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Consolidation of a viscoelastic semi-space in the plane state of strain
B. LECHOWICZ and G. SZEFER (KRAKOW)

WE CONSIDER the consolidation of a viscoelastic semi-space without aging with a boundary per-
mitting filtration and loaded by arbitrary normal and tangential tractions. It is assumed that the
rheological properties of the skeleton are different in the processes of dilatational, shear and due
to the fluid pressure strains., The constitutive relations of the medium are taken in an integral
form. Exact solutions are derived for the equations of the theory of consolidation by means
of the Fourier and Laplace integral transforms. The total stresses, the displacements of the
skeleton and the pressure of the fluid are presented in the form of improper integrals,

W pracy rozwazono konsolidacje pOlprzestrzeni lepko-sprezystej bez starzenia o brzegu prze-
puszczalnym, obcigzonym na brzegu dowolnymi sitami normalnymi i stycznymi. Przyjeto, ze
wlasnosci reologiczne szkieletu w procesie odksztalcenia objetosciowego, postaciowego i wyni-
kajacego z ci$nienia cieczy s3 odmienne. ROwnania konstytutywne ofrodka zapisano w postaci
calkowej. Otrzymano $cisle rozwigzanie réwnan teorii konsolidacji stosujac transformacje
catkowe Fouriera i Laplace’a. Naprezenia catkowite, przemieszczenia szkieletu i parcie cieczy
wyrazone sa w postaci calek niewlasciwych,

B paGote paccMOTpeH IpoLece KOHCOJMMJALMH 6e3 cTapeHua BASKO-YIPYTOro MOJYNpOCTpaH-
CTBa C IIPOHMIAEMOI noBepXHoCcTEI0. Kpaesasas HArpy3aKa COCTOMT K3 OPOH3BOJBHEIX HOPMAJIb-
HBIX M KacareJbHBIX ycwmif. [Ipemmosaraercs, WT0 peoJIOrHYeCKHe CBOHCTBA I'PYHTOBOIO
CHeJIETa PasiH4HbEI B mpoueccax ofbemaoro nedopmupoBanns, GOPMOHSMEHEHHA B IIPH BO3-
NeficTBUM JaBJIEHHA HHIKOCTH B mopax cxenera. Ompefendiolde YpaBHEHHA Cpelbl 3aiH-
caHbl B HHTeTpAIBHOM Bue. [lomydeHs! TOUHBIE PEINEHHS YPABHEHHE TEOPHH KOHCOMAIMH,
OCHOBA4HHBIE HA NMPHMEHEHHH HHTErpAMbHLIX mpeoGpasosammii Pypse w Jlamnaca. ITosHble
HANPAXKEHHA, MEPEMELIEHHA IPYHTOBOTO CKEJIETA W HANOD MHAKOCTH BHIDDKEHEI B BHJE
HecoBCTBEHHEIX MHTErpajioB.

1. Introduction

THE RICH engineering experience and numerous experimental papers dealing with strains
in soils subject to action of external loadings prove that all soils exhibit instantaneous strain
the magnitude of which depends on the type of the soil and the loading; soils subject
to a prolonged loading exhibit an increase of strain in time.

A change of the strain in time may be due both to an outward filtration of the fluid
present in the pores of the soil and to the rheological properties of its skeleton.

A theoretical description of the above phenomenon of consolidation was considered
by numerous authors. Most of them regarded the skeleton as a linear elastic medium
[1,4].

In the course of development of the theory of consolidation, the rheological properties
of the skeleton were taken into account. We mention here first of all Bior’s papers [2, 3],
FLorIN’s [5] and ZARECKT’Ss [10].

The last author wrote the physical equations of the rheological porous medium by means
of Volterra’s integral operators of second kind. Assuming the that skeleton of the soil
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734 B. LEcHowicz AND G, SZEFER

exhibits the same creep properties during the dilatational strain and the strain due to the
action of the fluid in the pores, he obtained for the case without aging a solution of the
equations by means of successive approximations.

ZayAc [8, 9] applied Biot’s theory to some selected mechanical problems of rocks in
the case of the standard model.

