
Archives of Mechanics • Archiwum Mcchaniki Stosowanej e15, S, pp. 753-763, Warszawa 1973 

Influence of random perturbations on self-excited vibrations of a 
system with one degree of freedom 

K. PISZCZEK (KRAKOW) 

THE PAPER presents an approximate method of analysis of the influence of random perturbations 
on the amplitude and the angular vibration frequency of self-excited vibrations. The essential 
feature of the method consists in the method of derivation of the differential Eq. (1.11) describing 
the stochastic process. The theoretical analysis is illustrated by two examples concerning the 
Van der Pol equation with "white noise" perturbations, and the Rayleigh-type equation describing 
the lathe tool vibrations. 

Podano przyblii:on<~: metodC( analizy wplywu zaburzen przypadkowych na amplitude( i cZC(Stosc 
k<~:tow<~: drgan samowzbudnych. Istot<t: metody jest spos6b otrzymywania r6wnania r6Zniczko­
wego (1.11 ), opisuj<~:cego proces stochastyczny. C~ teoretyczn<~: zilustrowano dwoma przy­
kladami dotycZ<t:cymi r6wnania Van der Pola przy zaburzeniu w postaci "bialego szumu" oraz 
r6wnania typu Rayleigha, opisuj<t:cego drgania noza tokarki. 

)laeTC.fl MCTOA npa6JIIDKemmro aHaJI}\3a BJIH.fiHIUI CJIYllaHHbiX BO~My~emm Ha aMIIJIHTY,lzy 
H yrJioByro llaCTOTY aBTOKOJie6aHHH. C~eCTBo MCTOAa COCTOHT B UOCTpOeH}\1\ AaQ><l>epe~am.­
HOro ypaaHeHI\.fl (1.11), onuchmaro~ero CJIYllaHHbiH npo~ecc. TeopeTl\llecKa.fl llaCTb l\JIJIIO­
crpupyeTc.fl ABYM.fl UOAp06HO BbllJB;CJieHHbiMH npl\MCpaMI\, OTHOC.fi~C.fl K (a) ypaBHeHl\10 
BaH Aep IloJI.fl npu B03M~eHamc THUa "6enoro wyMa" H K (6) ypaaHeHl\10 THna Pene.fl, 
onucbmaro~ero KoJie6aHI\.fl TOKapHoro pea~a. 

Introduction 

THEoRY of self-excited vibrations constitutes one of the most important sections of non­
linear dynamics. In the deterministic approach, the amplitude of stationary vibrations 
and the angular frequency corresponding to stable limit cycles are determined in an approx­
imate manner. Analysis concerning the Van der Pol equation [4] or the Rayleigh equation 
[2] may serve as a good example of these types of problems. 

This paper is aimed at the determination of the influence of random external pertur­
bations, considered as a stationary stochastic process, on the approximate value of the 
square of amplitude of self-excited vibrations, and on the mean square value of angular 
frequency of these vibrations. One of the papers dealing with the subject is [1] which in 
a very particular manner concerns the Van der Pol equation. The linearization-correlation 
method was applied in that paper; it consisted of an approximate evaluation of the self-cor­
relation function and of the spectral density corresponding to the non-linear term of the 
differential equation, the latter being then divided into two linear equations: one of them 
corresponds to the deterministic self-excited vibrations, the other represents the random 
perturbation. 

The method presented in this paper is general and may be applied to the entire group 
of problems connected with the influence of external perturbations of random character 
upon the characteristics of non-linear vibrations. 
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1. Essential features of the method 

Let the differential equation 

(1.1) L[x, x, x;p] = x+[1(x, x)+w~x-p(t) = 0 

describe the vibrations of a system with one degree of freedom, the function[. (x, x) having 
the property that under vanishing external excitations p(t) = 0 stable self-excited vibrations 
appear in the system. There exist numerous criteria which make it possible to establish 
the existence of limit cycles of self-excited vibrations on the sole basis of properties of 
coefficients of the corresponding differential equation of motion. These are, for instance, 
the Lienard and Bendixon criteria (cf. [6]). Function p(t) is assumed to constitute a small 
perturbation in the form of a stationary, normal stochastic process with a zero mean value. 

Let us denote by ~. the random vibrations produced by external excitations p(t), and 
by ~2 -the stationary self-excited vibrations which, in the general case, may be assumed 
in the form of a Fourier series ([5], p. 49), 

(1.2) 

Here, ~02 = const represents the value of displacement of the vibration center, A is the 
first approximation of "amplitude" of self-excited vibrations, and w - the corresponding 
"angular frequency". The remaining terms in Eq. (1.2) represent higher order harmonic 
components. The values of A, w, a2 , q;2 ••• are considered as constants. 

