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Inhomogeneities in second-grade fluid bodies and isotropic solid 
bodies 

C. -C. WANG (HOUSTON) 

A GLOBAL theory for materially uniform, smooth, second-grade fluid bodies and isotropic solid 
bodies is developed in this paper. The main results include: isotropy groups and representations 
for the response function relative to distorted references in general, representations for the 
response field in arbitrary configuration, and geometric characterization for local homogeneity, 
local pseudo-homogeneity, and local inhomogeneity in those second-grade bodies. 

Przedstawiono globaln(l teori~ materialnie jednorodnych, gladkich cial cieklych r~u drugiego 
jak r6wniez izotropowych cial stalych. Uzyskano nastwujClce wyniki podstawowe: grupy izo­
tropii i reprezentacje funkcji reakcji materialu przy odksztalceniu ukladu wsp~ych, repre­
zentacje pola reakcji dla dowolnej konfiguracji, charakterystyk" geometrycznCl lokalnej jedno­
rodno§ci, lokalnej pseudojednorodno§ci i lokalnej niejednorodnoSci dla rozwa:ianych cial dru· 
giego rz"du. 

J13JIO)f{eHa rJI068JILHWI TOOpHH MaTepHaJI&HO O):tHOpoWfbiX, rJI~ >I<IW<WC TeJI BTOporo 
nopHro<a, a TaiOKe H30TpOIIHhiX mep~IX Ten. IIonylleHbi CJie.rzyro~e oCHOBHbie pe3y.m.TaTbi: 
rpyniibi ll30TpOIIHH ll rrpeACTaBJieHllH: Q>~ peaJ<qllH MaTepHaJia DPll AeQ>OpM:Qposamm, 
npeACTaBJieHHe UOJIH peaK~ B npOH3BOJILHOK KOHQ>IUj'pa~, reoMeTpll'tlecKHe xapaKTe­
pH~ JIOKaJILHOH O):tHOpO):tHOCTll, JIOKaJILHOH nceBAOOAHOPOJtHOCTll H JIOKaJILHOH HOO):tHO­
pO):tHOCTH HCCJie;zyeMbiX TeJI BTOporo DOPHAK8. 

1. Introduction 

As EXPLAINED in the preceding paper [1], a material of second-grade is defined by a con­
stitutive equation of the form 

(Ll) 

where (cp*P' cp**P) denotes the second-grade class induced by a configuration cp of 
a body .91 at the point p E d. R is ca1led the response function whose value R is a state 
function of p in the configuration cp such as the stress tensor, the stored energy, etc. For 
the purpose of this paper, the physical significance of R is not important and therefore 
not specified. 

Since R depends only on the second-grade class (cp*P' cp**P), it can be represented 
by a relative response function R" with respect to a reference configuration x, wiz., 

(1.2) 

where (F, G) denotes the second-grade deformation of cp relative to x. In the notation 
of [1], we write 

(1.3) 
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766 C. -C. WANG 

From (1.2) and (1.3), the relative response function obeys the following transformation 
rule: 

(1.4) R11(F, G,p) = RIC((F, G)o (H, K),p)), 

where (H, K) denotes the second-grade deformation from x to fL, viz., 

(1.5) (fL*P' fL**P) = (H, K) o (x*P' x**P) · 

From chain rule, the second-grade deformation obeys the composition formula: 

(1.6) (F, G) o (H, K) = (FH, FK + G[H, H]) 

cf [1, (3.4)]. 
In accordance with Noli's general definition, the isotropy group relative to x is the 

group g,c(p) consisting in all second-grade deformations (H, K) such that 

(1.7) 

for all deformations (F, G). Comparing (1.7) with (1.4), we see that (H, K) belongs to 
g)( (p) if, and only if, the relative response function is invariant under the change of local 
reference configuration from (x*P' xP*P) to (H, K) o (x*P' x**P). 

In [1], it is proposed that a (second-grade)fluid point p be characterized by the fo1lowing 
condition: Let there be a Jocal reference configuration (x*P' x**P) such that the isotropy 
group gx (p) is formed by all second-grade deformations (H, K) which verify the con­
ditions: 

i) ldetHI = 1, 

ii) tr(H- 1 K) = 0, 

where 
(1.8) 

The local reference configuration (x*P' x**P), which is distinguished by Conditions 
i) and ii), is called an undistorted local configuration. It is proved in [1] that the response 
function relative to (x*P' x**P) has the" following representation: 

(1.9) RiF, G,p) = Rx(ldetFI, gradldetFI,p), 

where gradldetFl is the spatial gradient of ldetFI at the point p and is given by the formula 

(1.10) gradldetFI = ldetFI(F-1)Ttr(F- 1 G). 

The representation (1.9) means that: 

(1.11) (F, G)- 1 o (F, G) e gip)~ ldetFI = ldet Fl, gradjdetFI = gradjdetFj. 