In this paper, we assume that the rheological properties of the skeleton in the course
of the dilatational, shear and due to the fluid pressure strains, are different and we shall
present an exact solution of the equations of the theory of consolidation. We shall base
on the constitutive equations in the integral form.

2. The set of equations of the theory of consolidation

We consider a quasi two-phase medium consisting of a porous viscoelastic skeleton
and fluid in the pores. We make the following assumptions:

1. The skeleton is isotropic and homogeneous;

2. The viscoelastic skeleton without aging has different creep properties in the course
of dilatational, shear and due to the fluid pressure strains;

3. The porosity of the skeleton is statistically homogeneous;

4. The physical relations are linear;

5. The fluid is filtrated through the pores of the skeleton according to Darcy’s law
and the filtration coefficient k, is constant.

We shall consider the problem of consolidation of the medium in the plane state of
strain. For a porous material the skeleton of which exhibits rheological properties without
aging, the skeleton physical laws can be written in the form of the following integral rela-
tions expressing the Boltzmann hereditary principle [10]:

the law of shear

@.1) ¢ = 515 [ss0+ [ Kt=DSy(2)ds];
0

the law of dilatational strain

22) & = _;:[S(mr a[ K,(r—t)S(r)dr],

where efj denotes the components of the skeleton strain deviator, S;; components of the deviator of the
total stress, G shear modulus of the skeleton, K(f— 7) kernels describing the creep during the shear
strain, e* skeleton dilatation, S = a;; (g;; are the total stresses in the two-phase medium), «, dilata-
tional modulus, K, (f— ) kernel describing the creep during the dilatational strain.

On the basis of Egs. (2.1) and (2.2) we obtain relations between the components of
the skeleton strain &f; and the stress tensor o;;, namely

1 ' 1, [1
@3 ) = 55 [+ [Ke-Doy@ar] +?5u["£(s(f)

+ [ Ko (t—7)S(z)dz) - % (s0)+ [ Kt-25() d-r)].
0 0
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In what follows, for brevity, we introduce the integral operators

r 4
1 1 1 1
2.4 —=—|1+ | K(t—7)...dz|, —=—=—|14+]|K,(t—7)...dr].
ey  z=cl+] O LG R
Thus the relation (2.3) takes the from
@.5) s e e (L-—l— S(@)
3 ¥ 26 AT 26‘) '

As a result of the dilatational strain of the soil, there arises a hydrostatic pressure in the
fluid in the pores, which acts on the skeleton and tends to increase the pores. This is a rheo-
logical process, in general different from the above-considered creep of the skeleton. The
dilatation due to the action of the fluid is given by the relation [10]

26 e20) = - [p()+ [ Keplt=p(a)d],
vp 0

where o, is the dilatation modulus in the process of increase of the pores, K,(f—7)—
the creep kernel describing the dilatational strain on the skeleton due to the fluid pressure,
p — the pressure of the fluid in the pores, ef — the dilatational strain of the skeleton due
to the fluid pressure.

Introducing the operator

3

uup

T
1 1
@7 o =—[1+[Kpt=7)...dr), wehave  (28)  el(t) = =—p().
Upp  Gup 0
The total state of strain constitutes a sum of the strains due to the action of the stress and
due to the action of the fluid pressure in the pores of the soil. This, taking into account

(2.5) and (2.8), we obtain for the total strain tensor

1 6” 1 1 au
(2.9) gy = —0p+ 2| ———)S+ L
$ Y g (a,, 26) i
or, in the form solved for stresses
(2-10) Oy = 265”"‘18“6;1'—&9 &l Pau,
vp
where
! 4
- = = ) e ~
G= G[l—-!R(r—r)... |, &= oc.,[l—af.R,(f—t) wde, i= 7 [6.—28),

R(r—7), Ry(2— 7) are the resolvents of the kernels K(f— 7), K,(t— 1) of the operators (2.4).
The above tensorial relations constitute the most general form of the physical law for
a homogeneous, isotropic, linear, invariant in time viscoelastic porous material saturated
with fluid. Their generality follows not only from purely physical considerations but
constitutes a result of the Riesz-Frechet theorem on the form of a linear functional in the
Hilbert space. In particular, for a differential model

