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On the geometry of the state space in neoclassical thermodynamics

M. ELZANOWSKI (WARSZAWA)

THE PAPER contains certain topological and geometric properties of the space of states of an
isolated thermodynamic system. The first part deals with the topological properties necessary
for introduction in the state space of a structure of an infinitely dimensional differentiable
manifold. In the second and third parts, we introduce the objects of heat and work ‘and the
flux of heat and power. This made it possible to prove the existence of a state function interpreted
as the energy of the thermodynamic system satisfying the first law of thermodynamics,

W pracy przedstawiono pewne wlasnosci topologiczne i geometryczne przestrzeni stanoéw termo-
dynamicznych ukladu izolowanego. Cz¢$¢ pierwsza zawiera oméwienie wlasnoéci topologicznych,
niezbgdnych do wprowadzenia w przestrzeni standéw struktury mkoncmme-wymlamwej
rozmaitoéci rozniczkowalnej oraz dowodu istnienia na niej obiektéw geometrycznych, W czesci
drugiej i trzeciej wprowadzono obiekty ciepla i pracy, strumienia ciepta i mocy. Pozwolilo to
w konsekwencji dowies¢ istnienia funkcji stanéw, interpretowanej jako energia ukladu termody-
namicznego, spelniajacej pierwsze prawo termodynamiki.

B pabore HanoeHbl HEKOTOPbIE TOMOJIOTHYECKHE ¥ FEOMETPHUECKHE CBOMCTBA MPOCTPAHCTBA
COCTOSIHMI{ TePMOHHAMHYECKOH H3ompoBanHol cucrembl. [lepBas dacts cofiepimr obCyx-
JeHHE TOIOJIOTHYECKHX CBOMCTB, HEOOXO/MMBIX ]Il BBEJCHHA B IPOCTPAHCTBO COCTOSHHMH
CTPYKTYPHI GecKoHeuHO-MepHOTo MH(depeHImantHOro MHOrooGpasus 1 JOKasaTeNbCTEa CylLe-
CTBOBAaHHA B HEM HEKOTOPBIX reomerpHyeckux obbexToB. Bo BTOpOi H TpeThei YacTAX BBe-
NeHb! 0OBEKTHI TeITa W paboThl, TEIUIOBOrO NMOTOKA K MOINHOCTH. B HMTore 310 mO3BOJMIIO
JIOKa3aTh CyllleCTBOBAHMEe (QYHKIMH COCTOSAHMI, PACCMATPHBAEMOM KAK SHEPIHA TEPMOIHHA-
MHYeCKOH CHCTEeMBI, KOTOpas YAOBIETBOPAET NEPBOMY 3aKOHY TEPMOJHHAMHKH.

Introduction

THE CONCEPT “neoclassical thermodynamics” as a name of a method does not exist long
but its basic idea appeared in science many years ago and its originator was undoubtedly
C. CARATHEODORY [2]. His theory was not the neoclassical thermodynamics in the exact
sense of this word but it was exactly Caratheodory who first attempted to construct a
phenomenological axiomatic thermodynamics in which the original concepts were the
isolated system and its state. In later papers, the accessibility relation was introduced in
the set of states as a relation of partial order and in this way there arose thermodynamics
called by K. WILMANSKI [12] “neoclassical”.

Before the papers[12, 13, 14] K. WiLMANsKI, who presented the neoclassical thermodyna-
mical procedure in a unified form, many authors attempted at such theories, for instance,
R. GiLEs [6], J. B. CoopEr [3], J. B. BoyLING [1]. However, the first theory is due to
G. FALK and H. JUNG [5]. Their paper differs from the later papers first of all because
they did not take as an original concept “the energetic isolation” but constructed an axio-
matic thermodynamics for a non-isolated system. The introduction there of the concepts
of state and accessibility relation in the state space is subject to serious doubts. In fact,
as explained in details by R. GILES [6], the concept of states is correct only in the case
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of an isolated system. Moreover, in the set of “states” of a non-isolated system, the accessi-
bility relation is not transitive and therefore is not a relation of partial order, see K.
WiLmANskl [13].