In particular, since (1, 0) e giC(p), we have 

(1.12) (H, K) e gx(p) ~ ldetHI = 1, gradjdetHl = 0. 

In [1] it is proposed also that a (second-grade) solid point p be characterized by the 
following condition: Let there be a local reference configuration (x**P' x*P) such that the 
isotropy group g)( (p) is formed by some second-grade deformations (H, K) which verify 
the conditions: 

iii) HT = u-1, 

iv) K = Q. 
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The particular local reference configuration (x*P' x**P) is also called an undistorted local 
configuration of p. In the case, when gx {p) is formed by all pairs (H, K) satisfying 
Conditions iii) and iv), pis called an isotropic (second-grade) solid point. In [1] it is proved 

that relative to (x*P' x**P) the response function admits the following representation: 

(1.13) Rx{F, G,p) = Rx(B, gradB,p), 

where B denotes the left Cauchy-Green tensor of F as usual, cf. [6, (23.5)], 

(1.14) B = FFT' 

and gradB denotes the spatial gradient of B and is given by the component form 

(1.15) (gradB)iik = GiAsF1 A(F-1)
8 k+G1 ABpiA(F-1)

8 k· 

For the proof of (1.9) and (1.13), see Ref. [1]; for a general theory of representation 
for constitutive relations, see Ref. [2]. It should be noted that Conditions i), ii) and iii), 
iv), and hence the representations (1.9) and (1.13), are valid only when the local reference 
configurations are undistorted. In the next section, we shall consider the isotropy groups 
of fluids and solids relative to distorted reference configurations, and we shall derive 
corresponding representations for th" response functions. 

We shall develop 1 a global theory for homogeneous or pseudo-homogeneous fluid 
bodies and isotropic solid bodies in § 3. Then, in § 4, we present a global theory for materially 
uniform fluid bodies and isotropic solid bodies in general. The main result of the global 
theory is a representation for the response field R in terms of the deformation relative 
to a global reference configuration. Finally, in § 5, we prove some geometric theorems 
which characterize local homogeneity, local pseudo-homogeneity, and local inhomogeneity 
in materially uniform, smooth, second-grade fluid bodies and isotropic solid bodies. 

2. Isotropy groups and representations for the response function relative to distorted references 

Let gx (p) and g" (p) denote the isotropy groups relative to x and fL, respectively, 
and suppose that the second-grade deformation from x to fLat pis {L, M). Then it follows 
from Noli's general rule that 

(2.1) g"(p) = {L, M) o gx(P) o (L, M)- 1
, 

cf [I, (3.7)]. In the preceding section, we have defined the isotropy groups for a fluid 
and for an isotropic solid relative to an undistorted reference, say x. The formula (2.1) 
can now be used to determine the isotropy groups relative to an arbitrary configuration fL· 

We consider first the isotropy group g" (p) of a fluid point p. We have the following 
result: A second-grade deformation (H, K) belongs to the isotropy group g"(p) if, andonly 
if, it verifies the conditions: 

i) ldetHI = 1, 

ii)' tr(L - 1 H- 1 L Grad(L- 1 HL)) = 0, 

where the left-hand side of ii) is given by 

(2.2) tr(L- 1H- 1LGrad(L- 1HL)) = -(L- 1HL)Ttr(L- 1 M) 

+LT tr(H- 1 K)+tr(L - 1 M) = (1-L - 1HL)Ttr(L- 1M)+LTtr(H- 1 K) 

4* 
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To prove that i) and ii)' characterize gx(p), we observe first the formula 

(2.3) 

cf. [1, (3.5)]. Now, from (2.1), we have 

(2.4) (H, K) e g11(p) ~ (L, MF1 o (H, K) o (L, M) e gx(p). 

From (2.3) and (1.6) the deformation gradient on the right-hand side of (2.4) is given by 

(2.5) (L, M)- 1 o (H, K) o (L, M) = (L - 1 HL, L - 1HM + L - 1 K[L, L] 

-(L-1 M(L, L))[HL, HL]). 

Hence, from (2.4), (H, K) e g11 (p), if and only if, 

(2.6) I = ldet(L- 1 HL)I = ldetHI, 

and 

(2.7) 0 = tr(L - 1H- 1LL - 1HM)+tr(L - 1HLL - 1 K[L, Ll) 

-tr(L - 1HLL - 1M(L -t, L - 1)[HL, HLJ) = tr(L- 1M)+LTtr(H- 1 K) 

- (L - 1 HLl tr(L - 1 M) = (1- L - 1 HL)T tr(L- 1 M)+ LTtr(H- 1 K). 

Comparing (2.7) with (2.2), we have proved that Conditions i) and ii)' characterize g11 (p). 