P Sy=Q e, P,S=0,¢, Pip=Qse,

2



736 B. LecHowicz AND G. SzEFER

where
S
P = Z""ar*’ 0= Zb,aﬂ, i=1,2,3
kw0
we have
- O i_1(0_ &) 5= 3i126=2
6=p> *=3\p, ") #TET R
when &,, = 3(Q,/P3).
For

%o = Op= CONSt, &pp = Uyp = const, K,(t—1) = Kop(t—7) =0,
m=n=1, a=y+6, al=1, bj=2Gy, bi=2G
(or, equivalently, K(1—7) = de”""""), we arrive at the standard model investigated in
BioT’s [2] and ZAJAC's [9] papers.
The relations (2.9) and (2.10) constitute the fundamental system of equations for the
two-phase medium. The pressure p(t) requires an additional relation. This is supplied by
the filtration equation. On the basis of Darcy’s law it takes the form

ko, 3np 0 3 ]
(2.11) ;:Ap — a:*a:[ S+2—p

op

where we have introduced the following notations: k, — filtration coefficient, y,, — specific
weight of the fluid, a, — compressibility modulus dilatations of the fluid, » — porosity.

We observe that Eq. (2.11) is coupled with the relations (2.9) or (2.10). In what follows
it is convenient to deal with the uncoupled filtration equation. To derive it, we base on the
compatibility equations
(2.12) 3”,""' 81;"_1—6“.“—8”'“ =0
which, after substitution of (2.9), in view of the equilibrium equations o;;,; = 0 and
after contraction, yield

(2.13) AS = ——aG-—4p,

where L = i—;—. Applying to (2.11) the differential operator A and substituting for 48

the expression (2.13), we arrive at the required uncoupled filtration equation

kw 292 3n 3 2 d 2 L = i_ I
(2.14) % ViVip = . V 61 L1 z V , where L1 G —142L 4G +3.
In the considered planc state of strain, we havc &3 = 0, whence, after simple transfor-

mations, we obtain from (2.9), (2.10), (2.11) and (2.13)

(2.15) b = S [a.,—éa,LzSHdz, =p of=12
k 3n op  d[1-2L, o 2L,

2.1 Ko y2 B e TR

(2.16) wap oy 3t+6t[ 2 S+&“p,

@.17) Vsl Loty Fomt Tomet

N4 Gy o i
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Repeating transformations leading to (2.14), we finally have

| o——— 3n 0, d - 1=3L,
il 2 Ol Pl L5, = S TR 8
(2.18) J’wV Vi 7 atV D+ a L‘ pl, Ls= -—-l+2L+
Besides the physical relations, we shall use Alry s stress function
(2}9) Oapg = '—.F',"{" 6¢’AF.
Thus, performing the substitution § = o,, +0,, = 4F, we obtain from (2.17) the equation
26 1
2.20 AAF = —— — —A
&0 —142L %vp P

The relations (2.28) and 2.20) constitute the fundamental uncoupled system of equations
of consolidating viscoelastic medium in the plane case. The uncoupling led to a higher
order of the equations and therefore their solution (with the appropriate boundary and
initial conditions) must satisfy the filtration equation in the form (2.16).

3. The general solution of the problem of consolidation of a semi-space in the plane state of
strain

In the Cartesian coordinate system Oxy, we consider a consolidating semi-space in
the plane state of strain subject to arbitrary normal and tangential loadings. To solve
the problem, we apply the Fourier and Laplace integral transforms. We base on the

girt)
(1)

X

FiG. 1.

filtration Eq. (2.18) over which we perform the Fourier transform with respect to the
variable x; thus

(3.1) fﬁ(a:—wa:m*)ﬁ = Gt [:4 : (aZ—mZ)p}

where p = p(a, y, t) is the Fourier transform of the function p and « is the transform
parameter. Now, we perform the Laplace transform with respect to time. Making use
of the convolution theorem, we arrive at the ordinary differential equation

k _ I
(3.2 —)—’43(3;’—2a26§+d‘)p* = 2_"(a:—m’)[2p*—p(a, y,0)

+(52—¢’)[1L2 =5 P*—L,(0) -” 0) =P, Ys 0)]

l?P
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(=]
where p* = p*(a, y, 4) = J p(x, y,t)e ¥dt is the Laplace transform of the function p,

| 1 - - 1

-:.—:;-, L% — Laplace transforms of the operators By Ly IO, W— values of the
operators at the instant t = 0; p(a, y, 0) — the value of the Fourier transform of the
pressure p at the instant t = 0.

