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Inhomogeneities in second-grade fluid bodies and isotropic solid
bodies

C. -C. WANG (HOUSTON)

A GLOBAL theory for materially uniform, smooth, second-grade fluid bodies and isotropic solid
bodies is developed in this paper. The main results include: isotropy groups and representations
for the response function relative to distorted references in general, representations for the
response field in arbitrary configuration, and geometric characterization for local homogeneity,
local pseudo-homogeneity, and local inhomogeneity in those second-grade bodies.

Przedstawiono globalng teori¢ materialnie jednorodnych, gladkich ciat cieklych rzedu drugiego
jak réwniez izotropowych ciat stalych, Uzyskano nastgpujace wyniki podstawowe: grupy izo-
tropii i reprezentacje funkcji reakcji materiatu przy odksztalceniu ukladu wspétrzednych, repre-
zentacje pola reakcji dla dowolnej konfiguracji, charakterystyke geometryczna lokalnej jedno-
r?dnoiczic,d lokalnej pseudojednorodnoéci i lokalnej niejednorodnoéci dla rozwazanych cial dru-
giego u,

Hanoxkewa rnobambHad TEOPHA MATEPHAIBHO OJHOPOJHBIX, TIAAKHX MHIKHX Tel BTOPOro
NOPAMKA, 4 TAKXKE H30TPONHLIX TBepAbIX Tesl. ITosyueHs! ciefyionme OCHOBHBIE Pe3yIbTaThl:
TpYImB] H30TPONHM K TpPeACTaBneHHs (YHKIM peakuuu maTepHana opH AedopmypoBaHuH,
npefcTaBiieHHe MMOJIA pPeaKiMii B IpPOM3BONBHON KOHOHTYpalmH, IreoMeTpHUYecKHe XapaKTe-
PHCTHKM JIOKATBHOM OJHOPOHOCTH, JIOKAILHON IICEBIOOHOPOSHOCTH M JIOKAJBHONK HEOMHO-
POAHOCTH HCCJIE[YEMBIX TEJ BTOpPOro MOpPAKA.

1. Introduction

As EXPLAINED in the preceding paper [1], a material of second-grade is defined by a con-
stitutive equation of the form

(1.1) R= R(q’tw 'Pnnup)s

where (@4, @44p) denotes the second-grade class induced by a configuration ¢ of
a body & at the point p € . R is called the response function whose value R is a state
function of p in the configuration ¢ such as the stress tensor, the stored energy, efc. For
the purpose of this paper, the physical significance of R is not important and therefore
not specified.

Since R depends only on the second-grade class (¢,,, ®,,,), it can be represented
by a relative response function R, with respect to a reference configuration x, wiz.,

(1'2) R(q)tp! tp‘*lhp) e Rn(Fy G!p)s

where (F, G) denotes the second-grade deformation of ¢ relative to x. In the notation
of [1], we write

(1.3) (Pyp> Pusp) = (F, G) o (3, #yyp)-
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From (1.2) and (1.3), the relative response function obeys the following transformation
rule:

(1.4) R,(F, G,p) = R((F, G) » (H, K), p)),
where (H, K) denotes the second-grade deformation from x to w, viz.,

(1.5) (yp> Bggp) = (H, K) o (1,5, %y yp)-
From chain rule, the second-grade deformation obeys the composition formula:
(1.6) (F, G) o (H, K) = (FH, FK + G[H, H])
of. [1, 3.4)]
In accordance with Noll’s general definition, the isotropy group relative to » is the
group g,(p) consisting in all second-grade deformations (H, K) such that

(1.7 R((F, G) (H, K), p = R(F, G,p),

for all deformations (F, G). Comparing (1.7) with (1.4), we see that (H, K) belongs to
g, (p) if, and only if, the relative response function is invariant under the change of local
reference configuration from (x,,, %,,,) to (H, K) o (,,, %,,,).

In [1], it is proposed that a (second-grade) fluid point p be characterized by the following
condition: Let there be a local reference configuration (x,,, %44p) such that the isotropy
group g, (p) is formed by all second-grade deformations (H, K) which verify the con-
ditions:

i) |detH| = 1,
ii) tr((H™'K) = 0,
where
(1.8) tr(AB); = A% B%,;.

The local reference configuration (x,,, ®,,,), which is distinguished by Conditions
i) and ii), is called an undistorted local configuration. It is proved in [1] that the response
function relative to (s,,, ®,,,) has the following representation:

(1.9) R(F, G, p) = R(|detF|, grad|detF|, p),
where grad|detF| is the spatial gradient of |detF| at the point p and is given by the formula
(1.10) grad|detF| = |detF|(F~)T tr(F~1 G).