In later papers, various authors confined their considerations to isolated systems. It
is noteworthy, however, that there are two problems directly related to the mathematical
structure of the proposed theories and indirectly to their range, namely the problem of
topological properties of the state space and the properties of the accessibility relation,
Both J. B. CooPEr and J. B. BOYLING assumed that the state space is a connected sepa-
rable T,-space. On the other hand, K. WILMANSKI [12] proved that every set of states
with a relation of partial order is a Hausdorff space. It can easily be proved that there
exist state spaces both disconnected and not separable, e.g. the discrete state space, space
with isolated states, space of a system with a discontinuity.

In both above-mentioned papers, the authors introduced in the state space the accessi-
bility relation not as a partial order but as a linear order. This is equivalent to the existence
of a “process”(*) containing all states of the system. This assumption would undoubtedly
be useful but is too simplifying(?).

In this paper, we assume that the state space is a set with a relation of partial order
with a structure of an infinitely dimensional Banach differentiable manifold.

In the first part, we consider certain topological and geometric properties of the state
space. The second part contains a method of determination of geometric objects on the
infinitely dimensional manifold. In the third part, we introduce the objects of heat and
work, the flux of the heat end power. The above makes it} then possible to state the
first law of neoclassical thermodynamics in a classical form. However, in the classical
thermodynamics, this law was true for quasi-static processes only, while here, it appears
as a necessary condition of existence in the state space of the accessibility relation and
therefore is true for fast processes as well.

1. Topological and geometric properties of the state space

Consider a Boolean algebra II with operations \/, /\, <. The greatest element & € I1
is called the thermodynamic isolated system. Every element 2 ell A # < & will be
called a subsystem of system # (K. WILMANSKI [13]).

AxioM 1.1 The set & is the space of states of an isolated thermodynamic system #
if in & there is the accessibility relation = with the following properties:

LA s=2xs
ses
2N £ttt 2
51,52, 3¢y
L VA o G e A
ey se¥

(*) See Definition 2.3.

(*) Example. Consider an isolated system divided by an isolating wall. Remove instantaneously the
wall and immediately replace it. Is is readily observed that the processes of the system before and after
the removal of the wall are not continuations of each other.
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DeFINITION 1.1. The thermodynamic simple process is the pair (m,;=>) = Pipy
where 7, # {s} is maximally linearly ordered subset of &.

By s' f—-r!(pm) and sy X r(ppy) we denote the first and the last elements of the set
70z, Tespectively. These states will be called the initial (s*) and the final (s”) states, respecti-
vely, of the simple process p).

Hausdorff theorem implies immediately

LemMA 11.  /\ s!' 25 = exists py = ((y); =2), where s = l(p(,) and s* = r(p,).

sis2e ¥

By P, we denote hereafter the set of all simple processes of the system #.

Following [12] we present two definitions concerning a thermodynamic process.

DEerINITION 1.2. The simple process p,y = (m(,; =) is called reversible when there
exists an isomorphic inversely ordered simple process p) = (%3 =) such that 7, =
= T(p)-

DEerINITION 1.3. The thermodynamic process is every pair (z; =) = p, where

L w B Ty Py = ey 2,
2. 7 =N,
3 /) 1685 = r(elp).

We then write p = @ pip)-
ieJ

The process p = (m; =) is called reversible when there exists a family of reversible
simple processes {p{y)}ies such that p = @ pip).

The definition of the thermodynamic process implies

Lemma 1.2. A\ A \{ such that s € m,y and p, is a simple subprocess of

p=(m =) sex ppel )

the process p, i.e., my) < 7.