Introducing the notations

- I 1 g

(33) file, y,0) = —(a+—‘— H(o,)(a:—#)p(a,y, 0),
wl anp
7%
-ZZ=I:M+L; & w1=_k2_, a= 3n 3
wl aup ?w awwl
we obtain the following form of our equation:
(3.4 (04 —2a20% + oa*) p* + 22(0% — 0a®) p* = fi (2, y, 0).
In view of the condition lim p = 0, the general solution of the above equation has the
Y00

form
(3.5 (e, y, 2) = Ay(a, De~V =24 B (a, e "+ f¥(a, ¥, 4),

where f¥(e, y, A) is the particular solution to be determined on the basis of the fluid
pressure at the initial instant.
Let us now solve Eq. (2.20); performing over it the Fourier transform, we obtain
26 1 .
— (02— a?) p(, y, 1),
T %( y—o?)p(e, , 1)

where F(a, y, ) is the Fourier transform of the function F(x, y, t). Moreover, the Laplace
transform with respect to the variable ¢ yields

(63 —20202 +a*) F(at, y, 1) =

2B
Tieake & 0T

where G*, L* are the Laplace transforms of the operators G, L, respectively.
Taking into account (3.5) and making use of the notation

(3.6) (02 —20202 + a*) F* =

Tk
(3.7 T = -—L '7.1;-,
—14+2L* Oup
we have

(05 —20207 +a*)F* = —T224,(a, Ne-V = + f1(a, y, 1),
where

fi(a,y, A) = T(3; - o) f1(e, y, D).

Assuming that the stresses at infinity vanish, we arrive at the following solution of Eq.
(3.7:

(38)  F* = [A(x, )+B(a, Dalyle” ‘“"'_ZTTA (@, He V-2 + f1(a, y, 4).

Here f3(, y, 4) is the particular solution corresponding to the inhomogeneity f$(«, y, 4).
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The functions (3.5) and (3.8) contain four unknown constants 4,, B,, 4 and B. They
will be determined by means of the boundary conditions (two for the stress function and
one for the pressure p), and the filtration Eq. (2.16). We begin from the latter equation
and perform over it the Fourier and Laplace transforms. Thus

k " 1-2Ly .  2l%._
69 Lo ap = Tprsa 2 50y 2y

d3p
2L "
_—P( €, ¥, ) _Z-G(—o)s-_S(a,y,O)— ~§0()) (ﬂ J’,O),

where L¥, L¥ are the Laplace transforms of the operators L, and L,. On the basis of the
relation S = V2F, we calculate the transform

(3.10) S* = (02—a?)F*,

Introducing the above expression into (3.9) and substituting for p* and F* from the
formulae (3.5) and (3.8), we obtain

@iy - %zwa, Rye-Vasy 4 —:fi(@i—a‘)ff(a. )
3n _ — 3n _
= 5 MBi(a, De ™+ Ay (o, HeV== 4 fH(a, y, H]- =5, », 0)

ZLI

+1 [—2B(a, A)ae™ "+ T4, (@, A)e-Ve=3 + (82— a?) f3(a, y, A)]

+,1-__[3,(a e ™4 A (x, eV + f¥(a, y, M)

A2l i s 2£,(0) -
~ 12250 52 42)F(a, y, 0)— .0
2600) (0y—a*)F(x, y, 0) (0)()’)
After transformations
3.12) 202B(a, z)zl_“z'G%f_;e-lﬂr = 2[-33+ @]Bl(a, Ne Wy f¥ @, y, A,
W op

where
-k 3 3n _
(G13)  fHa,y, D) = 7—"(63—«*)fr(a,y, N+ —”zfr(a,y. A)——”p(u,y,m

oy 2L;

(05— ) f3(2, y, 1)+J- 7% fi'(a,y, 2)

%yp
—2L,(0) 2L;(0)
0} —a?)F(a, y, 0)——
ZG(O) —=—===(05 —a*)F(a, y, 0) %0y (0)
Applying the operator 82—a? to the function f¥(«, y, A) and taking into account the
relations between the particular solutions f¥ and f¥ with the functions p(e, y, 0) and
F(a, y, 0), we find that

p(a, y,0).

