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Deformation theory of elastic polycrystalline materials 

D. R. AXELRAD and J. W. PROVAN (MONTREAL) 

IN THIS PAPER a probabilistic deformation theory using the concepts of statistical mechanics 
is proposed. The physical model used in this theory is one following the coincidence lattice theory 
of Bollman in order to account for the effects of grain boundaries. It is shown that the response 
characteristics contain the significant random parameters of the orientation of single crystals, 
their size and the thickness of the interface between crystals. Only the simplest case of isothermal 
reversible deformation has been considered. 

W pracy zaproponowano probabilistyczn~ teori~ odksztalcenia opart~ na poj~iach mechaniki 
statystycznej. Zastosowany model fizyczny wynika z teorii sieci Bollmana i uwzgl~dnia zjawiska 
wyst~puj~ce na granicach ziarn. Wykazano, ze charakterystyki reakcji materialu zawieraj~ istotne 
parametry losowe dotyc~ce orientacji monokrysztal6w, ich rozmiaru oraz grubosci warstw 
rozdzielaj~cych poszczeg6lne krysztaly. Rozpatrzono jedynie najprostszy przypadek odwracal­
nych odksztalcen izotermicznych. 

B pa6oTe npe,Il;JIO}I{eHa BepoHTHOCTHaH TeOp.wi ,Il;e<PopMH;pOBaHHH, OCHOBaHHaH Ha ITOHHTHHX 
craTncrnqecKo:H MeXaHHKH. IlpHHHTaH <P~:~;3~ecKaH MO,Il;eJib BhiTeKaeT 1:1;3 Teop~:~;n ceTeH: Eonn­
MaHa 1:1; yqH;ThiBaeT HBJieHHH, B03HHKarom;~:~;e Ha rpaHH;Qax 3epeH. IloKa3aHO, qTo xapaKTep~:~;c­
THKH peaKQH;H; MaTepnaJia co,Il;epmaT cym;ecrBeHHbie c.Jtyqait:Hhie napaMeTphi, CBH3aHHbie 
C OpHeHTHpOBKOH MOHOKpi:I;CTaJIJIOB, HX pa3MepaMH;, a TaK}I{e TOJIII~aMH CJIOeB, OT,Il;eJIHIOID;HX 
OT,Il;eJibHbie KpH;CTaJIJihi. PaccMoTpeH JII:I;Illb npocTe:HIUH;H: CJIYqaii o6paTHMbiX H3oTepMH;qecKH;X 
,Il;e<PopMaQH;H:. 

1. Introduction 

PREVIOUS work (referenced in [1-5]) dealt with the development of a probabilistic theory 
of deformation of structured media using the concepts of statistical mechanics and the 
theory of probability. A simple model representing a polycrystalline ~o1id was used in 
which "internal surface effects" caused by existing grain boundaries were not considered. 
In the present paper, however, an attempt is made to account for such effects in the for­
mulation of the material response. To simplify the discussion, only the isothermal response 
of the solid will be considered. The physical model proposed here may be regarded as 
an extension to that of BOLLMAN [6] according to his geometrical theory of "coincidence 
lattices" and that of Goux [7] which is concerned with the determination of grain-boundary 
energies. In Bollman's theory, grain boundaries are defined analytically in terms of coinci­
dence lattices obtained from the interpenetration of two neighbouring grains and where 
the coincidence lattice points form equivalent classes or groups to the lattice points of 
the crystal. Goux, on the other hand, considers the grain boundary as an amorphous 
structure that separates two adjacent grain surfaces. Hence, the latter model admits the 
existence of a certain distance between lattice points of two adjacent grains. The model 
proposed here considers the "distance vector between coincident points" of two adjacent 
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grain surfaces as the basic parameter in the formulation of the grain boundary energy. 
Hence, it may be regarded as a combination of the above models. In the formulation of 
the probabilistic deformation theory, four basic concepts are employed, viz: 

(i) Three measuring scales are introduced such that the total volume V and surfaceS 
of the macroscopic body V ~ Mv, Mv ~ (£v, (£s, where MV is the mesovolume of that 
region in the medil.lm where macroscopic observables are still valid, (£v, (£s are the volume 
and surface of individual crystals. The mesodomains are assumed to be denumerable and 
non-intersecting such that: 

but large enough to contain a statistical ensemble of elements «v, «s. Then 
p 

V= U Mv. 
M=1 

(ii) A material functional is introduced which is a characteristic energy functional 
containing field variables as well as material properties in the form of: 

in which the full meaning of these parameters will be given in the following paragraphs. 
(iii) The concept of a "generalized force" is used, derived from an intergranular po-

tential, on the basis of the coincidence lattice theory. 