The representation (1.9) means that:
(1.11)  (F, G) o (F, G) € gu(p) <> |detF| = |det F|, grad|detF| = grad|detF|.
In particular, since (1, O) € g.(p), we have
(1.12) (H, K) e g.(p) <> |detH| = 1, grad|detH| = 0.
In [1] it is proposed also that a (second-grade) solid point p be characterized by the
following condition: Let there be a local reference configuration (x,,,, ®,,) such that the

isotropy group g, (p) is formed by some second-grade deformations (H, K) which verify
the conditions:

iii) HT = H,
iv) K =0.
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The particular local reference configuration (x,,, ®,,,) is also called an undistorted local
configuration of p. In the case, when g,(p) is formed by all pairs (H, K) satisfying
Conditions iii) and iv), p is called an isotropic (second-grade) solid point. In [1] it is proved
that relative to (s,,, %,,,) the response function admits the following representation:

(1.13) R(F, G, p) = R(B, gradB, p),
where B denotes the left Cauchy-Green tensor of F as usual, cf. [6, (23.5)],

(1.14) B = FFT,
and gradB denotes the spatial gradient of B and is given by the component form
(1.15) (gradB)Yy = G'ypF 4(F~ )24 G yp F 4 (F~1)%,.

For the proof of (1.9) and (1.13), see Ref. [1]; for a general theory of representation
for constitutive relations, see Ref. [2]. It should be noted that Conditions i), ii) and iii),
iv), and hence the representations (1.9) and (1.13), are valid only when the local reference
configurations are undistorted. In the next section, we shall consider the isotropy groups
of fluids and solids relative to distorted reference configurations, and we shall derive
corresponding representations for the response functions.

We shall develop'a global theory for homogeneous or pseudo-homogeneous fluid
bodies and isotropic solid bodies in § 3. Then, in § 4, we present a global theory for materially
uniform fluid bodies and isotropic solid bodies in general. The main result of the global
theory is a representation for the response field R in terms of the deformation relative
to a global reference configuration. Finally, in § 5, we prove some geometric theorems
which characterize local homogeneity, local pseudo-homogeneity, and local inhomogeneity
in materially uniform, smooth, second-grade fluid bodies and isotropic solid bodies.

2. Isotropy groups and representations for the response function relative to distorted references

Let g«(p) and g,(p) denote the isotropy groups relative to x and ., respectively,
and suppose that the second-grade deformation from x to . at p is (L, M). Then it follows
from Noll’s general rule that
@n gu(p) = (L, M) o gu(p) o (L, M),
of. [1, (3.7)]. In the preceding section, we have defined the isotropy groups for a fluid
and for an isotropic solid relative to an undistorted reference, say . The formula (2.1)
can now be used to determine the isotropy groups relative to an arbitrary configuration .

We consider first the isotropy group g, (p) of a fluid point p. We have the following
result: A second-grade deformation (H, K) belongs to the isotropy group g, (p) if, andonly
if, it verifies the conditions:

i) |[detH| =1,
i)’ tr(L“H“LGrad(L“HL)) =0,
where the left-hand side of ii) is given by
(22) tr(L"'H'LGrad(L™'HL)) = — (L™ *HL)" tr(L"'M)
+LTtr(H 1K) +tr(L™'M) = 1—=LHL) tr(L-*M)+LTtr(H*K)

4
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To prove that i) and ii)’ characterize g.«(p), we observe first the formula

(2.3) (L, M) = (L', =L'M[L-*, L)),
of. [1, (3.5)]. Now, from (2.1), we have
(2.4) (H, K) € gu(p) < (L, My~ o (H, K) o (L, M) € g.(p).

From (2.3) and (1.6) the deformation gradient on the right-hand side of (2.4) is given by
25 (L, Mo, K)o @, M) = (LHL, L"HM+L*K[L, L]
—(L™*M(L, L))[HL, HL)).
Hence, from (2.4), (H, K) € g.(p), if and only if,
(2.6) 1 = |[det(L™'HL)| = |[detH],
and
2.7 0= tr(L7"H'LL~"HM)+tr(L-"HLL*K[L, L])
—tr(L""HLL*M(L™*, L™")[HL, HL]) = tr(L~*M)+L"tr(H~*K)
—(L7'*HL) " tr(L~*M) = (1—-L*HL) " tr(L~*M)+LTtr(H~*K).
Comparing (2.7) with (2.2), we have proved that Conditions i) and ii)’ characterize g,(p).

From (2.7) we see that (p,,, ,,,) is undistorted, if and only if, its second-grade
deformation (L, M) relative to an undistorted reference (x,,, %,,,) obeys the condition

(2.8) tr(L*M) =0
or, equivalently, the condition

2.9) grad|detL| = 0,
of. (1.10).

