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Stability synthesis of a plane dynamic system
J. SZADKOWSKI (WARSZAWA)

Knowing the differential second-order equation with two parameters we state two problems
of synthesis of a dynamical system on the plane having a rest point which is globally asymptotic-
ally stable. The first problem consists in the determination of a class of one of these parameters,
the class of the second being given; while the second problem consists in the determination
of the optimal parameter in the sense of the maximum decrease of a positive definite function
prescribed on the plane.

Dla danego réwnania rézniczkowego drugiego rzedu o dwu parametrach zbadano dwa zadania
syntezy ukladu dynamicznego na plaszczyZnie, majacego punkt spoczynku globalnie asympto-
tycznie stateczny. Pierwsze z tych zadan polega na doborze klasy jednego z tych parametréw
przy zadanej klasie drugiego, drugie zadanie — na wyborze parametru optymalnego w sensie
najwiekszego malenia pewnej dodatnio okre§lonej funkcji zadanej na plaszczyZnie.

3apanne maddepeHIMaTbHOTO YPABHEHHA BTOPOro NMOPANKA C ABYMS IapaMeTpaMu ompe-
Jleliger ABe 3afavyd CHHTE3a [WHAMMYECKOH CHCTeMbl Ha IUIOCKOCTH, obiapgaromieii oco-
Goit TouKoM acHMNTOTHUYECKHM YycroifumBoit B uenom. IlepBasa M3 3TMX 3aa4 COCTOMT
B nogfope KIacca OJHOro M3 3THX MapaMeTpoB MPH 3a/ldHUM KJIACCa BTOPOro M3 HHX. Bropas
3afjaya CBOAMTCA K BhIGOPY ONTHMAIBHOIO HMapaMeTpa [0 KPHTEPHIO HaHDOJBLIETO yMEHbILE-
HHA HEKOTOPOH IONOXKHTEILHO OIpeAeneHHoN ¢yHKIMH, 3aJaHHOi HA ILTOCKOCTH.

1. THE AIM of the paper is the choice of characteristics of a mechanical system described
by a mathematical model, so that the global asymptotic stability of the state of rest is
ensured, and the determination of some of the above characteristics ensuring that the
above global asymptotic stability is optimally realised to within an assumed function
(the Lapunov function).

The mathematical model is taken in the form of the differential equation

(*) 35+F(y,)'!,at,ﬁ)=0

where F is a scalar function, o and f are parameters. In what follows, we shall make use
of a system of differential equations of first order.
2. Assume that the equation

) x=f(x,2,p), xe#,
has the form (*), where

fi=x2, fi=ok, )+y(x,p),

i.e., we assume that f; is a sum of the functions @ and y each depending on one parameter
only. We assume, moreover, that ¢ and y are continuous functions satisfying Lipschitz
condition with respect to x and of class C* with respect to « and f.
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Let h be a function defined on #* with the following properties:
(i) heCl;

(ii) A(x) = 0 for every x and A(x) = 0 <> x = (0, 0);

(iii) Consider the equation h(x) = C, C > 0, and let D’ g {x:h(x) = C}. Then
there exists a compact connected set D such that a) D' = Fr D, b) D> (0, 0), where D
denotes the interior of the set D;

(iv) D, C D, for arbitrary C, and C, such that C; < C,.

3. We denote by # the set of all functions g defined on #2 with values in 2 such that
g belongs to the class of piecewise continuous functions and satisfying the Lipschitz
condition in the continuity domains.

Consider two functions u,, u, € & such that

—00 < U (x) € uy(x) <

for every x. We defined the family of sets

) Arx o Ay, Ay = uy(x), w3 (0.
Similarly o
3) Bix— B, By =<(0,(x),0:(0),

where also v;, v, e F,
-0 <7;(x) € v3(x) < ®
for every x.

DermviTiON 1. We say that « and f are admissible functions if they belong to the
set # and if a(x) € 4, and f(x) € B, for every x e #?; A, and B, are defined by (2)
and (3), respectively.

4. The synthesis problem mentioned in Sec. 1 is described by the following two con-
ditions:

dh(x) |
@ /x\ dt | s=ree a0, B0 <0
where a € #, f is an arbitrary admissible function (the synthesis condition) and
dh(x) .o dh(x)
- /x\ dt | iepin @ ben - L=ﬁx.¢(x).ﬂ(x)),

where « and f are arbitrary admissible functions, « satisfying condition (4) (the condition
of optimal synthesis).

5. The synthesis problem I. Consider a family of sets . It is required to

determine a family of sets
P:x—> P, P.CR

such that for every function « € # and such that for every x a(x) € P,, the condition (4)
is satisfied (the synthesis condition) independently of the choice of # (§ is an admissible
function). This « will be called the function solving Problem 1 of the synthesis.