(iv) All field equations are stochastic functions of the primitive random variables. 
As mentioned previously, the statistical ensemble of single crystals or microelements 

«v, ' s (a = I, ... , N; N very large) is contained in the mesodomain and these elements 
are assumed to be of the same composition and "closed packed". Cluster arrangements 
and isolated elements embedded in a matrix of different physical properties are classified 
as 2-phase structures and will not be considered here. ·For the discussion of the deformation 
kinematics, the presence of body forces, inertia effects, etc., are omitted in order to simplify 
the presentation. It should be noted that majuscules will denote quantities in the undefor­
med state of the solid, whilst their corresponding interpretations in the deformed configura­
tion will be written in minuscules. Greek letters to the left of a parameter indicate reference 
to the crystal and capital Latin superscripts on the left refer to mesoscopic parameters. 
Vector and tensor valued quantities will be indicated by bold-faced print, while 
fourth-order tensors are indicated by a double bar under the symbol. Direct notation 
is used throughout this paper. 

2. Deformation kinematics 

As already mentioned above, kinematic parameters introduced in this section will be 
only those of specific use in the formulation of the deformation theory. Hence, velocities 
and accelerations, as well as other quantities, are not used here and no attempt for comple­
teness can be made at this stage. The concept of a mesodomain is indicated in Fig. 1 and 
the geometry pertaining to the deformation of individual single crystals is shown in Fig. 2. 
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Undeformed Mesodomain Deformed Mesodomain 

F'Io. 1. 

th 
a crystal (undef9rmed) th 

a crystal (deformed) 

boundary 

x' 
FIG. 2. 

Thus the position vector to any arbitrary point of the ath crystal relative to a fixed Eulerian 
frame (X1, X 2

, X 3
) can be expressed by: 

(2.1) ax = «Q«Y+«R, 

where R is the position vector to the centre of mass of the crystal, ao the orientation 
of the crystallographic axes of the microelement with respect to the fixed Cartesian frame 
and «y the position vector to the point relative to the crystallographic axes. During and 
at the end of a random deformation, the position of this point may be written as: 
(2.2) «X= «o«y+«r, 

where the minuscules designate their majuscule counterparts in the deformed state. 
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For the subsequent study of grain boundary effects, it will be necessary to distinguish 
between points interior to the crystal and those on the grain boundary. Thus relations 
(2.1) and (2.2) for a surface point (see Fig. 2) will be: 

(2.3) 

where a G, a H and "11, "g are the position vectors of this point in the undeformed and 
deformed state, respectively. During a deformation, the position vector "x("X) is consid­
ered to be a stochastic process for which only its distribution may be sought. Thus the 
displacement of the centre of mass of a crystal will be described by the stochastic relation: 

(2.4) 

and for an arbitrary point within the grain: 

(2.5) 

Analogously, the deformation at the surface of the crystal will be: 

(2.6) 

The above geometric parameters, together with other physical ones, form the basic 
quantities to be considered subsequently. As mentioned previously, for simplification 
of the analysis, each crystal is considered as an elastic continuum. Hence the wellknown 
kinematic quantities, such as microstrain, microdeformation, etc., are readily obtained. 
A primitive strain measure is given by the microdeformation gradient as follows: 

(2.7) 
,1 = a•y 

O"y 

from which, in a familiar manner, the micro-Lagrangian and Eulerian strains may be 
derived such that: 

(2.8) 

where the superscript "c" on "F, «j'indicates the dyadic conjugate and 6 is the Kronecker 
Delta. It is apparent that the above representation of the strain measure is an oversimpli­
fication, since other effects such as dislocations, stacking faults, grain-boundary migration, 
etc., will contribute to the overall response. To include such effects, a more complex model 
is required that will be discussed at a later date. For the present investigation, it is of interest 
to assess the contribution due to grain boundaries only and the simple kinematic model 
suggested here will be used. It will be seen in the subsequent analysis that a most significant 
kinematic parameter is the "relative displacement" of the crystal surfaces when subjected 
to external forces. The undeformed distance between crystals, i.e., the thickness of the 
grain boundary (see Fig. 3a) can be expressed in terms of the surface coordinates as: 

(2.9) «'J = 'G- 11G = 'O'H- 110 11H+'R- 11R. 

