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Stability synthesis of a plane dynamic system 

J. SZADKOWSKI (WARSZAWA) 

KNOWING the differential second-order equation with two parameters we state two problems 
of synthesis of a dynamical system on the plane having a rest point which is globally asymptotic­
ally stable. The first problem consists in the determination of a class of one of these parameters, 
the class of the second being given; while the second problem consists in the determination 
of the optimal parameter in the sense of the maximum decrease of a positive definite function 
prescribed on the plane. 

Dla danego r6wnania r6Zniczkowego drugiego rZA(du o dwu parametrach zbadano dwa zadania 
syntezy ukladu dynamicmego na plaszczyZnie, majcteego punkt spoczynku globalnie asympto­
tycznie stateczny. Pierwsze z tych zadari. polega na doborze klasy jednego z tych parametr6w 
przy zadanej klasie drugiego, drugie zadanie - na wyborte parametru optymalnego w sensie 
najwil(kszego malenia pewnej dodatnio okreslonej funkcji zadanej na plaszczyfnie. 

3~aHHe .zm<t>ct>ePeHJ..UlllJibHoro ypmHei:UUI BTOporo nopJI,ZU<a c ABYMH napaMeTpa.MH onpe­
AemieT ABe 3aABliH CHHTe3a AHHBM~NecKOH CHCTeMbl Ha WIOCKOCTI{, o6JIBAaiO~e:H: OC0-
6oH: TOl.IKOH BCHMfiTOTI{llecKI{ yCTOiituuiOH B ~eJIOM. fiepBWI H3 3THX ~aq COCTOI(T 

B noA6ope KJiacca OAHoro ll3 3THX napaMeTpOB npa ~&HllH KJiacca BToporo ll3 HHX. BropWI 
3QAa'lla CBOA}lTC.JI K BbiOOpy OnTHMilJibHOro napaMeTpa no KpHTepHlO HBHOOJIDWero yMem.me­
HH.JI HeKOTOpoH fiOJIO>I<HTeJibHO onpeAeJieHHOH <l>YHK~, 3QAaHHOH Ha IDIOCKOCTH. 

1. THE AIM of the paper is the choice of characteristics of a mechanical system described 
by a mathematical model, so that the global asymptotic stability of the state of rest is 
ensured, and the determination of some of the above characteristics ensuring that the 
above global asymptotic stability is optimally realised to within an assumed function 
(the Lapunov function). 

The mathematical model is taken in the form of the differential equation 

(*) y+F(y, y, a., {J) = 0, 

where F is a scalar function, a. and {J are parameters. In what follows, we shall make use 
of a system of differential equations of first order. 

2. Assume that the equation 

(1) x = f(x, a., {J), x e 912
, 

has the form (*), where 

i.e., we assume that/2 is a sum of the functions ffJ and tp each depending on one parameter 
only. We assume, moreover, that ffJ and tp are continuous functions satisfying Lipschitz 
condition with respect to x and of class C1 with respect to a. and {J. 
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Let h be a function defined on 9l2 with the following properties: 
(i) hE C1 ; 

(ii) h(x) ~ 0 for every x and h(x) = 0 ~ x = (0, 0); 

J. SZADKOWSKI 

df 
(iii) Consider the equation h(x) = C, C > 0, and let D' = {x: h(x) = C}. Then 

there exists a compact connected set D such that a) D' = Fr D, b) D 3 (0, 0), where D 
denotes the interior of the set D; 

(iv) Dl c D2 for arbitrary cl and c2 such that cl < c2. 
3. We denote by F the set of all functions g defined on 9l2 with values in 9l such that 

g belongs to the class of piecewise continuous functions and satisfying the Lipschitz 
condition in the continuity domains. 