In general (fyp, ysyp) aNd (yp, Poggp) are called materially isomorphic if R, and
R; are identical, viz.,
(2.10) R,F,G,p) = Rz(F,G,p) V(F,G)
Comparing this condition with (1.7), we see that (ftyp, gxp) a0d (f4p, Bysp) are materially
isomorphic if, and only if, the deformation (H, K) connecting them, say by
(2.11) (Eaps Peaxp) = (H, K) 0 (yps Banp)s

belongs to g,(p). Let (L, M) and (L, M) be the second-grade deformations of (yps Mxsp)
and (fyp Pusp)s Tespectively, relative to an arbitrary reference configuration (%5, %44p)-
Then, as usual, we have

(2.12) @, M) = (H,K) o (L, M).
But from (2.1), we have
(2.13) (L, M) o (L, M) € g,(p) < (L, M)~* o (L, M) €g(P)-

So, if (%,,, %,,,) is undistorted, then by combining (2.13) and (1.11), we obtain
(2.14) (L, M)o (L, M) €g.(p) <> |detL| = |det L|, grad|detL| = grad|detL|,

which is another way to characterize g,(p) for an arbitrary reference p.
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Having considered the isotropy group g.(p) of a fluid point relative to an arbitrary
reference ., we turn next to representation for R,. As before, let (L, M) be the second-
grade deformation of . relative to an undistorted reference (x,,, %,,,). Then, from (2.14),
we know that R, can be characterized by [detL| and grad|detL|. Indeed, if (F, G) is
an arbitrary deformation relative to (f,,, the4p), then the corresponding deformation
relative to (x,,, %,,,) is given by

(2.15) (¥, G)o (L, M) = (FL, FM+GIL, L]).

Now, since (%,,, %,4p) is undistorted, R, has the representation (1.9). Substituting (2.15)
into (1.9) and using (1.4), we obtain

(2.16) R,(F, G, p) = R((F, G)+ (L, M), p) = Ry(|det FL), grad|det FL, p),
where, from (2.15) and (1.10), the arguments of f?, are given by

2.17) |det(FL)| = |detF||detL],

and

(2.18)  grad|det(FL)| = |det(FL)|((FL)~")"tr(L~'F~'(FM + G[L, L]))
= |detF|(F~*)"grad|detL| +|det Ligrad|det F|.

Hence we have the following representation for R,:

219 R,(F,G,p) = ﬁ«(ldetFildetLl, |det F|(F~*)"grad|detL| + |detL|grad|det F|, p),
where x is undistorted and is related to p by

(2.20) (ap> Baap) = Ly M) © (s Xuup):

Next, we consider the isotropy group and the representation of the response function
of an isotropic solid point p relative to an arbitrary local reference (i, tyqp)- As before,
we choose an undistorted local reference (x,,, %,4p) and denote the second-grade deform-
ation of ([, ,, Peep) Telative to (%,,, %yyp) by (L, M).

We have the following result: A deformation (H, K) belongs to g.(p) if, and only if,
it verifies the conditions

iy  (L'HL)T = (L*HL)™,
iv) Grad(L~'HL) = 0,
where the left-hand side of iv)' is given by
(2.21) Grad(L™'HL) = —L"*M[L'HL, L-'HL]+L"'K[L, L]+ L™ *HM.

The proof is essentially the same as before. Conditions iii)’ and iv)’ characterize g.(p)
for an arbitrary reference . By definition, (fyp, [4p) is undistorted if, an only if, iii)’
and iv)’ reduce to iii) and iv). We claim that such is the case for g if, and only if,

(2.22) LLT=L"L=¢cl, ¢>0,
and

(2.23) M=0.
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Sufficiency is obvious. Conversely, if every (H, K) € g.(p) obeys iii) and iv), then iii)
implies
(2.29) (LLT)H = H(LL")
for all orthogonal Hj; it is well-known that (2.22) gives the general solution to (2.24).
Similarly, iii), iv), and iv)’ imply
(2.25) HM = M[L~'HL, L-*HL]
for all orthogonal tensors H. We can rewrite this equation as
(2.26) L'M = L'H'L(L~*M) [L™*HL, L~ 'HL]
for all orthogonal tensors H; it is well-known that the general solution of (2.26) is
(2.27) LM =0,
which is equivalent to (2.23). Thus the proof is complete.