Consider the Eq. (1) and let « and # be two functions such that « and f € # and let
f be the following function:

1) gf(x, a(x), B(x)).
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Suppose that G is the set of all points of discontinuity of fin #2 and consider a condition
in the form

©) H(x, a(x), (x)) <0, xeR*-G.
We say that condition (6) is determined on %2 if for every x € #? we have
©) H(x, lima(x,), imB(x)) <0, x;e#*-G,

XX Xi—+x

and the inequality (7) has to hold for all possible lim a(x;), lim (x;) in x; we shall write

Xi—*X X{—»x
H(x, a(x), f(x)) < 0, xeR.

THEOREM 1. Consider the Eq. (1) and assume that the following data is given: the family
of sets B in accordance with (3) and a function h with the properties (i)-(iv). Let § be an
admissible function (Definition 1); then a necessary and sufficient condition that the function
o, @ € F, satisfies the synthesis condition (4) is the following(*)

(®) a(x) € {z: by (x)x2+h(X)@(x, 2)+hp(x)p(x, f*(x)) < 0,
where
©) hia(s)p (5, B*(3)) = sup (hp(x, B®)),

xe®?, x#(0,0).

Proof. Necessity. Let a (xe#) be a function satisfying the synthesis
condition (4) on #% and X an arbitrary fixed point. Defining the value of the function
hat %,

h(x)=C, C>0,
we obtain the set
D' = {x: h(x) = C},

constituting the boundary of a subset D € #? [see the properties (ii) and (iii) of the func-
tion A]. In view of (i), at every point of x € D', grad h(x) is defined and (4) can be written
in the form of the scalar product

grad h(x) - f(x, a(x), f(x)) < O,
where § is an admissible function, x € D', C > 0, or else

(10) sup (gradh(x) - £(x, a(x), B(®))) < O, xR x # (0,0).
In view of the form of the function f, we obtain from (10)
hyy (%) %2 + b2 () @ (x, a(x))+ sp (h(x) - p(x () <0, xe@, x+#(0,0),

i.e., the condition of the Theorem.

Sufficiency. Let § be an admissible function and let a, @ € &, be a function sat-
isfying at every point x condition (8) and not satisfying the synthesis condition (4), i.e.,
there is a point x such that

(11) i

x) =e>0, ae#.
e dt | iefz,aG).509)
(') Ali = ohjox;
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where Eis admissible. As before, expressing (11) in the form
Sl'adhmf(ﬁ_‘, d(g), Eﬁ)) =€ > 0;

we obtain, taking into account the form of f,

by (R)%; + 2 (R) @ (%, a(3))+h R (%, B)) = e;.

For an arbitrarily selected admissible function 8, we have

h(®) (% B(®)) < oy (h. @& ().
whence, in view of (9),
hyy ()% +hi2 (%) @ (%, 2(X))+h (R p (%, f*()) = €, > 0,

which contradicts (8). This proves the sufficiency of condition (8) and ends the proof of
the theorem.

Remark. B*is, in the sense of the synthesis condition, “the worst” function among
the admissible functions g.

It was assumed in Sec. 1 that y has a continuous first derivative in 8. Hence, in view
of (9), we have

CoroLLARY. If for every x and every B € {v,(x), vs(x)) we have

oy(x, B)

—aF;—*—*?'-'O;

then
p*:x - v(x), where o(x)=2v,(x) or o,(x).

If the inequality (8) has a solution (with respect to z) for every x, then Theorem 1 states
the conditions defining the considered family of sets P. In fact, denoting for every x the
set of all z satisfying (8) by P., we obtain the family of sets P. In general, P, may be a class
of disjoint sets
(12) P, = v P,

i

elements of which are closed numerical intervals

(13) P = {pi(x), pa(x)).
Their boundaries satisfy the equations

hyy () X2+ b2 (6) @ (x, Py (X)) + B2 () p (x, B*(x)) = 0 P =~ oo,}
(% + B (@ (x, P (D) +hia (9, B () = o @ O i |

Thus, if the set of function P is defined [by (8)] and there exists a function o such
that

1 a(x)e P, for every x,

2 xEF,
then the synthesis problem has a solution.

6. The synthesis problem 2. Consider two given families of sets A and B.
It is required to determine the optimal, in the sense of the condition (5) (the optimal syn-
thesis), function a.

