Ima < y,. It also follows from Egs. (2.8) and
from the fact that H,(0) = H,(0) = 1 that these functions satisfy the additional condi-
tion H#(0) = Hf(+ ) = 1.

Application of the Egs. (2.4), (2.5), (2.7) enables us to rewrite the Eq. (2.2) in the form

Hi(2)
Hi ()

¥-(0) = — % R (a) Rt () [@H(a)+ P()]-
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The procedure used in [4] yields a new form of that equation
_ pHi ()% (2)

29) R = R@H @@ +EQ,
where
(2.10) E(a) = R* (o) Hi (o) P(cx).

Assuming the function E(a) to be regular at least in the region of existence of Eq. (2.2),
it may be represented in the form [2]

(2.11) E(6) = E*(2)—E~(a),
where

Et(a) = zjlﬂ. ‘;:(_Cl dz,
2.12) N

E@) = f O &,

Here 0 < §; < 8, < & and the functions E*(«) are regular in the respective halfplanes
Ima > —e and Ima < 0. In view of the relation (2.11), Eq. (2.9) may now be rewritten
as

Hi ()~

- -{‘# +E~(0) = R () Hf (o) PH(e)+ E+(a).

Both sides of this equation represent functions which are regular in the respective halfplanes
Ima <0 and Ima > —e, and hence by applying the generalized Liouville theorem its
solution is written in the form

1 R()E~ ()

(2.13) iy )] Hi(a) reg. for Ima <0,
QH'(EI) = — ___Eﬂ_ reg for s
Rt () H{ (o) 4 A

A very important (from the point of view of crack stability) result of the analysis will
be the determination of the stress intensity factor [5]. This factor as also the crack boundary
displacement in the vicinity of the crack tip is determined by using the Abel theorem con-
cerning Fourier transforms [6); according to that theorem, the asymptotic behaviour
of expressions (2.13) for || = 0 and |¢| = oo determines the behaviour of inverse trans-
forms of these functions at |x| — oo and |x| — 0, respectively.

Meanwhile let us moreover observe that by using the relation (2.10) and in view of
the fact that E*(«) defined by Egs. (2.12) are assumed to be regular within the strip
—¢& < Ima < 0, these functions may be represented in the form

co—id
2.14) E*(a) = — %[3_ 2:17”_ Cf_(? dC],

—o—1i4
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where
1 w—id
@.15) B=— f EQdL, 8 <8< 8,
—w-18

Using then the relations (2.6) and (2.14), and taking into account the properties of E* ()
and H# () it may easily be demonstrated that for |a| — co the functions ¥~ (a) and &+(a)
given by (2.13) are expressed by the formulae

B

)= —— PH(a) =

“l/ @’ l/ «

The Abel theorem quoted before yields, by means of the transform (1.6), the displace-
ment w of the upper edge of the crack and the stresses o, along the positive x-axis for
small values of |x| = 0,

2N* (p = CO)G‘”' V‘_—x

w(x) = for x-—(-0),
(2.16) . A e
0y.(x) = % for x- (4+0),
Vx
where
(2.17) N*(p,w) = — y/ =2iB.

This equation may be used to determine the exact value of the stress intensity factor
for arbitrary load varying harmonically in time and applied to the edges of the crack;
it is assumed that @ < mc,/2h. From the considerations thus presented it follows that
the displacement of the upper edge of the crack w and the stress o), along the positive
x-axis for [x] — 0 in the problem illustrated by Fig. 2 are given by Egs. (2.16), the stress
intensity factor being equal to

(2.18) N(w) = N*(po, 0)+N*(py, w)coswt.
The function N*(p, w) is given by Eq. (2.17).

3. Particular cases
3.1. Constant amplitude of vibrations.

To illustrate the results of preceding sections let us consider the case when in the problem
shown in Fig. 2 the load acting on the edges of the crack is equal to ,; = p,+p,coswt,
with p,, p; = const. In view of (2.1); we have

G.1) P(a) = '/_ P 1
All the assumptions concerning the parameters introduced previously are satisfied, and
therefore in the quasi-static problem we obtain, according to Eq. (2.17),

— o —id
. __nVi 1 HQ)
(3.2) N (pl!w) l/;’l-;“ 2:“- _J_M cl/c—m
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After integration and using the relations (2.6), owing to the fact that H+(0) = 1, Eq.
(3.2) takes now the form

3.3 N*(p;, w) = —p,;

With @ = 0 this formula reduces to the stress intensity factor in a static case [7], and
with p; = p, the factor is equal to

(34) N0 = -po )/ %

Utilizing then the relations (2.18), (3.3), (3.4) we obtain the final form of the stress intensity
factor N(w) in the case of a constant vibration amplitude,

- 7% v
(3.5) Nw) = —po ]/;[1 +*;—;]/_i,i cosws}.