Proof. Consider an arbitrary process p = (z; =2). It follows from Definition 1.3
that there exists a family of simple processes {p};}kes such that p = @ pl;). Since @ =

= | 7y, then /\ \/ s € ml,. Setting p,) = piy we end the proof.
kel sen P(p)
Let us now define the topology in the set of simple processes.
DEerINITION 1.4. The family

A (p@) = {Pioy € Py’ Wiy = iy 0 L (Ply)) V ey = Ty 0 R(UPR))}
is a subbasis of the simple process p(,) = (75 ; =), Where
R(s) = {s'e &, s 25}, L(s)={s'e¥, s' 25}

It was proved in the paper [12] that for an arbitrary simple process p, the set =,
with the above defined topology is a T3-space.

Consequently, we have

THEOREM 1.1. & is a Ts-space.

In what follows we confine ourselves only to compact simple processes, i.e., processes
such that if p,) = (7,); @), then =, is a compact set. Obviously, this is restriction on
the space & since it excludes processes with gaps. However, we shall soon find out that
this restriction is both necessary and sufficient for our purposes.

5+
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Consider the set of all simple processes P, and an index set 4; moreover,
Ay = gy % {a}-
Evidently, if a, f € A and « # B, then
A O Wy = 9.

Consequently, the set {#f,}qe4 is a family of compact, disjoint topological spaces, for
{E\AJ‘, I ifpy = Alpy; Ad(S, @) = s is a homeomorphism.

It is known that every compact space is paracompact and a topological sum of para-
compact spaces is paracompact. Moreover, the set {#{,}se4 covers the whole &. Let

us therefore construct a topological sum @ #f,) and define the map A: @ 7, 3,
aed aed

namely Al = 2, ie. A(s, @) = Aq(s, @).

Let there be given in & a topology the subbasis of which is constituted by the sets L(s),
R(s). It is readily observed that 4 is then a closed map. On the other hand, it is known that
if a closed map maps a paracompact space onto a T''-space, then the latter is also para-
compact (E. Michael [10]).

Thus we have proved

TueOREM 1.2. & is a paracompact space.(®)

It follows immediately that & is normal, for every paracompact space is normal
(R. ENGELKING [5]).

Let us now introduce further axioms.

Axiom 1.2. /\ \/  such that
re pr S

l. fa=id,
2 <P AN N\ I\ [ Ys2) 0 f~1(s8) # O =f1(ss) < f~1(sp).
!’Ey’ g Eyr
The elements 55 € #» will be called states of the subsystem #. The properties of
the function fp imply imemdiately that /\ Fs< P, [13).
#

AxioM 1.3. & is infinitely dimensional differentiable manifold of class CP(p = 2)

modelled on the Banach space, B such that /\ there exists a piecewise single-valued
p=(n =)
CP? — morphism o: ® -1 < R.

Lemma 13. A\ A A/ seny

p=(% =) $€a 4eCP(n) P(p)<P
and a|,.m is a C — isomorphism.

Proof. It follows from the properties of the function « that /\ there exists a sub-

SeEm
process p' = (a'; =) containing a state s such that «|, is an CP — isomorphism. Since
peP, there exists a family of simple processes {p{;}ies such that p = @ p{,. Hence
ieJ

(®) Ais a closed map, @ L is a paracompact space, & is a T;-space, for it is a Ts-space.

acAd
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/A \/ such that senf,. Let n, =a' naf,ca’; then seny and
sen’ gk ep
. (P)™" (p) )
is a C? — isomorphism.

The above lemma is equivalent to the assertion that every thermodynamic process is
locally parametrisable.

In what follows, without affecting the generality of our considerations, we confine

ourselves to a class of maps oc],,m, namely

DErRINITION 1.5. The parametrisation f:m, — 1 is called admissible when /\

11,332::{ )
st = 52 = B(s*) < B(s?). Evidently, B(s!) = B(s?), if and only if, s* = 52 ’

E"EI"U')

2. Geometric objects on &

We shall now present a method of defining geometric objects on the manifold &. Our
procedure is based on the theory of geometric objects on finitely dimensional manifolds
[11] and generalised to the case of infinite dimension.

Observe first the following fact.

THEOREM 2.1. In every open cover of & we can inscribe a partition of unity.