Similarly to the deterministic approach to the problem of influence of external excita­
tions on self-excited vibrations (cf. [5], Eqs. ( 41.1 ), ( 42.13) ), the solution of (1.1) is assumed 
in the form 

(1.3) 

This assumption demonstrates the influence of random excitations ~1 on the final form 
of the solution x which will be found to be close to the solution ~2 under small random 
perturbations. Substituting the relation (1.3) into Eq. (1.1), the form of solution (1.2) being 
taken into account, and representing the resulting expression in the form of a Fourier 
series, we obtain 

(1.4) 1J1o(f1 , e1, ~1 ; A, w, a2 , q;2 , ... )+1p1 (eb ~1 ; A, w, a2 , q;2 ... )coswt 

+ X1 (~ 1 , ~ 1 ; A, w, a 2 , q;2 , ... )sinwt+1p2 (e1, ~ 1 ; A, w, a2, fP2, ... )cos2wt 

+ X2(e1, ~1; A, w, a2 , q;2 , ... )sin2wt+ ... = 0. 

In view of the requirement that the above equality should be satisfied identically with 
respect to time t, all the coefficients of expansion (1.4) must vanish. Confining ourselves 
to the first approximation, i.e. preserving in Eq. (1.2) only the first two terms or the first 
three terms in the Fourier expansion (1.4), we obtain 

(1.5) 

"1'oCf1, e1, ~1;A,w) = 0, 

1p 1 (~1 , ~ 1 ; A, w) = 0, 

X1C~1, ~1; A, w) = 0. 
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Applying the formulae for the Fourier series coefficients, Eqs. (1.5) are written in the 

form 

(1.6) 

T 

J L[i, i, x;p]dt = o, 
0 

T 

J L[i, i, .X; p]coswtdt = 0, 
0 

T 

J L[.~, i, x;p]sinwtdt = 0. 
0 

Here T = 2n/w, and 

(1.7) .X= ~t +~02 +Asinwt. 

In integrating the expressions (1.6), the magnitudes ~1 , t1 , e~, p should be considered 
as constants. 

Expression (1.7) is now substituted in (1.6) to yield, the notation of (1.1) being taken 
into account, the equations 

(1.8) 

T 

J!1[~t +~o2+Asinwt, ~1 +Awcoswt]coswtdt = 0, 
0 

T 

Jft[~t +~o2+Asinwt, Et +Awcoswt]sinwtdt = 0. 
0 

A and w may be ca]culated from the last two equations and expressed as functions of the 

variables ~1 , ~1 , ~02 • Explicit form of these functions depends on the type of the function 
.f1 (x, x) appearing in the origina] differentia) equation (1 .1). In certain cases, what is evident 
on the basis of a detaiJed analysis of two particular examples, the two last equations of 
(1.8) may be written as follows: 

(1.9) 

Here 

W
2A2 = (/}Y+(/}t(~t' Et), 

W
2 = (/)g + (/)2 C~t, ~1). 

(/) t (0, 0) = 0, (/)2 (0, 0) = 0, and 

(/)y = w2 A\ (])g = w2 . 
w and A denote the angular frequency and the amplitude of self-excited vibrations, respec­
tively, influence of random perturbations being disregarded. 

The expressions for A and w thus derived are now substituted into the Eq. (1.8)1 to 
yield 

~t +F(~b ~t; ·~o2) = p(t), 

where F denotes a certain function of the arguments indicated in the formula. Consequently, 
this function is represented in the form of a sum 

F(~b Et; ~o2) = F1(~1' ~t; ~o2)+g(~o2), 
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the function F1 being of such a type that 

F(O, 0; ,02) = F1(0, 0; ~02) = 0. 

The equation 

(1.10) 

serves to determine ~02 • Let us denote its roots by fo2 • With this notation taken into account 
in the expression for F written as a sum of F1 and g, we obtain 

F('1, ~1; to2) = F1 (~1, ~~; to2) = /(~1, ~~) 

and Eq. (1.1) takes the form 

(1.11) 

The functions F, F1 and g cannot be defined more precisely in the general case since they 
depend on the type of non-linearity appearing in the original Eq. (1.1). The method of 
separation ofF into functions F1 and g, as presented above, is general. Detailed expressions 
are obtained in each particular case separately. 