Here o' = ho = hojc,.
Passing in the formula (3.5) to the limit with w — 0 we obtain the value of the stress
intensity factor in the static case in which the edges of the crack are loaded by po+p;.
In the case when the vibration frequency @ — 7c,/2h, a resonance-type phenomenon
occurs in the problem: arbitrarily small values of the load component p, lead to infinite

tgha
no

stress intensity factors N(w) — 0.
From the relation (3.5) it also follows that decreasing thickness of the strip decreases —

2 B} Bt
1

10+
Ay

w0 A

4
A % Oyz=pp*pycoswt e
“c

Fic. 3.

at a constant vibration frequency w — the stress intensity factor. The maximum value
of Np(w) calculated at a constant vibration frequency  is given by the formula

= h tgo’
N,.(m)=-po]/;[1+*;—;|/ > ]

Variation of this function is shown in Fig. 3.
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3.2. Crack with stress-free edges

The solution derived above (Eq. (3.5)) may be used to determine the stress intensity
factor in the problem of crack with stress-free edges, the elastic strip having prescribed
values of displacements at its boundary surfaces: w(x, +h) = F (wo+w, coswt), with
@ < 7c;[2h and wy, wy; = const (Fig. 4). Proceeding as in the first part of this paper we
shall consider the static and quasi-static cases separately. By means of the superposition
method the solution of the quasi-static case (Fig. 5a) may again be represented as a sum

7y | .
w_:_(waiw?e."wf) /

/
= ngﬂﬂ 7

F;
w=W,+ W€ @)

FiG. 4
a b e
Ay Ay z Ay
- z =
w9=-w,e@t / 7 9e-wyele! / 7l=p /z
a e
ES [ /// = 5l=-5% /
0 z=0 P yz yz ; L
S X =g X
= 6y = Gy
W= el wl=we il wi=p
Fia. 5.

of solutions of the continuous strip with prescribed boundary surface displacement @4 =
= Fw,exp(iot), Fig. 5b, and of the rigidly clamped strip with a crack loaded at its edges
by o%,(x,0) = —d%(x,0) (Fig. 5c). Displacements w? and stresses o%,, 0%, in the problem
illustrated by Fig. 5b are given by the formulae

g _ sinyo
wi(x, y) = —w; ===
e ocosyo
6, ) =0, Fulx,3) = —pwy 22,
whence
= -, w,o
Te(x, 0) = —%(x,0) = p, = L7

Using the formula (3.3) we obtain the stress intensity factor in the problem shown in
Fig. 5a,

_ bwy 2d’
Nt = it
(25} Yk ]/ sin2o ©
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With @ = 0 the above formula yields the solution of the corresponding static case [7];
substituting wo = w;, we obtain
ad]
N=-L2
3.7 Ve -
The final form of the stress intensity factor for the problem shown in Fig. 4 is now obtained
by using the Egs. (3.6), (3.7):

Mo w 20’
3.8 Newad0o | j o W o f &0 |
(3.8) Vb [1-1- ; l/ e cosa)t]

Passing here to the limit with @ — 0, we obtain the stress intensity factor in the static case,
and in the case when w — mc,/2h again a resonance-type phenomenon occurs.

Vi, b VaE

vy Vm | Ty N
ﬂ =
y
| Z
40 wa—{y+ g co3 L) ;f
\ Fd
£ Ey’z -0 ’f
" x
ao

W= W + Wy COS T

20

Wq/Wo =02 s
10— %0 =~
! | | 1 1 1 i 1 1
gz 04 06 08 10 12 A4 15
o=l
Cz

FiG. 6.

From the relation (3.8) it also follows that, at a constant vibration frequency w, smaller
thickness of the strip leads to larger values of the stress intensity factor. The maximum
value of N is given, due to Eq. (3.8), by the formula

Ko W, 20’
Nm W)= —=u | |4 — ARt
T [ w, ]/sin2a’]’

its variation being illustrated, for various values of w, /w, and w, by Fig. 6.
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