From (2. 7) we see that (fL*P' "**P) is undistorted, if and only if, its second-grade 
deformation (L, M) relative to an undistorted reference (x*P' x**P) obeys the condition 

(2.8) 

or, equivalently, the condition 

(2.9) gradldetLI = 0, 

cf. (1.10). 
In general (fL*P' "**P) and (i£*P' ~'••p) are called materially isomorphic if R 11 and 

Rli are identical, viz., 

(2.10) R11(F, G,p) = Rli(F, G,p) V(F, G). 

Comparing this condition with (1. 7), we see that (fL*P' "**P) and (i£*P' I'**P) are materially 
isomorphic if, and only if, the deformation (H, K) connecting them, say by 

(2.11) (fi.p, ii •• p) = (H, K) 0 (fL*P' "**P), 

belongs to g11(p). Let (L, M) and (L, M) be the second-grade deformations of (fL*P' "**P) 
and (i£*P' ji**P), respectively, relative to an arbitrary reference configuration (x*P' x**P). 
Then, as usual, we have 

(2.12) (L, M)= (H, K) o (L, M). 

But from (2.1 ), we have 

(2.13) 

So, if (x*P' x**P) is undistorted, then by combining (2.13) and (1.11), we obtain 

{2.14) (L, M) o (L, M)- 1 e g11(p) ~ ldetLI = ldet Ll, gradldetLI = gradldet Ll, 

which is another way to characterize g11(p) for an arbitrary reference fL· 
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Having considered the isotropy group gJA(p) of a fluid point relative to an arbitrary 
reference p., we turn next to representation for RJA. As before, let (L, M) be the second­
grade deformation of fL relative to an undistorted reference (x*P' x**P). Then, from (2.14), 
we know that RJA can be characterized by ldetLI and gradjdetLj. Indeed, if (F, G) is 
an arbitrary deformation relative to (p.*P' ~'**P), then the corresponding deformation 
reJative to (x*P' x**P) is given by 

(2.15) (F, G) o (L, M)= (FL, FM+G[L, LJ). 

Now, since (x*P' x**P) is undistorted, R)( has the representation (1.9). Substituting (2.15) 
into (1.9) and using (1.4), we obtain 

(2.16) RJI.(F, G, p) = ~((F, G) o (L, M),p) = ~(ldetFL), gradjdetFLj,p), 

where, from (2.15) and (1. I 0), the arguments of R)( are given by 

(2.17) 

and 

ldet(FL)I = ldetFIIdetLI, 

(2.18) gradldet(FL)I = ldet(FL)I((FL)- 1)T tr(L -tF-1(FM + G [L, L])) 

= ldetFI(F-1)T gradldetLI + ldetLjgradjdetFj. 

Hence we have the following representation for RJA : 

(2.19) RJA(F, G, p) = R)((ldetFIIdetLI, ldetFI(F-1)T gradldetLI + ldetLigradldetFI, p), 

where x is undistorted and is related to p. by 

(2.20) 

Next, we consider the isotropy group and the representation of the response function 
of an isotropic solid point p relative to an arbitrary local reference (p.*P' fL .. p). As before, 
we choose an undistorted local reference (x*P' x**P) and denote the second-grade deform­
ation of (p.*P' ~'**P) relative to (x*P' x**P) by (L, M). 

We have the following result: A deformation (H, K) belongs to gJA(p) if, and only if, 
it verifies the conditions 

iii)' (L - 1HLf = (L - 1HL)-t, 

iv)' Grad(L - 1HL) = 0, 

where the /eft-hand side ofiv)' is given by 

(2.21) Grad(L-1HL) = -L-1M[L - 1HL, L- 1HL]+L - 1 K[L, L]+L - 1HM. 

The proof is essentially the same as before. Conditions iii)' and iv)' characterize gJA(p) 
for an arbitrary reference p.. By definition, (p.*P' p.**P) is undistorted if, an only if, iii)' 
and iv)' reduce to iii) and iv). We claim that such is the case for fL if, and only if, 

(2.22) 

and 

(2.23) M=O. 
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Sufficiency is obvious. Conversely, if every (H, K) e g"'(p) obeys iii) and iv), then iii) 
implies 

(2.24) 

for all orthogonal H; it is well-known that (2.22) gives the general solution to (2.24). 
Similarly, iii), iv), and iv)' imply 

(2.25) 

for all orthogonal tensors H. We can rewrite this equation as 

(2.26) 

for all orthogonal tensors H; it is well-known that the general solution of (2.26) is 

(2.27) 

which is equivalent to (2.23). Thus the proof is complete. 
From (1.13), we can also express g"' (p) in the following way: Let (L, M) be the 

second-grade deformation of (fL*P' "fi**P) relative to (x*P' x**P). Then (fi*P' fi**P) and 
(fL*P' fL**P) are materially isomorphic if, and only if, 

(2.28) LLT = .Lf/, grad(LLT) = grad(Li/), 

where from (1.15) we have 

(2.29) 

Having characterized g"'(p) of an isotropic solid relative to an arbitrary fL, we consider 
next the response function R"'. By the same argument as before, we know that R"' depends 
on fL through LLT and grad (LLT) only, where (L, M) denotes the deformation of fL 
relative to an undistorted reference x. If (F, G) is an arbitrary deformation relative to 
(fL*P' ~'**P) as before, then the corresponding deformation relative to (x*P' x**P) is given 
by (2.15). Substituting (2.15) into (1.13), we obtain 

(2.30) R"'(F, G, p) = R)( {FLL 7' F~, grad(FLLT FT), p), 

where from (1.15) the second variable of RJ( is given by 

(2.31) (grad(FLLTFT))lik = (grad(LLT))A8 cFiAFi8 (F- 1)ck 

+ (GiABFic+ Gi AB Fie) (F- 1) 8 k(LLT)AC. 