In the deformed state, this distance will be: 

(2.10) 11'8 = 'g- 11g = 'o'h-a.o 11h+'r- 11r. 

Hence the relative displacement due to external forces is given by: 

(2.11) 
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where use has been made of relation (2.6). For the determination of the above kinematic 
parameter and some of the material characteristics, mathematical expectations and second 
moments, i.e., correlation theory is used. In this context, it should be noted that some of 
the parameters can be established experimentally, i.e., from crystallographic studies. These 
experimental observations will be in the form of distributions. Thus the distribution of 
the crystallographic orientations in the undeformed state n(O) and in the deformed state 
n(o) can be established by X-ray diffraction technique [8]. The distribution of the grain 
size (volume «v) n(«v) is obtained from micrographic studies. Other material character­
istics, as indicated in the material functionaJ Mcm at the beginning of this paper, such 
as the dislocation density e4 , the crystallographic constants expressed by a fourth-order 
tensor E and the lattice vector a, are equally measurable. It is assumed in the analysis 
that these distributions are Gaussian, statistically homogeneous and non-isotropic, so 
that correlation theory can be applied (see Y AGLOM [9]). A significant correlation para­
meter is the distance between the centre of mass of two adjacent crystals denoted by: 

(2.12) A. = IJR-«R. 

Hence the expected values and correlation functions for the orientations, for instance, 
can be written as: 

E{O} = (O)N and B0 (1) = (O(«R)O(«R+l))N 

and similar for the grain size 

E{v} = (v)N and B,(l) = (vCR)v(R+A.))N, 

where B with the corresponding suffix is the non-isotropic, statistically homogeneous 
correlation function of the relevant quantity. 

3. Grain boundary efl'ects 

It has been mentioned previously that for the inclusion of grain boundary effects in 
the formulation of the deformational behaviour of a polycrystalline solid, a probabilistic 
"surface molecular coincidence lattice" model will be introduced. The schematics of a 
typical undeformed coincidence cell in the grain surface is indicated in Fig. 3b. In general, 
the surface between any two crystals will take up such a position that the crystals exhibit 
more or less optimum matching. In Bollman's theory, the two crystals are idealized as two 
interpenetrating mathematical translation lattices disregarding the space filling atoms. 
On the assumption that lattice 1 is fixed and lattice 2 is changing, i.e., undergoing a transla­
tion and rotation, the latter is translated in such a way that one point coincides with a point 
of lattice 1. This point is called the lattice coincidence site. Due to the periodicity of the 
two lattices, a finite number of such points will exist. The number of points form another 
lattice termed "coincidence lattice". A measure of the coincidence lattice is given by the 
surface of its "unit cells" which, in turn, depend on the lattice parameter of the given crystal 
and the relative orientation. 

A somewhat different view is taken by Goux, who considers the two crystals to be 
separated by an amorphous layer of a certain thickness. He calculates the grain boundary 

,. 
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undeformed grain boundary 
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FIG. 3, 

energy in this region by employing a minimum energy principle. However, this intergran­
u1ar energy only partially characterizes the grain boundary, since other phenomena must 
be considered as well. It is evident that the present model is a combination of Bollman's 
coincidence lattice site and Goux's amorphous layer model. Since in the present model 
the orientations 110, PQ are random parameters, the coincidence areas «L1qS = P L1qS, 
q = 1 , ... , p, p == number of coincidence cells, dictated by the specific structure 
of the crystals, will be random functions of the combination of 110 and 'O. The 
expected values and correlations, as mentioned in (2.13) can be assessed from the distri­
butions determined by Bollman's and Goux's method. Hence (L1S)N and (p)N as well as 
the correlations BLJs(l), Bp(J.) can be found. The undeformed distance vector between 

coincidence cells has been denoted by «P J~ (2.9), and the deformed distance vector will 

be ( ll d. The """ sign is to indicate the discrete nature of the parameters. The change in 
these vectors is therefore: 