Consider two functions u1 , u2 e F such that 

- oo < u1(x) ~ u2 (x) < oo 

for every x. We defined the family of sets 

(2) 

Similarly 

(3) 

where also v 1 , v2 e F, 

for every x. 
DEFINITION I. We say that ex and fJ are admissible functions if they belong to the 

set F and if ex(x) E Ax and {J(x) E Bx for every x E F 2 
; Ax and Bx are defined by (2) 

and (3), respectively. 
4. The synthesis problem mentioned in Sec. 1 is described by the following two con­

ditions: 

(4) 1\ dh(x) i . ~ 0, 
X dt 1 X=/(x,a.(x),{J(X)} 

where ex e F, fJ is an arbitrary admissible function (the synthesis condition) and 

(5) 1\ dh(x) I = inf dh(x) ~· ' 
X dt X =f(x, a.*(x), {J(x)) a. dt I x=f(x, a.(x), {J(x)) 

where ex and fJ are arbitrary admissible functions, ex satisfying condition (4) (the condition 
of optimal synthesis). 

5. The s y n thesis p r o b 1 em I. Consider a family of sets en. It is required to 
determine a family of sets 

<;}):X-+ Px, Px CrJl 

such that for every function ex e F and such that for every x ex(x) e P x, the condition. ( 4) 
is satisfied (the synthesis condition) independently of the choice of fJ (fJ is an admissible 
function). This ex will be called the function solving Problem 1 of the synthesis. 

Consider the Eq. (1) and let ex and fJ be two functions such that ex and fJ e F and let 
1 be the following function: 

- df 
f(x) = f(x, ex(x), {J(x) ). 
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Suppose that G is the set of all points of discontinuity of [in 912 and consider a condition 
in the form 

(6) H(x, a(x), {J(x)) ~ 0, x E 912- G. 

We say that condition (6) is determined on 912 if for every x E 912 we have 

(7) H(x, lima(xi), lim{J(x)) ~ 0, x1 e912 -G, 
Xt-+X Xt-+X 

and the inequality (7) has to hold for all possible lim a(x1), lim {J(xi) in x; we shall write 

H(x, a(x), {J(x)) ~ 0, x E &/2
• 

THEOREM 1. Consider the Eq. (1) and assume that the following data is given: the family 
of sets <:.8 in accordance with (3) and a function h with the properties (i)-(iv). Let fJ be an 
admissible function (Definition 1); then a necessary and sufficient condition that the function 
a, a E ~, satisfies the synthesis condition ( 4) is the following(!) 

(8) a(x) E {z: h1 1(x)x2 +h12 (X)(}?(X, z)+h12 (X)1JI(x, {J*(x)) ~ 0, 

where 

(9) h12 (X)1J'(x, {J*(x)) = sup (hi 2(X)1J'(x, {J(x) )) , 
fJ 

X E &/2
, X ::F (0, 0). 

P r o o f. N e c e s s i t y. Let a (a E ~) be a function satisfying the synthesis 
condition (4) on 912 and x an arbitrary fixed point. Defining the value of the function 
hat x, 

h(x) = c, c > o, 
we obtain the set 

D' = {x: h(x) = C}, 

constituting the boundary of a subset D E 912 [see the properties (ii) and (iii) of the func­
tion h]. In view of (i), at every point of x E D', grad h(x) is defined and (4) can be written 
in the form of the scalar product 

gradh(x) · f(x, a(x), {J(x)) ~ 0, 

where fJ is an admissible function, x E D', C > 0, or else 

(10) sup (gradh(x) · f(x, a(x), {J(x) )) ~ 0, x E &/2
, x ::F (0, 0). 

fJ 

In view of the form of the function/, we obtain from (10) 

h11 (x)x2 +h12(x)q?(x, a(x) )+sup (h12 (x) ·1p(x, {J(x) )) ~ 0, x E 912, x ::F (0, 0), 
fl 

i.e., the condition of the Theorem. 

S u f f i c i en c y. Let p be an admissible function and let a, a E ~, be a function sat­
isfying at every point x condition (8) and not satisfying the synthesis condition (4), i.e., 
there is a point x such that 

(11) dh(x) j' = e > 0 
d ' (XE~. 

t x=f{x,a<x>.Pci>> 
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where 7fis admissible. As before, expressing (11) in the form 

gradh(X)f(:X, a(X), {i(X)) = e1 > 0, 

we obtain, taking into account the form off, 

hll (X)x2 +hl2(x)q{x, a(X) )+hi2{X)tp(x, {i(x)) = e •. 