3. Homogeneous and pseudo-homogeneous fluid bodies and isotropic solid bodies of second­
grade 

In the preceding sections, we have presented a local theory for a second-grade fluid 
point and a second-grade solid point. As usual, a local theory corresponds to a global 
theory in the special case when the body is homogeneous. We shall develop this special 
case first in this section. 

Naturally, we call d a (second-grade) fluid body or a (second-grade) isotropic solid 
body if each point p e .91 is a (second-grade) fluid point or a (second-grade) isotropic 
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solid point, respectively. For a reason which will become apparent later, we call JJI a homo­
geneous body if there exists a global reference x which verifies the following conditions: 

v) The field of response functions relative to x, namely R~e{F, G, p), p e JJI, is in­
dependent of p. 
vi) The induced field of local configurations of x, namely (x*P' x**P), p e JJI, is 
undistorted at each p. 
Naturally, we cal1 the configuration x, which is distinguished by Conditions v) and vi), 

a homogeneous configuration of JJI. It should be pointed that Condition v) generally does 

not imply Condition vi). However, if Condition v) holds, and if (x*P' x**P) is undistorted 
at any one point p, then Condition vi) also holds. For definiteness, we call a body JJI that 
satisfies Condition v) but not Condition vi) a pseudo-homogeneous body. We shall develop 
a global theory for homogeneous bodies first. 

The structure of a homogeneous body is very simple. Relative to a homogeneous 
configuration x, the response function is given by 

(3.1) R = R)C{F, G). 

This equation means that in any deformed configuration <p of JJI the response R on <p(JJI) 
is given by R~e(F, G), where (F, G) denotes the second-grade deformations from x to <p. 

Since x is undistorted, R~e admits a representation as shown in the preceding sections. 
In particular, when JJI is a fluid body, (3.1) reduces to 

(3.2) R = R,c(ldetFI, gradldetFI), 

and when A is an isotropic solid body, the representation is 

(3.3) R. = R:ccB, gradB). 

Further, in the argument of Rx and Rx the gradient operation reduces to the ordinary 
spatia] gradient, i.e., in coordinate form 

of 
(3.4) (gradf)j = oxi 

for any qu~ntity f. 
Next, we consider the structure of a pseudo-homogeneous body JJI. By definition, 

there exists a configuration fL, called a pseudo-homogeneous configuration, relative to which 
the field of response functions R"(F, G,p),p ed, is independent of p, but fL is not an 
undistorted configuration. In a deformed configuration <p, the field of response R is still 
given by 

(3.5) R = Rp.(F, G). 

However, since fL is not undistorted, the representation (3.2) or (3.3) are no longer appli­
cable. 

In order to make use of material symmetry in this case, we need the representations 
(2.19) and (2.30). We consider first the case when JJI is a fluid body. As before, let {L, M) 
denote the second-grade deformation of (fL*P' fL**P) for a particular point p eJJI relative 
to an undistorted local reference configuration (x*P' x**P). Since fL is pseudo-homogeneous, 
the field ~ given by 

(3.6) 
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is a field of undistorted local configurations on d. As we shall prove later, such a field 
~ cannot be an induced field of a configuration of d. However, since from (3.6) at the 
point p we have 

(3.7) 

the field of response function relative to~ is given by 

(3.8) .Rt{F, G, q) = Rx(F, G,p), V q ed. 

Here, we have used the fact that Rr;(F, G, q) is independent of q, an obvious consequence 
of (3.6). As explained in the preceding section, the distorted configuration f1. can be 
characterized by two quantities: a positive scalar ldetLI and a vector gradjdetLj. For 
brevity, we put 

(3.9) I = ldetLI, m = gradldetLj. 

In view of the fact that fL is pseudo-homogeneous, {L, M) remains constant on fL{A), 
and hence (/,m). Now, let (F, G) be the second-grade deformation of cp relative to fL as 
before. Then, from (2.19), the field of response has the representation 

(3.10) R = Rr;(/ldetFI, ldetFI{F- 1lm+/gradldetFI), 

where gradjdetFl is given by (3.6). 
Having obtained the desired representation (3.10) for R, we now show that d does 

not have any homogeneous configuration. Indeed, suppose that there exists a homogeneous 
configuration cp for d. Let (F, G) be the second-grade deformation of cp relative to fL· 
Then, from (3.6), the second-grade deformation of cp relative to ~ is given by 

(3.11) (cp*q' cp**q) o ~- 1 (q) = {F(q), G(q)) o (L, M), q ed, 

where the composite deformation on the right-hand side of (3.11) corresponds to the 
argument in (3.1 0). 