(3.1) 

in which «Pj may be regarded as the equiJibrium distance between undeformed crystals. 
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In general, the binding energy existing in the interface between crystals ex, {J can be 

formulated in the form of a potential in terms of the above vector J, i.e., P'{r1"dl}. This 
potential may be of the central force type, parabolic, etc. Similar to the internal energy 
U of each crystal, the specific form of P' is assumed to be known and will have a minimum 

value when a.PJ = 0. Since the coincidence cell areas «_dqS = P_dqS are random functions, 
there is no loss in generality to specify that P' takes into consideration the coincidence 
area and that P' is a random function of the parameters «o, PQ, av. Hence, P' in this 
case is looked upon as a potential function of coincidence area rather than a "pair potential" 
in the strict sense. In any event, the choice of a suitable potential is not essential since 
pair potentials will reflect the energy between atoms. The actual form of such an interatomic 
potential function shows little effect on the structure. Thus, choosing a ''Morse function" 
type of potential, then: 

(3.2) P'{I«11JH = P'o{ll-exp[ -bi~~11JW, 
where 

(3.3) 

is assumed to be a phenomenological and deterministic quantity, e being the unit vector 
in the din~ction of «PJ. The quantity P'0 is the resultant equilibrium potential of the coinci­
dence cell and b a material characteristic constant both being determined from spectro­
scopic data. 

Since 'P 0 will take into account here the size of the coincidence cell L1qS which, 
in turn, depends on the relative orientations of the crystals and the parameter 
a, P'0{a, 110-«0, L1qS} will be a dependent stochastic function. Assuming that it has 
a Gaussian distribution, it will be determined from: 

(3.4) 

Following YvoN [10], the force between grain boundary coincident points can be formulated 
from the spatial derivative of the potential, i.e.: 

" dP'{I«11dl} 
«PF= e .... . 

dlczfldl 
(3.5) 

This discrete surface force will act on each coincidence cell contained in the interface 
between the cxth an dits contiguous pth crystal. To find the total interaction effects, a sum­
mation of these discrete forces is required. This, however, can only be done in a generalized 
form. Thus, adopting GELFAND and VILENKIN's [11] generalized functions concepts, a gener­
alized surface force may be written formally as: 

(3.6) 

in which ~is the 3-dimensional Dirac-Delta function. 

In order to relate the generalized surface force defined by (3.6) to the microstress interior 
to each crystal, if the latter is considered as an elastic continuum, a balance of forces will 
be given by: 

(3.7) f ~C11d-«11d)«llpds = f a.P1:dS = f a.~a.ndS = f ~~~~~ndS 
tJqS tJqS a. tJqS {I tJqS 
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in which~ is the interior microstress in the Cauchy sense and where it is assumed that the 
outward directed normal vectors of each coincidence cell are «n = t,. throughout the 
deformation (Fig. 3b). Thus the microstress tensor~ is defined in terms of the strain energy 
density of the individual crystal as: 

(3.8) ~ = ~t'U(o«yfa<'Y)}, 

where, for simplicity, the strain energy is assumed as a function of the deformation gradient 
onJy. Evidently, a more accurate form would be to take: 

(3.9) «u = cxu{ o«yjiJ«Y, iJ«ojo"'O} 

in which the change in orientation is also taken into account. In the present theory, this 
is not considered. However, in studying grain boundary effects, moments that arise nat­
urally from the abstract coincidence lattice model chosen here, will form a link between 
the present formulation and the higher order theories of continuum mechauics. As men­
tioned in the introduction, only the purely elastic response of the soJid will be considered 
that can be estimated from a knowledge of the functional M9Jl. Changes in M9Jl will 
reflect changes brought about by the external loading, the kinematics of deformation of 
individual crystals and the interaction between them. Using the generalized force concept 
from before, a qualitative estimate of Mgn can be made if the ent>rgy density of individual 
crystals and that of the grain boundaries are accessible. If the presence of dislocations is 
admitted (see Ref. [12]), the internal energy can be written in the form of: 