From (1.13), we can also express g, (p) in the following way: Let (L, M) be the
second-grade deformation of (f,p, (yyp) relative to (x,,, %,,,). Then (f,,, feyp) and
(4p> H44p) are materially isomorphic if, and only if,

(2.28) LL” = LL", grad(LL") = grad(LL"),
where from (1.15) we have
(2.29) (gradLLT), = M’ g L7 ((L7Y)P+ M g L' (L)%,

Having characterized g,(p) of an isotropic solid relative to an arbitrary p, we consider
next the response function R,. By the same argument as before, we know that R, depends
on p through LL” and grad (LL”) only, where (L, M) denotes the deformation of
relative to an undistorted reference x. If (F, G) is an arbitrary deformation relative to
(Myps Beuup) as before, then the corresponding deformation relative to (x,,, %,,,) is given
by (2.15). Substituting (2.15) into (1.13), we obtain

(2.30) R,(F, G, p) = R,(FLL"F", grad(FLLTF"), p),
where from (1.15) the second variable of R, is given by
31)  (grad(FLLTFT))Y, = (grad(LLT))*BF' 4 Fiy(F~1)C,
+(G g Flc+ G 4pFlc) (F~1)P(LLT)C.

3. Homogeneous and pseudo-homogeneous fluid bodies and isotropic solid bodies of second-
grade

In the preceding sections, we have presented a local theory for a second-grade fluid
point and a second-grade solid point. As usual, a local theory corresponds to a global
theory in the special case when the body is homogeneous. We shall develop this special
case first in this section.

Naturally, we call & a (second-grade) fluid body or a (second-grade) isotropic solid
body if each point p e o is a (second-grade) fluid point or a (second-grade) isotropic
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solid point, respectively. For a reason which will become apparent later, we call & a homo-
geneous body if there exists a global reference » which verifies the following conditions:

v) The field of response functions relative to x, namely R, (F, G,p), pe#, is in-

dependent of p.

vi) The induced field of local configurations of x, namely (x,,, %,,,), p €&, is

undistorted at each p.

Naturally, we call the configuration », which is distinguished by Conditions v) and vi),
a homogeneous configuration of &. It should be pointed that Condition v) generally does
not imply Condition vi). However, if Condition v) holds, and if (x,,, %,,,) is undistorted
at any one point p, then Condition vi) also holds. For definiteness, we call a body & that
satisfies Condition v) but not Condition vi) a pseudo-homogeneous body. We shall develop
a global theory for homogeneous bodies first,

The structure of a homogeneous body is very simple. Relative to a homogeneous
configuration x, the response function is given by

(.1 R = R(F, G).

This equation means that in any deformed configuration ¢ of & the response R on ¢(#)
is given by R.(F, G), where (F, G) denotes the second-grade deformations from % to ¢p.

Since % is undistorted, R, admits a representation as shown in the preceding sections.
In particular, when & is a fluid body, (3.1) reduces to

(3.2) R = R,(|detF|, grad|detF]),
and when A is an isotropic solid body, the representation is
(3.3) R = R,(B, gradB).

Further, in the argument of fi, and h,, the gradient operation reduces to the ordinary
spatial gradient, i.e., in coordinate form

(3.4 (gradf); = ‘%—

for any qugntity f.

Next, we consider the structure of a pseudo-homogeneous body . By definition,
there exists a configuration ., called a pseudo-homogeneous configuration, relative to which
the field of response functions R.(F, G, p), p e &, is independent of p, but w is not an
undistorted configuration. In a deformed configuration ¢, the field of response R is still
given by
(3.5) R = R,(F, G).

However, since p is not undistorted, the representation (3.2) or (3.3) are no longer appli-
cable.

In order to make use of material symmetry in this case, we need the representations
(2.19) and (2.30). We consider first the case when & is a fluid body. As before, let (L, M)
denote the second-grade deformation of (i, ,, i, ,) for a particular point p € & relative
to an undistorted local reference configuration (x,,, %,,,). Since p is pseudo-homogeneous,
the field € given by

(3.6) C@) = (L, M)7! o (ygs Baxa)s GES
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is a field of undistorted local configurations on &f. As we shall prove later, such a field
€ cannot be an induced field of a configuration of &/. However, since from (3.6) at the
point p we have

(3.7 C(P) = (L, M) © (Byps Bgup) = (Rups Xuup)s
the field of response function relative to § is given by
(3.8) R(F,G,q)=R(F,G,p), Vged.

Here, we have used the fact that Ry(F, G, ¢) is independent of g, an obvious consequence
of (3.6). As explained in the preceding section, the distorted configuration g can be
characterized by two quantities: a positive scalar |detL| and a vector grad|detL|. For
brevity, we put

(3.9 I =|detL|, m = grad|detL|.

In view of the fact that w is pseudo-homogeneous, (L, M) remains constant on p(4),
and hence (/, m). Now, let (F, G) be the second-grade deformation of ¢ relative to g as
before. Then, from (2.19), the field of response has the representation

(3.10) R = Re(l|detF], |detF|(F-*)" m + Igrad|det F]),

where grad|detF| is given by (3.6).