Now, since cp is required to be homogeneous, Condition v) implies that 

(3.12) /ldetFI = a constant independent of q, 

and Condition vi) implies that 

(3.13) ldetFI(F- 1)rm+igradjdetFI = o, 

since m :F o; otherwise, fL would be homogeneous not pseudo-homogeneous; (3.12) 
and (3.13) are clearly contradictory. Thus we have completed the proof. 

Since R"' is independent of the position in fL(d), the local configurations induced by 
fL are materially isomorphic in a sense to be defined in general in the next section. The 
local configurations of f1. are not undistorted, however, since their deformation (L, M) 
from an undistorted reference ~ does not satisfy (2.8). Of course, it is possible to deform 
fL(d) in such a way that the local configuration of some point p e d becomes undistorted. 
It is not possible, however, to deform the whole fL(d) into an undistorted configuration 
as we have shown. 

Having explained the structure of a pseudo-homogeneous fluid body in detail, we can 
treat that of a pseudo-homogeneous isotropic solid body in a similar way. Let d now 
denote a pseudo-homogeneous isotropic solid body, and suppose that fl. is one of its 
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pseudo-homogeneous configurations. As before, let (L, M) be the second-grade de­
formation of fL relative to ~. Then we can characterize fL by 

(3.14) E = LLr, D = grad(LLr), 

where E is a metric and D is given by (2.29). From (2.30), the response field R in any 
deformed configuration cp is given by 

(3.15) R = Rt(FEFT, W(F, G, E, D)), 
where W is given by 

(3.16) (W(F, G, E, D))iik = DA8 cFiBpiA(F-1lk+(GiABFic+Gi nFc) (F- 1)
8"EAc, 

cf. (2.31). The expression (3.16) is the desired representation for R in terms of the de­
formation of cp relative to fL· 

By essentially the same argument as before, we can show that a pseudo-homogeneous 
isotropic solid body does not have any homogeneous configuration either. 

Further, as in the case of a fluid body, the local configurations induced by fLare ma­
terially isomorphic to one another, but those local configurations are not undistorted. 
Hence R must be determined through (3.16) not through (3.3). 

4. Materially uniform smooth inhomogeneous fluid bodies and isotropic solid bodies of 
second-grade 

The global theory for homogeneous or pseudo-homogeneous fluids and isotropic 
solids developed in the preceding section can be generalized in an obvious way to a global 
theory for materially uniform but inhomogeneous bodies. Recall first that material iso­
morphism between two points p and q in a body d is defined by the condition that there 
exist local references ~(p) and ~(q) such that 

(4.1) Rt(F, G, p) = Rt(F, G, q) 

for all second-grade deformations (F, G), cf [1]. Naturally, we say that ~(p) and ~(q) 
are materially isomorphic to each other, and we call p and q materially isomorphic points. 
A body is said to be materially uniform if all of its points are materially isomorphic to 
one another. 

As usual, we define smoothness of a materially uniform body by the condition that 
there be smooth local fields of materially isomorphic references in a neighborhood of any 
point in the body. Generally, smooth global fields of materially isomorphic references 
need not exist; this situation is explained in detail in the theory of smooth materially 
uniform simple bodies, cf [3]. While it is, of course, possible to develop a general global 
theory for second-grade bodies with arbitrary material symmetry, this is not the purpose 
of this paper. Here, we are interested in second-grade fluid bodies and isotropic solid 
bodies only. For these special cases, the material structure can be characterized by some 
tensor fields, as we shaH now see. 

First, we consider the structure of a smooth, materiaiJy uniform, second-grade fluid 
body. Denoting the body by .rl as before, we know that d can be covered by local smooth 
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fields of materially isomorphic references. Since these fields are not required to be induced 
fields, without loss of generality we may choose them to be fields of materially isomorphic 
undistorted references. We denote a typical one of these fields by ~. 

Now, let fL be a global configuration of d. Then, as explained in the preceding section, 
we can characterize the local configurations induced by fL by I and m. While in general~ 
need not be defined globally, the fields I and m are global and are smooth in fL(d). In the 
special case when d is homogeneous, I is constant and m vanishes throughout fL(d), 
while in the case when d is pseudo-homogeneous, both I and m are constant and non­
vanishing. In general, of course, I and m need not be constant on fL(d). In that case, we 
call fLan inhomogeneous configuration of d. Natural1y, we call d an inhomogeneous body 
if all configurations of d are inhomogeneous. 