(5;—“2)ff(°¢,)’, '1) =0



740 B. LEcHOWICZ AND G, SZEFER

Hence
fi@,y, ) = C(a, e~ .,
The constant C(x, 4) will be determined from the initial conditions. Thus, in view of (3.12),
[ S %
G149  B@ A= [ R ] 26" B@ ) C@ NG
o 1-2L% 2a 2024(1-2L%)

w a:p
Introducing, for brevity, the notation
C(x, 4)2G*
2022(1-2L%)
and introducing (3.14) into the formula (3.8), we finally obtain
3n 213;] G*  B(a, ,1)
— ;
a,  ay | 1-20% o

= Ci(a’ ‘a)

= |aly

(3.15) F*= A(a, A)e"“"+[

€.l Dty 0= LA, o, DV 4300, .

Having determined the transform of the stress function, we can use (2.19) to calculate
the stresses; thus, inverting the Fourier and Laplace transforms, we have

oo e+ico
_ 1 Lf f 2,=[oly 2y~ laly
o= {A(a, Date o4 Cy(a, Dol aye

—00 ¢—io0

n 2L G* T
+|:Z+ —&'?f—] 1—421."_31 (o, A)la|yei*r— -2 Ao, Nale-V w-sy

e f;(d, Vs A)dz}e'“"”dﬂdu,

0o etioo
=T *lzf ™ 4 ,ﬂi {A‘“' Rate 0+ Cy(w, A)(=2+|a]p)ore™
3n ZLQ G*
——-B MN(-2 ~laly
(3.16) +[aw + = ] 1_203 W(a, D)(—2+]|ay)e
—;i:— (02 =22 Ay (2, DeV =21+ 35 f3(a, , A)}e““*”dﬂda,
1 o0 &4ioo
l la =" la|y
"V %ii{ Alw, ejale™™+Co(a, Dajal(1-lalr)e”

Ay D=7 e—f""‘«*-==r+3—if§(a.y. %)

3n ZE.“ G*
.} By(a, D2 (1- -Mr} em e+ M Ay
+[¢w a:,]l 2y e )I p(t=lelne
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On the basis of (3.5), we deduce the pressure

3.17)
1 1 oo etico
p= —'/—2——“——2;; f f {By(x, A)e™ 1 4 4, (x, A)e-V-Tr 4 f¥(a, y, )}e " *+*dAda.
—co e—ioco

In what follows we shall need the formulae for the displacements. In view of (2.15) and the

geometric relation &, = %(u¢,,+ ug ), we obtain the vertical displacement in the form

o0 g+ioo

3.18 U, }/l_ zjn,f f{ZG*A(m' A)|a) e~ o

—00 &—ic0

+(1-2L% +|aly)

C,(a, Aol _,,,,+[3n ZL‘] 1-2L%+|aly Bi(x, A) oty
2G* %y gy 1-2L2 2|al

..

z’L§ —a

Bx(u Ae! P4 —TAy(a, eV

_M o, L2 ‘3f;-(«
= 25°

_1-_ I 2_ 2 EI_;_ —lax 44t
+f [26,(Lafra 11+ 35 de}e didactfiy (%, 1),

while the horizontal displacement takes the form

o0 e+iloo

(.19) U,='/;_“-2-:Ef f{%[}l(a, Dot (~2+2L8 +|aly)aCy (e, Ae! ¥
—00 e—ioco

+[f.§{;(a, B et-z +z=Lz A;(a, 1)]8_1,‘,_—,,,
Opp O 222G* o
3n 21';';] —24+2L%+|a]y ~ I2B(ax,3) _ I
il e & B A A |zly - laly ol
+[¢w b &% | 2a(1-21%) (e, e+ e ¢ m:pﬁ

+—;G=;Iaff $ (o, y, D+LE(6*-3)) f3 (2, », 1)]}8“"‘*"'ddd?~+fzz(y, ).