Having obtained the desired representation (3.10) for R, we now show that &/ does
not have any homogeneous configuration. Indeed, suppose that there exists a homogeneous
configuration ¢ for &. Let (F, G) be the second-grade deformation of ¢ relative to p.
Then, from (3.6), the second-grade deformation of ¢ relative to  is given by

@G.11) (Pag> Pasd °87'(@) = (F(@), G(9)) o (L, M), g e,

where the composite deformation on the right-hand side of (3.11) corresponds to the
argument in (3.10).
Now, since ¢ is required to be homogeneous, Condition v) implies that

(3.12) I|detF| = a constant independent of g,

and Condition vi) implies that
(3.13) |det¥|(F~*)"m+ Igrad|detF| = o,

since m # o; otherwise, p would be homogeneous not pseudo-homogeneous; (3.12)
and (3.13) are clearly contradictory. Thus we have completed the proof.

Since R, is independent of the position in (&), the local configurations induced by
@ are materially isomorphic in a sense to be defined in general in the next section. The
local configurations of g are not undistorted, however, since their deformation (L, M)
from an undistorted reference € does not satisfy (2.8). Of course, it is possible to deform
t(«/) in such a way that the local configuration of some point p € & becomes undistorted.
It is not possible, however, to deform the whole w(s) into an undistorted configuration
as we have shown.

Having explained the structure of a pseudo-homogeneous fluid body in detail, we can
treat that of a pseudo-homogeneous isotropic solid body in a similar way. Let & now
denote a pseudo-homogeneous isotropic solid body, and suppose that w is one of its
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pseudo-homogeneous configurations. As before, let (L, M) be the second-grade de-
formation of . relative to §. Then we can characterize g by

(.14) E=1LL", D = grad(LL"),

where E is a metric and D is given by (2.29). From (2.30), the response field R in any
deformed configuration «¢ is given by

(3.15) R = Ry(FEF", W(F, G, E, D)),
where \W is given by
(3.16) (W(F, G, E, D))y = D*BcFigF! ((F~") 4+ (G s Fic+ G’ yp F'c) (F~ )" EAC,

¢f. (2.31). The expression (3.16) is the desired representation for R in terms of the de-
formation of ¢ relative to .

By essentially the same argument as before, we can show that a pseudo-homogeneous
isotropic solid body does not have any homogeneous configuration either.

Further, as in the case of a fluid body, the local configurations induced by i are ma-
terially isomorphic to one another, but those local configurations are not undistorted.
Hence R must be determined through (3.16) not through (3.3).

4. Materially uniform smooth inhomogeneous fluid bodies and isotropic solid bodies of
second-grade

The global theory for homogeneous or pseudo-homogeneous fluids and isotropic
solids developed in the preceding section can be generalized in an obvious way to a global
theory for materially uniform but inhomogeneous bodies. Recall first that material iso-
morphism between two points p and g in a body & is defined by the condition that there
exist local references §(p) and E(q) such that

(41) R;(F, G’P) = R;(F, G, ‘I)

for all second-grade deformations (F, G), ¢f. [1]. Naturally, we say that §(p) and &(q)
are materially isomorphic to each other, and we call p and g materially isomorphic points.
A body is said to be materially uniform if all of its points are materially isomorphic to
one another.

As usual, we define smoothness of a materially uniform body by the condition that
there be smooth local fields of materially isomorphic references in a neighborhood of any
point in the body. Generally, smooth global fields of materially isomorphic references
need not exist; this situation is explained in detail in the theory of smooth materially
uniform simple bodies, ¢f. [3]. While it is, of course, possible to develop a general global
theory for second-grade bodies with arbitrary material symmetry, this is not the purpose
of this paper. Here, we are interested in second-grade fluid bodies and isotropic solid
bodies only. For these special cases, the material structure can be characterized by some
tensor fields, as we shall now see.

First, we consider the structure of a smooth, materially uniform, second-grade fluid
body. Denoting the body by & as before, we know that s/ can be covered by local smooth
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fields of materially isomorphic references. Since these fields are not required to be induced
fields, without loss of generality we may choose them to be fields of materially isomorphic
undistorted references. We denote a typical one of these fields by €.

Now, let g be a global configuration of &/. Then, as explained in the preceding section,
we can characterize the local configurations induced by w by / and m. While in general §
need not be defined globally, the fields / and m are global and are smooth in p(#/). In the
special case when & is homogeneous, / is constant and m vanishes throughout p(#),
while in the case when & is pseudo-homogeneous, both / and m are constant and non-
vanishing. In general, of course, / and m need not be constant on (). In that case, we
call g an inhomogeneous configuration of of. Naturally, we call & an inhomogeneous body
if all configurations of &/ are inhomogeneous.