2. Evaluation of the mean square value of displacements produced by random vibrations 

The differential Eq. (1.11) is approximately solved by means of the method of equiv­
alent statistic linearization [7]. 

The solution of Eq. (1.11) is sought in the form 

(2.1) 

where (~1) = m represents the mean value of the random function ~1 , and x 1 is a centred 
value (with a zero mean value). From the assumption, (p) = 0. Equation (1.11) is then 
represented in an equivalent form 

(2.2) x1 +kx1 +!.Pxl = p(t) 

in which the constants k and !J2 are expres~ed by the formulae 

k = ({(m+xb .Xt).Xt) 
<xt> ' 

(2.3) 

In view of (~1 ) = 0, we obtain 

(2.4) 

The solution x 1 is assumed in the form 

(2.5) x1 = asin(!Jt+ 4)) = asinO. 

Here a and 4) are random functions which vary slowly in time, therefore we may assume 

(2.6) x1 = a!JcosO, 
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The expressions (2.3), (2.4) are now written as 

2noo 

(2.7) k = 2n(
1
i?) J J f(m+asinO, a!JcosO)a!JcosOw(a)dadO, 

1 
0 0 

and 

(2.8) 

2noo 

D2 = 2n:x2 ) J J f(m+asinO, a!JcosO)asinOw(a)dad() 
1 

0 0 

2noo 

J J f(m+asinO, a!JcosO)w(a)dad() = 0. 
0 0 

757 

In these relations w(a) denotes the function of probability distribution density of the ampli­
tude and is expressed by the Rayleigh function 

(2.9) a [ a
2 J w(a) = (xf> exp - 2(xf) , 

while 

(2.10) 

From Eq. (2.8) is calculated the mean value of m which, substituted in Eqs. (2.7), may 
serve, together with Eq. (2.10), to express k and !J2 in terms of (xf) and the vibrating 

system parameters contained in the form of /(~1 , ~~). 
From the linear theory it is known that in the case of a vibrating system with one degree 

of freedom we may state, in connection with Eq. (2.2), the following equality: 

(2.11) 

Here 

(2.12) 

00 

(x~) = J IH(jm)I 2Sp(m)dm. 
-00 

H(jm) = ~-=---=­D2-m2+jkm 

represents the frequency characteristics of the system, and Sp(m) is the spectral density 
of excitation p. In the case of "white noise", we obtain Sp(m) = S0 = const and Eq. (2.11) 
assumes after calculations the form 

(2.13) 

In the general case, once the form of Sp(m) is known, we are able to calculate the integral 
appearing in Eq. (2.11). The resulting parameters k and {J are replaced with the values 
from Eqs. (2. 7) to yield the algebraic equation necessary for the final determination of 
(xf). This value and Eqs. (2.10), (2.1) make it possible to express, by means of Eq. (1.9), 
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the following mean square values of the amplitude and the self-excited vibration frequency, 
the random perturbations being accounted for, 

0 • 1 
(A2) = [(Pt +((Pt (~t' ~t))] -(w2) , 

(2.14) 

3. Example 1. V an der Pol equation 

As the first example of the theory let us analyze the influence of small random pertur­
bations on the amplitude of self-excited vibrations described by the Van der Pol equation 

(3.1) x- e(l-yx2)x+w~x = p(t), 

where e and y are positive constants. From Eq. (1.1) it follows that the function 

(3.2) ft(X, X):= -e(l-yx2)X. 

Expressions (1.5) take the respective forms 

(3.3) 

g,-e~, +ruU, +cy(;i+ ~ A 2 )~. -p(t) = 0, 

1 
-eAw+eyAw~~+4eyA 3w = 0, 

2eyA~1 ~1 -Aw2 +Aw~ = 0. 

Assuming that A :I: 0, w :I: 0, the two latter equations take the form 

(3.4) 
2 • 

w2 = w0 +2ey~1 ~ 1 • 

Substituting this in Eq. (3.3)1 , we have 
•• • 2 2. 

(3.5) ~1 +e~1 +wo~1-ey~1~1 = p(t). 

In the case considered, the expressions appearing in Eq. (1.9) are 

(Pol = _i_w2 .m 4t2w2 y ' 'V1 = - ~1 ' 

(3.6) 

Equation (3.5) therefore assumes the form of Eq. (1.11), 
• • 2 2 • 

(3.7) /(~ 1 , ~1) = E~1 +wo~1 -ey~1~t 

and 

(3.8) 

and thus we assume 

(3.9) 
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From Eq. (2.8), we obtain 

(3.10) 

and from Eq. (2. 7), we determine 

m=O 

(3.11) k = s(l-y(xi)), !J2 = w~. 