(14)
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Consider a family of sets 9 defined by Theorem 1 and let 2 be a family of sets defined
by (2). We assume

(15) M:x—>R,, R, =A.nP, xeR

In accordance with (12) and (13)

(16) Re=UR,, R, ={ri(),ri(x), RinRi=80, j#i
i

Moreover, we assume
f f
) rG) S supri(x),  ra(x) = infri(x).
i i

THEOREM 2. Consider Eq. (1) and let there be given families of sets U and B and a
Junction h. Assume that the conditions of Theorem 1 are satisfied and the set R, is non-empty
Jor every x. Then the necessary and sufficient condition that o* be optimal on R* is that

. ‘ ri(x), x:ha(@)x, <0,
=1, x: ha(x)x, > 0;

(18)

the above is a suffcient condition that a* be one of the functions solving the synthesis problem 1.
Proof. Necessity. Let o* be a function defined on #2 such that a*(x) € R, for every x;
the set R, is by assumption non-empty. Let § be an arbitrary admissible function. If o*
satisfies condition (5) then
i) I S . , xe®, x#(0,0),
at i prwmbey o« | i fxepe)
or, equivalently (see the proof of Theorem 1)
(20) gradh(x)-f(x, a*(x), B(x)) = inf(grad h(x) - f(x, a(x), B(x)), x €R% x # (0,0).
[ 4

In view of the form of fin Eq. (1), we obtain from (20)
¥1)) —hpy(x)x, a*(x) = inf(—h (X)X, 2(x)), xeR? x# (0,0).

(19)

Thus, if o* satisfies (21), it has the form (18). This fact proves the necessity.

The sufficiency of condition (18) follows immediately. In fact, if «* has the form (18),
it satisfies (21) and hence also (20) and (19).

Thus (18) is the necessary and sufficient condition of the optimality on #2 of the
function a*.

The regularity conditions for functions appearing in Egs. (14a) imply that pj (i =
=1,2,...,j =1, 2) belong to the class of piecewise continuous functions. Thus it follows
from the definition of the family of sets U, u,, u, € # and the definition of R [cf. (15),
(16) and (17)] that r,, r, € & and therefore a* € #. Since a*(x) € P for every x [cf. (15)],
a* is one of the functions solving the synthesis problem 1 Q.E.D.

COROLLARY. o* defined by (18) is optimal in the sense of condition (5) function o
for every admissible function f.

7. The method of formulation of the synthesis problems in Secs. 5 and 6 implies the
statement of the above Theorems and the order in the synthesis procedure: 1 — determina-
tion of the set of all functions « satisfying the synthesis condition (the synthesis problem),
2 — the choice of the optimal function «* from this set (the problem of optimal synthesis).

3 Arch. Mech. Stos. nr 5/73
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Problem 2 can be formulated independently of Problem 1: having Eq. (1), the families
of sets A and BV and the function A, it is required to determine an admissible function
o* satisfying the condition

dh(x) = i ) . xe®x# (0,0),
dt i) o« B A |iofxat),pe)
where o, £ are admissible functions. If, moreover,
&) <0, xedx#(0,0),
dt | ;e fix are), B4

where f is admissible, then a* is optimal in the sense of condition (5).

8. Independently of the solution of both problems of synthesis there remains an open
question whether Eq. (1) completed by the functions « and 8, where « is a function solving
the problem 1 or 2 of the synthesis and f is an admissible function, defines on #2 a dynamic-

al system [1] — the set G of the discontinuity points of f (cf. Sec. 5) can have a structure
such that general conditions ensuring that (1) defines a dynamical system are not satisfied.

In what follows we assume the following condition.

Condition. 1. If & is a function solving the synthesis problem (1 or 2) and S is
an arbitrary admissible function, then Eq. (1) defines on #2 a dynamical system.

9. Let [cf. (iii)]

D.Z {x:h(x) = C,C > 0}
and

. dh(x)

df g )
oAy = {o: {x: > 7t T 0, a—solution, p—adm} o> D},

where &/, may be an empty set [cf. (iii)] moreover, is the complement of &/, to the set
of functions solving problem 1 or 2.

Assume that condition 1 is satisfied. Then, if « e/ and B is admissible, then the set
h = 0 does not contain entire trajectories of Eq. (1).

A function /& with the properties (i)-(iv) is a positive definite function with the deriva-
tive h [in view of (1)] which is non-positive [cf. conditions (4) and (5)].

Thus, if « € o/ and f is admissible, then the conditions of La Salle’s theorem [2] on the
global asymptotic stability of the zero solution are satisfied. Moreover, the following
theorems implied by it and by Theorems 1 and 2, are true.

THEOREM 3. Consider Eq. (1) and let there be given: the family of sets B in accord-
ance with (3) and a function h with the properties (i)-(iv). Suppose that 8 is an arbitrary
admissible function. Then the necessary and sufficient condition that the zero solution
(0, 0) be globally asymptotically stable is that the function « satisfies condition (8) and
xESL.

THEOREM 4. Consider Eq. (1) and let there be given: the families of sets U and B
and a function h. Assume that the conditions of Theorem 3 are satisfied and the set R,
is nonempty for every x. Then, if a* € o/ where a* is the function defined by (18), then
the zero solution (0, 0) of Eq. (1) is globally asymptotically stable and this global asymp-
totic stability is optimal in the sense of condition (5).
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