It should be noted that a homogeneous body or a pseudo-homogeneous body possesses
homogeneous or pseudo-homogeneous configurations as well as inhomogeneous configu-
rations. Hence the mere fact that a configuration g is inhomogeneous for & does not
imply inhomogeneity of the body. In order to show that &/ is inhomogeneous, we must
verify that all configurations of &/ are inhomogeneous. Therefore it is important to know
the transformation rule for / and m under a change of configuration.

In the preceding section we have given the transformation rule for / and m relative
to a homogeneous or a pseudo-homogeneous configuration. Now, let . and p. be configura-
tion of o in general. We denote the second-grade deformation field from . to . by (F, G).
Then /,m and /, @ on w(4) and (4), respectively, are related by
(4.2) [ = I|detF|, m = |detF|(F~!)"m+/grad|det F|.

The proof is the same as (2.17) and (2.18), since (4.2) is a pointwise result.

The transformation rule (4.2), shows that m does not correspond to a material(*)
vector field in a deformation from g to @ in general. However, if the deformation is
isochoric, then m transforms as a material covector field, since in this case, (4.2)
reduces to

4.3) I=1, m=F"Y'm

We can use this special case to describe the inhomogeneity in a particular fluid body:
We consider a fluid body that is equipped with a global configuration g in which [ is
constant but m is not constant, say m vanishes at some points but does not vanish at some
other points. Then, from (4.3), such a fluid body is clearly inhomogeneous.

Knowing that a fluid body in general may be inhomogeneous, we now seek a represen-
tation for R when the reference configuration . is arbitrary. This representation can be
read off from (4.2) and (2.19), namely,

(4.4) R= ﬁg(lidctFl, |detF|(F~*)"m+ /grad|det F|),
which has the same form as (3.10), except that here / and m need not be constant, so that
Ry depends implicitly on the position in p(#) through / and m.

The representation (4.4) expresses R in terms of the field of second-grade deformation

(F, G) relative to .
Next, we consider the structure of a smooth, materially uniform, second-grade, iso-

(1) A material vector field or tensor field is a vector field or tensor field on the body manifold, ¢f. [3].
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tropic, solid body. Again, we denote the body by &, and we choose a set of local fields
of materially isomorphic undistorted references § to cover &. Then, as explained in the
preceding section, we can characterize the Jocal configurations induced by a global con-
figuration . by E and D. In the special case when & is homogeneous, E is constant and D
vanishes, while in the case when & is pseudo-homogeneous, both E and D are constant
and non-vanishing. In general, of course, E and D need not be constant on p(&f).

Examples of inhomogeneous, second-grade, isotropic, solid bodies are easy to construct.
Indeed, any inhomogeneous simple (i.e., first-grade) isotropic solid body corresponds
to an inhomogeneous second-grade body. Further, even if E is constant and coincides
with the Euclidean metric on p(#/), & may still be inhomogeneous provided that D be
non-vanishing.

The transformation rules for E and D under a change of configuration from @ to @
are

4.5) E = FEF7
and
(4.6) Euk = D*B F' (Fly(F )+ (G yp Flc+ G g F'c) (F- )P EAC,

where (F, G) denote the second-grade deformation from . to i, ¢f. (2.30) and (2.31).
From (4.4), when E is the identity (metric) tensor, then so is E if, and only if, F is a con-
stant rotation. In this case G vanishes, and (4.6) reduces to
4.7 DYy = DA% F' \FIg(F-1)%,
which shows that the field D transforms as a third-order material tensor in such a special
deformation.

Now, let i be an arbitrary reference configuration of &/, homogeneous or inhomoge-

neous. We define the global fields E and D on (&) relative to an undistorted reference C.
Then the response field R in any deformed configuration ¢ can be determined by

(4.8) R = Ry(FEFT, W(F, G, E, D),

where W is given by (3.16). The representation (4.8) has the same form as (3.15) except
that here E and D need not be constant, so that ﬁ; depends implicitly on the position
in p.(sf) through E and D. The representation (4.8) expresses R in terms of the deform-
ation fields F and G relative to .

5. Local homogeneity, local pseudo-homogeneity, and local inhomogeneity in fluid bodies
and isotropic solid bodies

In the theory of simple bodies it is known that every materially uniform, smooth, simple
fluid body is locally homogeneous, and a materially uniform, smooth, isotropic solid
body is locally homogeneous if, and only if, its characteristic Riemannian metric is flat.
A locally homogeneous simple body need not be globally homogeneous; for more details
about inhomogeneities in simple bodies see refs. [3, 4 and 5].