It should be noted that a homogeneous body or a pseudo-homogeneous body possesses 
homogeneous or pseudo-homogeneous configurations as well as inhomogeneous configu­
rations. Hence the mere fact that a configuration fL is inhomogeneous for d does not 
imply inhomogeneity of the body. In order to show that d is inhomogeneous, we must 
verify that all configurations of d are inhomogeneous. Therefore it is important to know 
the transformation rule for I and m under a change of configuration. 

In the preceding section we have given the transformation rule for I and m relative 
to a homogeneous or a pseudo-homogeneous configuration. Now, let fL and jibe configura­
tion of din general. We denote the second-grade deformation field from fL to ji by (F, G). 
Then I, m and T, iii on fL(A) and ji(A), respectively, are related by 

(4.2) (= lldetFI, iii = ldetFI(F- 1fm+lgradldetF1. 

The proof is the same as (2.17) and (2.18), since ( 4.2) is a pointwise result. 
The transformation rule (4.2)2 shows that m does not correspond to a material(!) 

vector field in a deformation from fL to ji in general. However, if the deformation is 
isochoric, then m transforms as a material covector field, since in this case, ( 4.2) 
reduces to 

(4.3) 

We can use this special case to describe the inhomogeneity in a particular fluid body: 
We consider a fluid body that is equipped with a global configuration fL in which I is 
constant but m is not constant, say m vanishes at some points but does not vanish at some 
other points. Then, from ( 4.3), such a fluid body is clearly inhomogeneous. 

Knowing that a fluid body in general may be inhomogeneous, we now seek a represen­
tation for R when the reference configuration fL is arbitrary. This representation can be 
read off from ( 4.2) and (2.19), namely, 

(4.4) R = R~(lldetFI, ldetFI(F- 1)Tm+IgradldetFI), 

which has the same form as (3.10), except that here I and m need not be constant, so that 
R" depends implicitly on the position in fL(d) through I and m. 

The representation ( 4.4) expresses R in terms of the field of second-grade deformation 
(F, G) relative to fL· 

Next, we consider the structure of a smooth, materially uniform, second-grade, iso-

(1) A material vector field or tensor field is a vector field or tensor field on the body manifold, cf. [3]. 
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tropic, solid body. Again, we denote the body by .91, and we choose a set of local fields 
of materially isomorphic undistorted references ~ to cover .91. Then, as explained in the 
preceding section, we can characterize the local configurations induced by a global con­
figuration fL by E and D. In the special case when d is homogeneous, E is constant and D 
vanishes, while in the case when .91 is pseudo-homogeneous, both E and D are constant 
and non-vanishing. In general, of course, E and D need not be constant on lJ.(d). 

Examples of inhomogeneous, second-grade, isotropic, solid bodies are easy to construct. 
Indeed, any inhomogeneous simple (i.e., first-grade) isotropic solid body corresponds 
to an inhomogeneous second-grade body. Further, even if E is constant and coincides 
with the Euclidean metric on fL{d), .91 may still be inhomogeneous provided that D be 
non-vanishing. 

The transformation rules for E and D under a change of configuration from fL to ji 
are 

(4.5) 

and 

(4.6) jjiik = DAB cFiAF1s(F-1)ck+ (G1AsF1c+ G1 As Fe) (F- 1)8 kEAC, 

where (F, G) denote the second-grade deformation from lL to f£, cf (2.30) and (2.31). 
From (4.4), when E is the identity (metric) tensor, then so is E if, and only if, F is a con­
stant rotation. In this case G vanishes, and ( 4.6) reduces to 

(4.7) jjilk = DABcpiAFis(F-1)\, 

which shows that the field D transforms as a third-order material tensor in such a special 
deformation. 

Now, let fL be an arbitrary reference configuration of d, homogeneous or inhomoge­
neous. We define the global fields E and D on fL{d) relative to an undistorted reference~. 
Then the response field R in any deformed configuration cp can be determined by 

- V T (4.8) R = Rr;(FEF , W(F, G, E, 0), 

where W is given by (3.16). The representation (4.8) has the same form as (3.15) except 
that here E and D need not be constant, so that Rr; depends implicitly on the position 
in fL(d) through E and D. The representation (4.8) expresses R In terms of the deform­
ation fields F and G relative to fL· 

5. Local homogeneity, local pseudo-homogeneity, and local inhomogeneity in fluid bodies 
and isotropic solid bodies 

In the theory of simple bodies it is known that every materially uniform, smooth, simple 
fluid body is locally homogeneous, and a materially uniform, smooth, isotropic solid 
body is locally homogeneous if, and only if, its characteristic Riemannian metric is flat. 
A locally homogeneous simple body need not be globally homogeneous; for more details 
about inhomogeneities in simple bodies see refs. [3, 4 and 5]. 