In view of the above formulae, the compatibility of strain &, = % (Us,y+ Uy,2) =

= L. g,y leads to the relation
2G
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Consequently, similarly to the theory of elasticity, the functions f;,(x, ) and f,,(y, t)
have the form corresponding to a rigid displacement

fulx, ) = —CE+B(1), f.(»,1) = C*y+D(1).
The formulae (3.16)-(3.19) describing the stresses and displacements contain the integration
constants 4, 4, and B, depending on the transform parameters « and A. These constants
can be determined from the conditions of loading and pressure on the boundary of the
semi-space (Fig. 1)
(320) 0y(x,0,2) = g(x,1), 0x(x,0,8) =n(x,1), p(x,0,t)=p,(x,1).
Performing the integral transforms, after simple transformations we obtain

AF T R e e

|ef aw (1-2L%H a2

(B21) A(a, ) =

M(a, 7)
_1'_"_ & 2 _6_ .. _3i 2f,3 G* }

3 zz ‘lfj |¢[ +C1G +‘Gl ay y-0+ [aw 2 e ] 1—2L2 (.pl ff(aso 2'))
M(a, 2) o

—g-i - C—lal LY —af1,0.9)

Ay(a, A) = 7ich ;l) i
[ 213;] G* 0.1
[aw + [l (Pt—11(2,0, )
+ Mz, A) 3
g*+in* I | —+Cio?+|af ng +a*f¥(a, 0, 2)
By(a, ) = M, 1)
Ve -4 G pr0,0)
e M(a, A) :
where

T S [* ok
M, 3 = 71V~ —a _[_3i+2j':a]__§__

2 ty 1-218

and g*, 7*, p* are the transforms of the loadings.

Thus the constants (3.21), besides the boundary data g*, 7* and p*, contain also the
functions /1 (a, 0, ), f% (2, 0, 2) and C,(«, ). The latter depend on the initial conditions;
this fact follows from the formulae which for clarity we present once more:

fl(a’y, 0) = ——(a+ LS,) &'(:o))(az—‘az)P(a ¥, 0).
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Here, f}}(a, 0, 4) is the value of the particular solution (3.4) corresponding to the inhomo-
geneity f;(a, y, 0) for y = 0,

Aany=-22_1 @ o@y. 0,

20*—1 dgp
f% (e, 0, A) is the value of the particular solution (3.7) corresponding to the inhomogeneity
f%(x,y, 4) for y =0,

G*

G D = aain

C(a, 4),

C(a, A)e~1®Y = [—&(6§—33)+3—nl+12}—}]ff (a,y, 4)
Yw O Lyp

|17 3n 2097
+—Zé*_(6y—a )j'fs (ﬁ,y, J’)_" E:+&‘-’T§:)- P(a!ys O)
1—2L,(0)

z 2 —a?)F(a, y, 0).
260) (05 =) F(a, y, 0)

If we assume that at the initial instant ¢ = 0, the body is in its natural state, i.e., p(x, y, 0) =
= F(x,,0) = 0, then p(a, y,0) = F(x, y, 0) = 0 and, consequently,
ff(aso, 1) =f:(ﬂ€,0, ;') = Cl(a, j‘) =0.

The formulae (3.16)-(3.19) completed by (3.21) yield therefore the general exact solution
of the problem. The total stresses in the two-phase medium, the fluid pressure and the
skeleton displacements are given in the form of non-elementary proper and improper inte-
grals a computation of which for definite functions g(x, f), %(x, f) and p,(x, t) can
be cumbersome but does not lead to any difficulties. On the basis of the Krylov inter-
polation method [6, 7], the inversion of the Fourier and Laplace transforms is basically
reduced to the calculation of the values of the integrands at the interpolation nods.
For various cases of loadings and material (various types of soils), we can therefore
effectively determine the distributions of displacements and stresses, to estimate the
influence of the viscoelasticity of the medium on the phenomenon of consolidation and
to describe quantitatively the process in time. Results of the above numerical analysis
will constitute the subject of another paper.
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