In the preceding section we have shown that, unlike a simple fluid body, a second-
grade fluid body, generally, need not be homogeneous. Indeed, there are three types of
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materially uniform smooth second-grade fluid bodies: homogeneous, pseudo-homogeneous
or inhomogeneous fluid bodies. In the first part of this section we shall characterize these
three types of fluid bodies explicitly by some geometric conditions. However, since we
shall use local differential geometry only, those conditions are local, i.e., they characterize(?)
local homogeneity, local pseudo-homogeneity, and local inhomogeneity only.

Our first result is

THEOREM 5.1. A second-grade fluid body s is locally homogeneous near p e o fif,
and only if, in any configuration @ the characteristic fields | and m are related by

(5.1) m = Gradl/
near p.
Proof. Sufficiency. From the theory of simple fluid bodies we know that,

locally, there exist deformations relative to g such that in the deformed configuration
i the field / is constant near p. From (4.2),, we then have

(5.2) o = grad(/|detF]).

Using the chain rule and the formula for the derivative of the determinant, we can rewrite
(5.2) as

(5.3) o = |detF|(F~')"Grad/+ Igrad|detF|.
Substituting (5.1) into (5.3) and comparing the result with (4.2),, we see that
(5.4 m=o0

in the neighborhood of p, where (5.2) holds. Thus { is locally homogeneous near p, and
hence .

Necessity, Reversing the preceding argument, we assume that . is locally homo-
geneous near p. Then, locally, / is constant, and m vanishes. Now, let g be an arbitrary
configuration of «. From (4.2), we obtain

(5.5) I = I|detF|, ™ = Igrad|detF| = grad/.

Hence (5.1) holds locally in @ near the position of p. But since w is arbitrary, necessity is
proved.

The preceding theorem suggests that we define a vector field m, on any configuration
. of of by

(5.6) m, = ]T(m—Gradi).

Then we have the following

LEMMA 5.2. The vector field m, defined by (5.6) transforms as a material covector in
any deformation of o, i.e., in any configuration @ with deformation gradient F relative to
w®, we have
(5.7 m, = (F~*)"m,.
The proof of this lemma is obvious.

(*) As usual, we say that &f is locally homogeneous near p if a neighborhood of p is homogeneous,
¢f. [31; local pseudo-homogeneity and local inkomogeneity are defined similarly.
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In view of the preceding lemma, we see that Theorem 5.1 can be restated as

THEOREM 5.1'. A second-grade fluid body o is locally homogeneous near p e if,
and only if, the characteristic field m, vanishes locally in any configuration p.

Having characterized the locally homogeneous case, we consider next local pseudo-
homogeneity in a second-grade fluid body.

THEOREM 5.3. A second-grade fluid body s is locally pseudo-homogeneous near p if,
and only if, in any configuration w the characteristic field m, does not vanish but satisfies
locally the condition

(5.8) Curlmy = 0.
Proof. Necessity. Suppose that & is locally pseudo-homogeneous near p.

Then there exists a reference configuration . in which / and m, are constant and non-
vanishing near p. The field m, in any configuration g is given by (5.7), viz.,

(59 m, = (F')"m, # o,
which clearly satisfies the condition
(5.10) curlm, = o.

Sufficiency. Suppose that m, # o and satisfies (5.10) locally in w. Then in a
neighborhood of p we can find a function f such that

(5.11) m, = Gradf # o.

Denoting the coordinate system corresponding to p by (X4), we define the deformation
functions x' near p by

(5.12) x! = fXL,X%,X%), x*=x*(X',X%X7, x*=x3(X',X%X%),

where x? and x? are chosen in such a way that
(5.13) |detF| = -}

In . we then have, locally,
(5.14) I=1, m=my= (F1)TGradf = gradx'.

Consequently, @ is locally pseudo-homogeneous near p, and hence <.

If we now exclude the locally homogeneous case and the locally pseudo-homogeneous
case, then the locally inhomogeneous case can be characterized by

THEOREM 5.4. A second-grade fluid body &f is locally inhomogeneous near p if, and
only if, in any configuration p. the characteristic field m, satisfies locally one of the following
two conditions:

vii) my and Curl my are non-vanishing near p.

viii) my vanishes at p but it does not vanish identically near p.

The preceding theorems show that local homogeneity, local pseudo-homogeneity, or
local inhomogeneity in a materially uniform, smooth, second-grade, fluid body can be
characterized by / and m, in any configuration . When we change the configuration
by a deformation, / and m, transform as a material relative scalar field and a material
covector field, respectively. In abstract differential geometry, this situation corresponds
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to a volume tensor field v and a differential 1-form 8 on the body manifold . Local
homogeneity or inhomogeneity in & can now be expressed directly in terms of v and 6,
independent of any configuration.