In the preceding section we have shown that, unlike a simple fluid body, a second­
grade fluid body, generally, need not be homogeneous. Indeed, there are three types of 
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materially uniform smooth second-grade fluid bodies: homogeneous, pseudo-homogeneous 
or inhomogeneous fluid bodies. In the first part of this section we shall characterize these 
three types of fluid bodies explicitly by some geometric conditions. However, since we 
shall use local differential geometry only, those conditions are local, i.e., they characterize(l) 
local homogeneity, local pseudo-homogeneity, and local inhomogeneity only. 

Our first result is 
THEoREM 5.1. A second-grade fluid body d is locally homogeneous near p ed if, 

and only if, in any configuration p. the characteristic fields I and m are related by 

(5.1) m= Grad/ 

near p. 
Pro o f. S u f f i c i e n c y. From the theory of simple fluid bodies we know that, 

locally, there exist deformations relative to p. such that in the deformed configuration 
f1 the field I is constant near p. From ( 4.2)h we then have 

(5.2) o = grad(ljdetFI). 

Using the chain rule and the formula for the derivative of the determinant, we can rewrite 
(5.2) as 

(5.3) o = ldetFI(F- 1VGrad/+/gradjdetFI. 

Substituting (5.1) into (5.3) and comparing the result with (4.2h, we see that 

(5.4) iii = 0 

in the neighborhood of p, where (5.2) holds. Thus f1 is locally homogeneous near p, and 
hence d. 

Necessity. Reversing the preceding argument, we assume that p. is locally homo­
geneous near p. Then, locally, I is constant, and m vanishes. Now, let fi be an arbitrary 
configuration of JJI. From ( 4.2), we obtain 

(5.5) f = /ldetFI, iii = /gradldetFI = grad[ 

Hence (5.1) holds locally in fi near the position of p. But since ii is arbitrary, necessity is 
proved. 

The preceding theorem suggests that we define a vector field m0 on any configuration 
p. of d by 

(5.6) 1 
mo f= T(m-Grad/). 

Then we have the following 
LEMMA 5.2. The vector field m0 defined by (5.6) transforms as a material covector in 

any deformation of d, i.e., in any configuration p: with deformation gradient F relative to 
p., we have 

(5.7) iiio = (F-1 )Tmo. 

The proof of this lemma is obvious. 

(1) AB usual, we say that d is locally homogeneous near p if a neighborhood of p is homogeneous, 
cf. (3]; local pseudo-homogeneity and local inhomogeneity are defined similarly. 
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In view of the preceding lemma, we see that Theorem 5.1 can be restated as 
THEOREM 5.1'. A second-grade fluid body sl/ is locally homogeneous near p e .91 if, 

and only if, the characteristic field m0 vanishes locally in any configuration fL· 
Having characterized the locally homogeneous case, we consider next local pseudo­

homogeneity in a second-grade fluid body. 
THEOREM 5.3. A second-grade fluid body .91 is locally pseudo-homogeneous near p if, 

and only if, in any configuration fJ. the characteristic field m0 does not vanish but satisfies 
locally the condition 

(5.8) Curlm0 = o. 

P r o o f. N e c e s s i t y. Suppose that .91 is locally pseudo-homogeneous near p. 
Then there exists a reference configuration fJ. in which I and m0 are constant and non­
vanishing near p. The field iii0 in any configuration fi is given by (5.7), viz., 

(5.9) 

which clearly satisfies the condition 

(5.10) curliii0 = o. 

S u f f i c i en c y. Suppose that m0 #= o and satisfies (5.10) locally in fL· Then in a 
neighborhood of p we can find a function f such that 

(5.11) m0 = Gradf #= o. 

Denoting the coordinate system corresponding to fJ. by (X''), we define the deformation 
functions xi near p by 

(5.12) 

where x 2 and x3 are chosen in such a way that 

(5.13) 

In fi we then have, locally, 

(5.14) I= 1, 

1 
ldetFI = y· 

ConsequentJy, fJ. is locally pseudo-homogeneous near p, and hence .91. 
If we now exclude the localJy homogeneous case and the locaJly pseudo-homogeneous 

case, then the locally inhomogeneous case can be characterized by 
THEOREM 5.4. A second-grade fluid body .91 is locally inhomogeneous near p if, and 

only if, in any configuration fJ. the characteristic field m0 satisfies locally one of the following 
two conditions: 

vii) m0 and Curl m0 are non-vanishing near p. 
viii) m0 vanishes at p but it does not vanish identically near p. 
The preceding theorems show that local homogeneity, local pseudo-homogeneity, or 

local inhomogeneity in a materially uniform, smooth, second-grade, fluid body can be 
characterized by l and m0 in any configuration fL· When we change the configuration fJ. 
by a deformation, I and m0 transform as a material relative scalar field and a material 
covector field, respectively. In abstract differential geometry, this situation corresponds 
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to a volume tensor field v and a differential 1-form 8 on the body manifold .91. Local 
homogeneity or inhomogeneity in .91 can now be expressed directly in terms of v and 8, 
independent of any configuration. 