For an arbitrarily selected admissible function P, we have 

whence, in view of (9), 

hit (:x)x2 +hi2(X)q{x, a(x) )+hi2(X)tp(x, ,B*(X)) ~ e1 > 0, 

J. SzADKOWSICI 

which contradicts (8). This proves the sufficiency of condition (8) and ends the proof of 
the theorem. 

R e m a r k. ,8* is, in the sense of the synthesis condition, "the worst" function among 
the admissible functions ,8. 

It was assumed in Sec. I that tp has a continuous first derivative in ,8. Hence, in view 
of (9), we have 

CoROLLARY. If for every x and every ,8 e (v1 (x), v2 (x)) we have 

otp(x, ,8) 4 0 
8,8* T ' 

then 
,8*: x-+ v(x), where v(x) = v1 (x) or v2(x). 

If the inequality (8) has a solution (with respect to z) for every x, then Theorem 1 states 
the conditions defining the considered family of sets <}). In fact, denoting for every x the 
set of all z satisfying (8) by P%, we obtain the family of sets<}). In general, P% may be a class 
of disjoint sets 

(12) P% = uP!, 
I 

elements of which are closed numerical intervals 

(13) P! = (p~ (x), p~(x)). 

Their boundaries satisfy the equations 

hlt(x)x2+hl2(x)q.>(x,pHx))+hl2(x)tp(x,,8*(x)) = ol PHX) = -oo,} 
(l

4
) hlt(x)x2+hl2(x)q.>(x,pHx))+h12 (x)tp(x, ,B*(x)) = 0 (a) or pHx) = oo, (b). 

Thus, if the set of function \}) is defined [by (8)] and there exists a function a such 
that 

1 a(x) e P% for every x, 
2 

then the synthesis problem has a solution. 
6. T h e s y n t h e s i s p r o b 1 e m 2. Consider two given families of sets 'll and <;B. 

It is required to determine the optimal, in the sense of the condition (5) (the optimal syn­
thesis), function a. 
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Consider a family of sets '.)) defined by Theorem 1 and let 'l1 be a family of sets defined 
by (2). We assume 

(15) ~l:x-+Rx, Rx=AxnPx, XEBI2. 

In accordance with (12) and (13) 

(16) Rx = u R~, R~ = (r~ (x), rHx)), R~ n R~ = 0, j #: i. 
l 

Moreover, we assume 

(17) 
df . 

r 1 (x) = suprHx), 
i 

THEOREM 2. Consider Eq. (1) and let there be given families of sets 'l1 and ~ and a 
function h. Assume that the conditions of Theorem 1 are satisfied and the set Rx is non-empty 
for every x. Then the necessary and sufficient condition that ex* be optimal on 912 is that 

""* __ { r 1(x), x: h12(x)x2 < 0, 
(18) ~ 

r2(x), x: h12(x)x2 > 0; 

the above is a su.ffcient condition that ex* be one of the functions solving the synthesis problem I. 
Proof. Necessity. Let ex* be a function defined on 912 such that ex*(x) E Rx for every x; 

the set Rx is by assumption non-empty. Let {3 be an arbitrary admissible function. If ex* 
satisfies condition ( 5) then 

(19) dh(x) I = inf dh(x) I x E 912, x #: (0, 0), 
dt .X ~ f(x, «*(x), {J(x)) « dt x =/(x, Cl{x), {J(x)} ' 

or, equivalently (see the proof of Theorem 1) 

(20) gradh(x)·f(x, ex*(x), {3(x)) = inf(gradh(x) · f(x, ex(x), {3(x) ), x E 912, x #: (0, 0). 
Cl 

In view of the form of fin Eq. (1), we obtain from (20) 

(21) -h12(x)x2 ex*(x) = inf{ -h12(x)x2 ex(x)), x E 912, x #: (0, 0). 
Cl 

Thus, if ex* satisfies (21), it has the form (18). This fact proves the necessity. 
The sufficiency of condition (18) follows immediately. In fact, if ex* has the form (18), 

it satisfies (21) and hence also (20) and (19). 
Thus (18) is the necessary and sufficient condition of the optimality on 912 of the 

function ex*. 
The regularity conditions for functions appearing in Eqs. (14a) imply that pj (i = 

= 1 , 2, ... , j = 1 , 2) belong to the class of piecewise continuous functions. Thus it follows 
from the definition of the family of sets 'll, u 1 , u2 E F and the definition of ~ [cf. (15), 
(16) and (17)] that r1 , r2 E F and therefore ex* E F. Since ex*(x) E Px for every x [cf. (15)], 
ex* is one of the functions solving the synthesis problem 1 Q.E.D. 