Proof. Since & is a paracompact Hausdorff space, we can inscribe a partition of
unity in every open cover.

Assume that the partition of unity on & is of class C”.

Similarly to the case of a finite number of dimensions, we present a definition of the
linear group [16].

DEFINITION 2.1. The linear Banach-Lie group GL(B) is the set of all automorphisms
of class CP~! of the Banach space B.

Evidently, GL(B) is an open subset of the space L(B), where L(B) is the space of all
linear and continuous maps of the space B into itself.

Let U(¥) = {(s; (U, 9))}, where s € U and (U, ¢) is a map on &. If g € GL(B), then
(s: (U, 9)Ig> = (5: (U,go9)) and if g€ GL(B), then {(s; (U, 9))lg' 28> = <(K(s;
U, 9)le>)lg’>-

Let u: U(¥)—» & be given by the rule u(s; (U, ¢)) =s. Hence u(<ulg)) = pu(u),
where u € U(¥).

DErRINITION 2.2. We say that two elements u, u' € U(¥) are equivalent and we write
u ~ u' if, and only if,

1. =8

2. Dy (¢'og™) =id,

(Dg(sy (¢ o ¢~ 1) is the derivative in Fréchet sense of the function ¢’ o ¢! at the point
¢(s))-

DEerINITION 2.3. The bundle of bases over the space & is the quotient space #*(&) =
= U(¥)/#(~) with the canonical projection u*: F*(&)— &, where y*([u]) = u(u)
and [u] e F*(&).

Thus we have the following lemma:
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LeMMA 2.1. Let g € GL(B) and [u], [u,], [u,] € F*; then
L /A (lg) = ]=g=id
weF*( &)
2. {[u)g> = [u;] =”‘M"‘([‘-‘l]) = ,“*([“2]),
3. w*([u,]) = p*([wa]) ==-“\é’L<[“1]ig> = [u.],

where the action of the group GL(B) in the space #*(&) is defined in the canonical way.
Let us now prove
THEOREM 2.2. F*(¥) is a differentiable principal bundle over the basis space & (*).
Proof. Let {(U;, @)} be an atlas on & and consider the map ¥; : u*~*(U;) - L(B)
such that

Ep’i([“l) = Dyprqy(@ e ¢i’') and  [u] e u*~1(U)

(e*([1); (U, @) € =t (u*([u))).

Let @, : u*~'(U) > UixL(B), so that @([u]) = (u*([u], ¥:([u]). Evidently,
@, (u*~' (Uj)) = U; v U; x GL(B) and therefore @; o @5 (s,f) = (s, fo D5y (@ © 7)),
since ¥i([u]) = ¥;([u])Dy,qrquy (@5 0 @7 "), where fe GL(B). Since Dy, (p;o ¢i') €
€ GL(B), @;0 ®;" is a C°~' — isomorphism.

Following S. LANG [8] we state the following theorem. “Let there be a space E, a
manifold & and the map u: E —» &. Assume that {U;} covers & and for each i E; is a

Banach space and a bijection 7;: u~!(U;)) > U;xE; such that A\ /\ (7;77"), is
t,j selUyn Uy

a linear topological isomorphism satisfying the condition 2b of the definition of the
differentiable bundle. Then there exists on E a structure of a differentiable manifold such
that 4 is a morphism and E is a bundle.”

Let &, = 7;, ¥; = 755, and E; = L(B). Then all assumptions of the above theorem

and, moreover,

are satisfied and #*(&) is a differentiable principal bundle over the basis &.

Let R* be a k-dimensional Euclidean space(®) with elements g € R* and let o:
R*x GL(B) - R* be a differentiable action of the group GL(B) in R* satisfying the con-
dition

/\ 6('sh)°0(°ag)=c(°sh°g)-
2, he GL(B)
DEFINITION 2.4. We say that two elements ([u], ¢), ([u'], ¢') € #* x R* are equivalent

if, and only if, there exists an automorphism g € GL(B) such that [u’] = {[u]lg)> and
q = {qlo(", 8)).