THEOREM 5.5. The structure of a second-grade fluid body .91 may be characterized by 
a volume tensor field v and a differential 1-form 8 on the body manifold .91 such that 

I) .91 is locally homogeneous if, and only if, 8 vanishes. 
11) .91 is locally pseudo-homogeneous if, and only if, 8 is non-vanishing but is closed, 

i.e., the exterior derivative d 8 of 8 vanishes. 
Ill) .91 is locally inhomogeneous if, and only if, 8 is not closed or 8 vanishes at some 

points but does not vanish at some other points in .91. 
Having considered local homogeneity, local pseudo-homogeneity, and local inhomo­

geneity in a fluid body, we consider next the corresponding situations in an isotropic solid 
body. 

THEOREM 5.6. A second-grade isotropic solid body .91 is locally homogeneous near p 
if, and only if, in any configuration JL, the characteristic fields E and D verify the following 
two conditions: 

ix) The curvature tensor ofE vanishes near p. 
x) The tensor field D is given locally by 

(5.15) D =GradE. 

The proof of this theorem is essentially the same as that of Theorem 5.1. 

The preceding theorem suggests that we define a tensor field Do on any configuration 
lL by 

(5.16) Do= D-GradE. 

As before, we have the following 
LEMMA 5. 7. The tensor field Do transforms as a material tensor in any deformation 

of .91, i.e., in any configuration ii with deformation gradient F relative to JL, we have 

(5.17) Do = Do[F, F, F- 1
]. 

As before, we can restate Theorem 5.6 as 
THEOREM 5.6'. A second-grade isotropic solid body .91 is locally homogeneous near p 

if, and only if, the characteristic tensor Do and the curvature tensor of the tensor E both 
vanish near p in any configuration IL· 

Next, we characterize local pseudo-homogeneity. Our result is 
THEOREM 5.8. A second-grade isotropic solid body .91 is locally pseudo-homogeneous 

near p if, and only if, in any configuration JL the characteristic metric satisfies Condition ix), 
while the characteristic tensor field Do satisfies the condition 

x)' The tensor field Do is constant but non-vanishing with respect to the metric E, i.e., 
the covariant derivative of Do relative to E vanishes near p. 

In component form, Condition x') means that Do =I= 0 but 

(5.18) DAB aDgBc DKB {A } AK {B } DAB {K } 
0 = 0 C,D = oXD- + 0 C KD +Do C KD - 0 K CD , 
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where {~c} denotes the Christoffel symbols of the metric E. To prove Theorem 5.8, let 
fL be a locally pseudo-homogeneous configuration for .91. Then Conditions ix) and x') 
hold in fL· But since E and Do are material tensors with respect to any deformation, the 
same must hold in all configurations. Conversely, if Conditions ix) and x') hold in p., then 
there exists a configuration p:, in which E is the Euclidean metric and Do is equal to D 
and is constant in a neighborhood of p. Therefore p: is locally pseudo-homogeneous, and 
hence .91. 

Having characterized local homogeneity and local pseudo-homogeneity in a materially 
uniform, smooth, second-grade, isotropic solid body, we can characterize the remaining 
case of local inhomogeneity by 

THEOREM 5.9. A second-grade isotropic solid body .91 is locally inhomogeneous near p 
if, and only if, in any configuration fL, the characteristic fields E and Do satisfy one of the 
following two conditions: 

xi) The curvature tensor of E does not vanish near p. 
xii) The curvature tensor ofE vanishes near p but the tensor Do does not remain constant 

relative to E. 
Theorems 5.6-5.9 show that local homogeneity, local pseudo-homogeneity, or local 

inhomogeneity in a materiaHy uniform, smooth, second-grade, isotropic solid body can 
be characterized by E and Do in any configuration fL of the body. When we change the 
configuration fL by a deformation, E and Do transform as material tensor fields. Con­
sequently, there exist a Riemannian metric E and a third-order tensor field r on the body 
manifold .91 corresponding to E and Do, respectively. Further, local homogeneity or 
inhomogeneity in .91 can be expressed directly in terms of E and r, independent of any 
configuration. 

THEOREM 5.10. The structure of a second-grade isotropic solid body .91 may be character­
ized by a Riemannian metric E and a third-order tensor field r on the body manifold d such 
that 

IV) .91 is locally homogeneous if, and only if, rand the curvature tensor of E both vanish. 
V) .91 is locally pseudo-homogeneous if, and only if, the curvature tensor of E and the 

covariant derivative of r 0 both vanish but r 0 does not vanish. 
VI) .91 is locally inhomogeneous if, and only if, the curvature tensor of E does not vanish, 

or if the curvature tensor of E vanishes, the covariant derivative of r 0 does not 
vanish. 

Now, we have characterized local homogeneity, local pseudo-homogeneity, and local 
inhomogeneity geometrically in any materially uniform, smooth, second-grade fluid bodies 
and isotropic solid bodies, so we close. 
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