759 

Confining the considerations to excitations of the "white noise" form, we calculate 
from Eqs. (2.13) and (3.11) 

(3.12) (xi)= _1 (1_-. / 1_ 4nSor), 
2y V W~E 

where the minus sign is selected owing to the fact that for S0 --+ 0 also (xi) --+ 0. 
If it is assumed that 

(3.13) 

then Eq. (3.12) yields 

(3.14) 

that is a value which is independent of the factor connected with non-linearity determined 
by the expression containing the coefficient y. In the case considered, taking into account 
the relations (1.1), (3.6), (3.10) and (3.12), the expressions (2.14) are written in the form 

(3.15) (A
2

) = ~ [ 1+ V 1-
4:f:"]. (w2

) = w~. 
This formula is identical with the result derived in [1] by an entirely different, probably 

more complicated, method. From Eq. (3.15) it is seen that increasing noise intensity leads 
to decreasing amplitudes of self-excited vibrations which may be reduced even by one 
half when compared to the amplitudes evaluated without the noises, 

(3.16) 

provided 

(3.17) 

2 4 
Ao=-, 

y 

4nSor _ 
1 w5s - · 

Equation (3.12) implies that increasing noise intensity increases the mean square value 
of amplitude of the vibration components produced exclusively by random noises. In the 
case of small intensity of random perturbations, the relation (3.14) remains valid, and 
thus (xi) is independent of A~. 

The mean square value of angular frequency of the self-excited vibrations is derived 
from the second of Eqs. (2.14). Using Eqs. (3.6), we obtain 

(3.18) w2 = w5, 

since in a stationary process (~ 1 ~ 1 ) = 0. Random perturbations have thus no influence 
on the mean square value of angular frequency. 
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4. Example 2. Lathe tool vibrations 

The problem of self-excited vibrations of a lathe tool during metal cutting is discussed 
in the book [3]. The corresponging differential equation has the form [at p(t) = 0] 

(4.1) ·· ( 2 1 R2 • 1 2 · 2) · 2 ( ) x- a1 +2 ,., x-3 y x x+w0 x = p t 

in which the non-linear characteristics of the damping force is seen to be asymmetric, 
provided {12 #: 0. 

Let us analyze the influence of random perturbations upon the self-excited vibration 
amplitude for two types of perturbations, namely in the cases when their correlation 
functions have the form 

(4.2) 

or 

(4.3) 

Here S0 , R0 , <X are positive constants, and t5('r) is the Dirac function. 
Performing the integrations indicated by Eq. (1.6)2 , 3 , we transform the relations (1.9) 

(4.4) 2 4af 4 (R2~ 2i:2) 2 2 A =~+~ps-1 -ys- 1 , w =wo. 
i' Wo i' Wo 

The first of Eqs. (1.6), after rearrangements and application of Eqs. ( 4.4), separates 
into two equations (1.10), (1.11) which now assume the form 

.. 2 • 5 '2 5 '3 2 
~~ +a2~1 +-zP2~t-3i'2~t +wo~t = p(t), 

(4.5) 

with the notation 

(4.6) 

It will be assumed that 

(4.7) 

In the case considered, we have therefore 

(4.8) 

Taking into account Eqs. (2.1), (2.5), (2.6), we derive from Eq. (2.4) 

(4.9) m=<~~>= -{f12(x~), 
while expressions (2.3) as the linearization coefficients are equal 

(4.10) k = a~-5y2w~(xf), !22 = w~. 
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Let us consider the two types of excitation: ( 4.2) and ( 4.3). 
1. Similarly as in the preceding example, we obtain in the case of excitation in the 

"white noise" form 

(4.11) < 2)=· a~ (1--./1-20nSoy2) 
xl 10y2w~ Jl a~ 

which, under small random perturbation conditions is reduced to 

2 nSo 
(4.12) (x1) ~ -rr· 

Woa2 

Inserting ( 4.11) into ( 4.4), we obtain the mean square value of the self-excited vibration 
amplitude accounting for the random perturbations. It is given by the formula 

(4.13) (A2)= 4af [1-0.1a~(1-,./1-20nSor2 )]. 
y2w~ af Jl a~ 

If the expression appearing at the left-hand side of Eq. ( 4. 7) is much smaller than 
unity (or of {12 = 0), then Eq. (4.13) assumes the form 

(4.14) 

Both relations (4.13), (4.14) are expressed, at very small perturbations, in the following 
manner: 

(4.15) 

(A2) ~ 4af [1- nSoy2 J. 
y2 w1 at 

These results imply the following conclusions. 
(a) Asymmetry of the damping characteristic considerably influences the amplitude 

of perturbed self-excited vibrations. From both Eqs. (4.13) and (4.15)1 it follows that 
with increasing {12 the perturbed self-excited vibration amplitude decreases. It may be 
demonstrated that the expression (4.14) is always greater than (4.13). 