(¥) A differentiable principal bundle over the basis & is the space F with the morphism u:F - &
such that
1. A p~'(s) = Fy has the structure of a Banach space,
se P
2. A for each i the following map is given: 7; : u~(Up) — UixF;c & xF; (F; is a Banach space),
i

satisfying the conditions
a) 7y, : pu~'(s) = F; is a linear topological isomorphism,
b) the map U; n U; —+ L(F;, F)) associating with s the map (z;7;?)s is a morphism (S. LANG [8]),
(°) Instead of Rk we can take an arbitrary differentiable manifold.
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By E(&, R¥) we denote the quotient space F* xR [GL(B).

Similarly to Theorem 2.2, we can prove

TueoreM 2.3. E(%, RY) is a differentiable vector bundle over & with a k-dimensional
fiber and the canonical projection

prk  E(F,RY) - &, pre([u], g) = p(u).

DEFNITION 2.5. The manifold E(S, R¥) is called a space of quantities of the type R*.
The map 4:& — E such that ugko A = id is called the field of quantities of the type
RX. If A € C1(&), then the field is called of class C*.

The existence on & of a partition of unity of class C? implies immediately the following
corollary: & admits quantities of the type R* of class CP.

Consider now a class of geometric objects, namely objects with one component and
a linear transformation law.

Let k = 1 and assume that o: RxGL(B) —» R is given by the formula o(g, g) =
= D(g)q+¥(g), where @, ¥: GL(B) — R are functionals of class C* on GL(B). Since
040 0y = O, has to hold, the functionals @ and ¥ must satisfy the system of equations

D(goh) = D(g)" P(h),
$heGL®  Y(goh) = P(R)¥(g)+¥(h).
In the finite dimensional case it was proved [7] that the only objects of the type (1, n, 1)
are objects with the transformation law @ = w+cln|e(X)| or @ = pX)w+c(pX)-1),

where X = detJ, and ¢ = const.
Consider therefore /\ @(g) = 1. Then ¥(goh) = Y(g)+¥(h) and o(g,8) =

geGL(B)
= q+¥(g).

3. The first law of neoclassical thermodynamics

Consider an arbitrary subsystem 2 eIl and define on & the following geometric
objects:

Ip:9 ~ESR) 5@ =45 Yol®)

he: & -+ E(&,R)  05(q) = 9—¥5(g)
lp:% > E(Z,R)  0y(q) = q+¥s(2),

Here, ¥5:GL(B)— R and Y5 (goh) = Vs (g)+¥s (h).

The objects s and /s will be called “the heat” and “the work” of the subsystem 2,
respectively.

Let & be a linear space of vector functions and a subspace of the space B; we shall
call it the space of velocities of the system %#(5).

(%) For a continuum, this space was constructed in the paper by M. E. GURTIN, W. O. WILLIAMS,
On the first law of thermodynamics, Arch. Rat. Mech. Anal. 42, 2, 1971.
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Consider in B a family of linear subspaces {A;}xex and a family of linear continuous
maps @, : B — A; such thatbl/b}egd?,‘(b‘) = D, (b?) < b' = b2,

Assume that & € {Ay}xex and for every k€K there exists an endomorphism
@11 & — Ay. The endomorphism g0 : & — F will be denoted by V.

DermviTION 3.1. We say that two states s!, s €& are equivalent mod. ¥V and we
shall write s* 2 s2, if and only if, for every subspace A, # F we have @, (s') = @(s?).

It is readily observed that the relation is an equivalence relation. Let us therefore
construct the quotient space &, = &[®(V) which we call the non-mechanical state
space; its elements are denoted by s, € &,

AxioM 3.1. The objects I'p, hg, lp are defined in such a manner that there exists
in & a configuration such that

. )\ Ie=0

se ¥

2. /\ the map s — hp(s) is constant,
SyESy

3. /\ themap s - ls(s)is linear.
I'E .V'
Here s € 5.
4 N\ Tal®) = 2 ha®)|o = — -2 La(s)}o()-
dt dr

ey

It follows immediately from Axiom 3.1 (1.4) that there exists on & a configuration
such that hg(s) = const and /g(s) = 0.