COROLLARY. ex* defined by (18) is optimal in the sense of condition (5) function ex 
for every admissible function {3. 

7. The method of formulation of the synthesis problems in Secs. 5 and 6 implies the 
statement of the above Theorems and the order in the synthesis procedure: 1 - determina­
tion of the set of all functions ex satisfying the synthesis condition (the synthesis problem), 
2- the choice of the optimal function ex* from this set (the problem of optimal synthesis). 

3 Arch. Mech. Sto3. nr S/73 
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Problem 2 can be formulated independently of Problem 1: having Eq. (1), the families 
of sets m and c;a and the function h, it is required to determine an admissible function 
a* satisfying the condition 

dh(x) I - = ··nfsup dh(x) I ' 
d d 

X E912 , X# (0, 0), 
t x =/(x, a.*(x), fJ*(x)) a. fJ t x =f<x, a.(x), {J(x)) 

where a, {3 are admissible functions. If, moreover, 

dh(x) I ~ O, 
d 

~ X E 9f2
, X i: (0, 0), 

t x =f(x, a.*(x), fJ*(x)) 

where {3 is admissible, then a* is optimal in the sense of condition (5). 
8. Independently of the solution of both problems of synthesis there remains an open 

question whether Eq. (l) completed by the functions a and {3, where a is a function solving 
the problem 1 or 2 of the synthesis and {3 is an admissible function, defines on 912 a dynamic-

al system [1]- the set G of the discontinuity points off (cf. Sec. 5) can have a structure 
such that general conditions ensuring that (1) defines a dynamical system are not satisfied. 

In what follows we assume the following condition. 
C o n d i t i o n. 1. If a is a function solving the synthesis problem (l or 2) and {3 is 

an arbitrary admissible function, then Eq. (1) defines on 912 a dynamical system. 
9. Let [cf. (iii)] 

D~ ~ {x: h(x) = C, C > 0} 

and 

d 1 ={a: {x:-- = 0, df dh(x) I 
dt x =f(x, a.(x), /J(x)) 

a-solution, {3-adm} :::> D~}, 

where d 1 may be an empty set [cf. (iii)] moreover, is the complement of d 1 to the set 
of functions solving problem l or 2. 

Assume that condition 1 is satisfied. Then, if a e d and {3 is admissible, then the set 
h = 0 does not contain entire trajectories of Eq. (1). 

A function h with the properties (i)-(iv) is a positive definite function with the deriva­
tive h [in view of (1)] which is non-positive [cf. conditions (4) and (5)]. 

Thus, if a e d and {3 is admissible, then the conditions of La Salle's theorem [2] on the 
global asymptotic stability of the zero solution are satisfied. Moreover, the following 
theorems implied by it and by Theorems 1 and 2, are true. 

THEOREM 3. Consider Eq. (I) and let there be given: the family of sets c;a in accord­
ance with (3) and a function h with the properties (i)-(iv). Suppose that {3 is an arbitrary 
admissible function. Then the necessary and sufficient condition that the zero solution 
(0, 0) be globally asymptotically stable is that the function a satisfies condition (8) and 
aed. 

THEOREM 4. Consider Eq. (1) and let there be given: the families of sets m and c;a 
and a function h. Assume that the conditions of Theorem 3 are satisfied and the set Rx 
is nonempty for every x. Then, if a* ed where a* is the function defined by (18), then 
the zero solution (0, 0) of Eq. (1) is globally asymptotically stable and this global asymp­
totic stability is optimal in the sense of condition (5). 
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