1 1 
(3.10) «U = 2~ · «e = 2 (~+1J"Q«e ~e 

in which 

(3.11) 1J = _3-G(l-v)Pae 
3n 

and where «r_ is a fourth-order tensor representing the orientations of the slip planes and 

direction of action of the inactivated Frank-Read sources, G the shear modulus of the 
crystal, I a characteristic length between pinning points in the crystal, a the fraction of 
dislocations that are mobile and (!4 the dislocation density in L/L3 • If the presence of dislo­
cations is ignored, (3.10) reduces to the well-known homogeneous quadratic function 
of the strain tensor. The contribution to the energy by the grain boundary per coincidence 
ceJI can be expressed as : 

(3.12) 

Hence, from microscopic considerations for a mesodomain, the internal energy of the 
crystals: 

N 

Mi} = ~ 2 J (~+1)«~_>«e"'edv 
cx-=1 «v 

(3.13) and without dislocations: 

http://rcin.org.pl



DEFORMATION 1HEORY OF ELASTIC POLYCRYSTALLINE MATERIALS 819 

Summing (3.12) over the totality of coincidence cells, the contribution of grain boundaries 
in the mesodomain will be: 

N «p N 

(3.14) MU= ~22"'F·<X'dLJ9S= ~2 f"'~·"'ddS, 
cx""1 q=1 cz::a1 "• 

where "p is the total number of coincidence cells surrounding the ath crystal and •s its 
surface. The energy characteristic functional may, therefore, be written as: 

(3.15) 

() in the above bracket stands for temperature, and t for time. The functional M9Jl may 
be considered alternatively as a transfer functional for the response of a specific solid. 

4. Response characteristics 

After having introduced grain boundary effects, the response characteristics for the 
most simple case of an isothermal elastic deformation will be briefly mentioned here. For 
any prescribed loading, the total strain energy stored in an elastic medium with a specific 
geometry is given from the phenomenological relation that: 

(4.1) 

where T is the surface force vector prescribed on the boundary of the macroscopic domain, 
S the total surface area and z the surface displacement vector. This energy can be equated 
to the sum of strain energies stored in the mesodomains since the latter are assumed to 
be enumerable. Hence, using (3.13) and (3.14): 

p p 

(4.2) TU= 2 fMT.M:dMS= _2M9Jl 
M=1Ms M ... 1 

in which M T and M z are the surface force and surface displacement vectors on the boundary 
of each mesodomain, respectively. However, during a reversible isothermal deformation, 
the external work must be equal to the work of the microelement plus that of grain bound­
aries, so that: 

N 

(4.3) J MT.MzdMS = ~ 2 { J (E+17"F)"e"e dv+ J ~ · dds} 
Ms cx-1 «v «1 

and 

p 

(4.4) f T· zdS = 2 fMT.M:;ds. 
S M•1 Ms 
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The only unknown fundamental quantity in the above formulation is seen to be the grain 
boundary thickness j«lldj. This quantity, according to the present simple analysis, can 
be found by variational principles, for instance, by writing: 

N 

(4.5) ~{- J MT.MzdS+ ~.2 J ~+'I"Q"e"edv 
Ms «=l V 

N 

+__!__ ~ J «li-e· «11dds+A[«P-c-e6(«11d_«lld)___!!!_J 
2 L,; dl 711dl 

otal ~ S 

+B[ f "'•dS- J ~·"ds] +C[~-~+'I"{)"e]} = 0. 
(ftfls «t~~s 

In conclusion, the following statements can be made: 
(i) An analytical method has been proposed to account for grain boundary effects 

in the field equations of a polycrystalline solid. 
(ii) A stochastic material functional Mc;m of the basic physical and geometrical para-

meters can be formulated. 
(iii) The significant parameters in such a formulation have been seen to be: 

(a) the orientation of the crystals or microelements «o, «o; 

(b) the size of the element «v, «s; 
(c) the thickness of the interface «P L1 ; 
(d) the structure of the material, i.e., cubic centred, face centred, etc. 

(iv) Only the simplest case of isothermaJ reversibJe deformation has been considered. 
(v) Experimental observations permit the determination of the distributions n(v), 

n(O), n(o) (Ref. [8]). 
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