Definition 3.1. The heat flux to the subsystem 2 is the field #'5: (¥, P(,;)) = E(¥, R)
such that

A\, I\ Hols,pe) = dirh,(n@m.-r,(s).

P(p)=5(p) *€%(p)

The power of the subsystem & is a similar field s : (¥, Ps) — E(&, R) such that

/\ Zo(s,pp) = j—lo(“(p))h'f‘rv(s)(s)-
P(peF ) *¢7(p) dt

The above definition implies immediately that for every subsystem 2 we have ¢ =
=o0f =id.

The following lemmas are implied by Axiom 3.1 and Definition 3.1.

LeMMA 3.1. /\ /\ #a(s,p) = ZLals,p) = 0.

peP sen

(") Consider an arbitrary function k:% — R of class C* and an arbitrary simple process p(py = (n(p); =)

and its admissible parametrisation B : m(p) — 1. Then ?d-—h(s);'s" = lim w » Where
T

A B+ptsy  BEN—B(s)
5,8 €np), s=25%and h(B(s)) = h(B 1 (B(s))).
s€ ’I(’)
(®) Observe that the derivatives of the objects hg,ly are with respect to admissible parametrisations.
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LEMMA 3.2. Consider a simple process p (,). Let us select from the set P, all simple
processes p' = (%' ; =) such that for every my, there exists an order preserving isomorphism
i1y = Ty satisfying the condition ) e/\ S = i(8)y. Then, for every s € 7y,

Mp)

1) the map i(m(,) — H o(i(s), i(7y)) is constant,

2) the map i(w(y) = Lo(i(s), (7)) is linear.

Thus the heat flux is independent of the velocity and the power is linear in it.

Observe that making use of the definitions of the objects hp and I we can prove

CoRrOLLARY 3.1. For every subsystem 2 there exists on % a real function ¢ : % - R
of class C” such that eg = const.

Proof. Let ea(s) = hs(s)+1s(s). It follows from the properties of the objects hp

and Ip (p. 771) that & is a function of state, such that eg = hga+/ga = const.

The function &s:% — R will be called the energy of the subsystem 2.

THEOREM 3.1. For every subsystem P €ll, the first law of thermodynamics is satisfied,
i.e., “a change of the energy of the subsystem is equal to the sum of the heat flux and power
of the subsystem”. In other words,

d
N\ /\ = e p)ls = H 5(5, Pp)) +L5(s, ppy) = E5(5, Piyy)-
P(p)€P(p) TE7(p)

The quantity &g (s, p(y)) will be called the energy flux to the subsystem P.

Let us finally note one simple fact.

LemMa 3.3. Let p,) € P{y,) (the set of reversible processes) and let p(,) be the inverse
process. Then

Ho(s, Pp) = —H (s, P;p))
2ell SET(p) 39(39 p(p)) o —EQ(S,PE,))

Proof. Let #:mg — I be an admissible parametrisation of the process p,,. Since
P(p) is inverse to p,), there exists between 7, and 7, an isomorphism inverting the
order of these sets. Thus the natural parametrisation for the process p(y is the map
B : 7y — I of the form f'(s) = 1—8(s).

Denote f(B(s)) = 1—p(s). Obviously, we have F‘z{)- f(B() = —1.

It follows from Axiom 3.1 and Definition 3.1 that there exists in & a configuration
in which #s(s, p()) = -df;-k,( *)ls. Making use of the definition of the derivative of

the objects hp, we have
d 7 d d d
g ha (mep))ls = £y ha(7p)ls- E‘f (s = — == ho ()l

Similarly, we can prove that%l,(x},,l, = —d—dr!,(n(,))], Hence #5(s, p(p) =

= —#s(5,pp) and Lo(s, pw) = —Ls(s, p(»y). These relations hold only in
the fixed configuration but since oY = o = id they are also true in every configuration.
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