THEOREM 5.5. The structure of a second-grade fluid body o/ may be characterized by
a volume tensor field v and a differential 1-form 8 on the body manifold & such that

I) o is locally homogeneous if, and only if, @ vanishes.
IT) & is locally pseudo-homogeneous if, and only if, O is non-vanishing but is closed,
i.e., the exterior derivative d O of 0 vanishes.
III) o is locally inhomogeneous if, and only if, 8 is not closed or @ vanishes at some
points but does not vanish at some other points in .

Having considered local homogeneity, local pseudo-homogeneity, and local inhomo-
geneity in a fluid body, we consider next the corresponding situations in an isotropic solid
body.

THEOREM 5.6. A second-grade isotropic solid body & is locally homogeneous near p
if, and only if, in any configuration w., the characteristic fields E and D verify the following
two conditions:

ix) The curvature tensor of E vanishes near p.

x) The tensor field D is given locally by

(5.15) D = GradE.

The proof of this theorem is essentially the same as that of Theorem 5.1.
The preceding theorem suggests that we define a tensor field Dy on any configuration

p by
(5.16) Do = D—GradE.

As before, we have the following
LeMMmA 5.7. The tensor field D, transforms as a material tensor in any deformation
of o, i.e., in any configuration w with deformation gradient F relative to ., we have

(5.17) Do = DolF, F, F-1].

As before, we can restate Theorem 5.6 as

THEOREM 5.6'. A second-grade isotropic solid body o is locally homogeneous near p
if, and only if, the characteristic tensor Dy and the curvature tensor of the tensor E both
vanish near p in any configuration .

Next, we characterize local pseudo-homogeneity. Our result is

THEOREM 5.8. A second-grade isotropic solid body & is locally pseudo-homogeneous
near p if, and only if, in any configuration . the characteristic metric satisfies Condition ix),
while the characteristic tensor field D, satisfies the condition

x)" The tensor field D, is constant but non-vanishing with respect to the metric E, i.e.,

the covariant derivative of D, relative to E vanishes near p.

In component form, Condition x') means that D, # O but

0D§%c

— + D§8c{fp} + DE*c{Ep} — D4k {%p},

(5.18) 0= Dgsc.n = “ox?
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where {#c} denotes the Christoffel symbols of the metric E. To prove Theorem 5.8, let
@ be a locally pseudo-homogeneous configuration for «/. Then Conditions ix) and x')
hold in . But since E and D, are material tensors with respect to any deformation, the
same must hold in all configurations. Conversely, if Conditions ix) and x’) hold in g, then
there exists a configuration &, in which E is the Euclidean metric and D, is equal to D
and is constant in a neighborhood of p. Therefore g is locally pseudo-homogeneous, and
hence .

Having characterized local homogeneity and local pseudo-homogeneity in a materially
uniform, smooth, second-grade, isotropic solid body, we can characterize the remaining
case of local inhomogeneity by

THEOREM 5.9. A second-grade isotropic solid body o is locally inhomogeneous near p
if, and only if, in any configuration w., the characteristic fields E and D, satisfy one of the
following two conditions:

xi) The curvature tensor of E does not vanish near p.

xii) The curvature tensor of E vanishes near p but the tensor D, does not remain constant

relative to E.

Theorems 5.6-5.9 show that local homogeneity, local pseudo-homogeneity, or local
inhomogeneity in a materially uniform, smooth, second-grade, isotropic solid body can
be characterized by E and D, in any configuration @ of the body. When we change the
configuration w by a deformation, E and D, transform as material tensor fields. Con-
sequently, there exist a Riemannian metric £ and a third-order tensor field I' on the body
manifold o/ corresponding to E and D,, respectively. Further, local homogeneity or
inhomogeneity in & can be expressed directly in terms of Z and T', independent of any
configuration.

THEOREM 5.10. The structure of a second-grade isotropic solid body sf may be character-
ized by a Riemannian metric Z and a third-order tensor field T on the body manifold o such
that

IV) o is locally homogeneous if, and only if, T and the curvature tensor of T both vanish.

V) & is locally pseudo-homogeneous if, and only if, the curvature tensor of  and the
covariant derivative of T4 both vanish but T, does not vanish.

VI) « is locally inhomogeneous if, and only if, the curvature tensor of Z does not vanish,
or if the curvature tensor of E vanishes, the covariant derivative of T, does not
vanish.

Now, we have characterized local homogeneity, local pseudo-homogeneity, and local

inhomogeneity geometrically in any materially uniform, smooth, second-grade fluid bodies
and isotropic solid bodies, so we close.
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