(b) Random perturbations reduce the amplitude of self-excited vibrations when 
compared to the case without perturbations; in the case considered here, the amplitude 
is equal to 

(4.16) 

and is independent of the factor responsible for the asymmetry of the characteristics. 
(c) If {12 = 0, increasing of the non-linearity coefficient reduces the value of vibration 

amplitude. With {12 =I= 0, the variation of amplitude depends on the remaining parameters 
of the system. 

2. In the case of perturbation given by Eq. (4.3), spectral density of this process has 
the form 

(4.17) 
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As a result of the known transformations applied to the linear Eq. (2.2), we obtain 

2 Ro(ex+R) 
(4.18) (x1) = w~k(ex2 +kex+w~) 

Taking account of the first relation ( 4.1 0) and substituting 

(4.19) k = ai~, 
we obtain from the Eq. (4.18) an algebraic equation of third order in the variable ~' 

(4.20) 

where the notations 

(4.21) U= 

are introduced. The real root of Eq. (4.20) contained in the interval 0 < ~ < I [what 
follows from Eq. (4.10)] and such that ~-+ I when R0 -+ 0 yields the value of k which 
wi11 be used to express (x1). The root of Eq. (4.20) is then found by the method of con­
secutive approximations. If we assume ~ = I+ BoW and confine ourselves to B0w in the 
first power (for small random excitations), the approximate value of the root of Eq. (4.20) 
will be equal to 

(4.22) ~ _ 
1

_ 5R0 y2 (ex+a~) 
- a~(ex2 + exa~ +w~) · 

From the Eqs. (4.10) and (4.19), we determine 

(4.23) ( 2) Ro(ex+a~) 
x 1 = w~aHex2 +exa~+w~) ' 

and on the basis of Eq. (4.4), we obtain 

(4.24) (A2) = 4at [t- Roy2(ex+a~) J 
y2w~ at aH ex2 + exai + w~) · 

This result enables us to determine the influence of parameter ex on the amplitude of self­
excited vibrations. It is easily established that, in the approximation considered, if 

(4.25) 

then the second term in Eq. (4.24) decreases with increasing values of ex, while the value 
of the entire expression for A2 increases. For ex < ex 1 , the situation is reversed. With 
w0 - a~ < 0, A 2 is always an increasing function of ex. 

Let us now assume that 

(4.26) 

and investigate the influence of R0 on the vibrations. Under such an assumption also the 
inequality 

ex(ex+k) ~ 1 
w~ 
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is satisfied and Eq. (4.18) may be written as 

(4.27) (xi) ~ Rok(X!k) 
Wo 

Taking here into account the first of Eqs. ( 4.10), we obtain 

(4.28) (x2) = ~-+~[1--. /(1- 5Roy2 )2 -20 Roy2Q:J. 
1 2w~ I Oy2w~ Jl ai w~ w~ a~ 

Substitution of Eq. (4.28) in Eq. (4.4) yields the mean square value of the amplitude of 
seJf-excited vibrations accounting for the influence of random perturbations 

(4.29) (A2) =- 4ai {1-0.1 a~ [1--. /(1- 5Roy2 )2 -20 Roy2(X])- 2Ro. 
y2w~ ai Jl a~w~ w~a~ w~ 

The following conclusions may be drawn from the foregoing con~iderations: 
(a) From Eqs. (4.23) and (4.28) it follows that, under asymmetric characteristics of 

damping ({3 2 =1= 0), the mean perturbation amplitude increases with increasing para­
meter {3 2

• 

(b) As a consequence of (a), the amplitude of perturbed self-excited vibrations given 
by Eqs. ( 4.24), ( 4.29) decreases with increasing {32

• 

(c) Increasing perturbation intensity (increasing R0) reduces the amplitude of self­
excited vibrations. 

The conclusions formulated above are of a qualitative nature. Corresponding 
expressions referring to any particular case yield the required numerical values of vibration 
amplitudes, provided all parameters of the system are known. 
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