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On the duality of foundations of mechanics of discrete elastic systems 

B. OLSZOWSKI (KRAK6W) 

THE PAPER contains a discussion of dual aspects of the minimum energy theorems by Lagrange 
and Castigliano, their relations to the dual Legendre transformation and the concept of con
struction of a kineto-static potential representing a generalization of the notion of energy. 

Praca zawiera om6wienie dwoistych aspekt6w zasad minimalnych Lagrange'a i Castigliano, 
ich zwi~ku z dualn~ transformacj~ Legendre'a oraz koncepcji utworzenia potencjalu kineto
statycznego jako uog6lnienia poj~cia energii. 

B pa6oTe paccMaTpimaiOTCH ,D;BOHCTBeHHhie acrreKThi rrpmii.\HIIOB MHHHMyMa JiarpaHma H Kac

THJThHHo, HX CBH3H C ,D;BOHCTBeHHOM rrpeo6pa30BaHHeM JlemaH,D;pa, a TaKme o6cym,D;aeTCH 

BOIIpOC 0 KHHeTOCTanNeCKOM IIOTeHI . .\HaJie, 0606II.\aiOII.\eM IIOHHTHe 3HeprHH. 

1. Preliminaries 

THE PAPER sets out to discuss the fundamental questions of dual relations occurring in 
mechanics of elastic discrete systems subject to nodal loads. Attention is focused mainly 
on problems connected with the dual Legendre transformation, on its mechanical inter
pretation and on its relation to the two general kineto-static, energy-type potentials L 1 , L 2 

introduced in Sec. 6. It is shown that, owing to the Legendre transformation, these po
tentials may, if necessary, be represented in the two equivalent forms of functions 
of kinetic or static variables. In this manner, the dual character of energy notions 
is accentuated. Many of the facts indicated in the paper are not to be considered as 
original; but the author hopes that placing them in a new perspective may contribute 
to a better understanding of the inter-connections and dual relations in mechanics. 

The paper is a result of a search for a systematic and the most complete approach 
possible to the dual extremum problems connected with the determination of states of 
equilibrium of forces and compatibility of displacements in discrete elastic systems with 
bilateral constraints. The idea of a dual problem is usally associated with mathematical 
programming in which it plays a fundamental role. Consequently, it should be stressed 
here that confining this idea and its application to mathematical programming only 
excessively reduces the content of the notion of dualism, which may be successfully 
applied e.g. in the classical problem of Lagrange multipliers [3]. To avoid misunder
standing, it should further be stressed that in this paper the notion of dual problems is 
not associated with mathematical programming, the discussion being exclusively confined 
to classical problems of mechanics. 

In spite of the fact that there are to be found in the literature accessible to the author 
various formulations and approaches to the energetistic problems of discrete and continuous 
elastic systems, still lacking is a full and completely satisfying approach- an approach 
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including a11 the aspects of the problem, even if concerning the discrete systems only. In the 
author's opinion such an approach should contain the determination and interpretation 
of the relations which hold true between the dual Legendre transformation [7, 14] and 
the mutually dual extremum principles by LAGRANGE and CASTIGLIANO. This duality 
appears to require a special attention since it is not so far generally accepted. 

ARGYRIS [19], in his papers devoted to energy theorems in structural mechanics, 
mentioned the mini-max theorems; the formulation of them is, however, somewhat vague 
and superficial. In the book by FuNK [2] may be found an exact formulation of extremum 
problems and theorems in mechanics (based on what is caJled the Friedrichs principle), 
though the considerations are confined to linearly elastic systems. Interpretation of the 
Lagrange and Castigliano theorems based on the Legendre transformation is presented 
by LuRIE [14], no conclusions being drawn, however, with respect to extremum problems. 
In the book [12] by CouRANT and HILBERT, the mini-max variational problems are treated 
in a purely mathematical manner, and their applications are limited to the Castigliano 
theorem. In the majority of handbooks dealing with elasticity [10, 13, 1 5], the minimum 
theorems concerning the total actual and complementary energies are formulated and 
applied, but a complete analysis of their mutual relations and reference to the Legendre 
transformation is usuaJly lacking. The difficulties which arise in solving problems involving 
mixed boundary conditions constitute a typical manifestation of a principle which is more 
general - and hence more complicated - than the two minimum principles. REISSNER 
[18] and ABOVSKII [9] derive the general form of energy functionals for the problems 
of linear elasticity, and the Lagrange, Castigliano and Reissner functionals follow as 
special cases from that general form, no reference being made, however, to dual problems. 
In the theory of load carrying capacity (e.g. [4, 6, 20]), the extremum theorems are used 
for two-sided estimation of the load capacity and for optimization of the structural 
properties, also without going more deeply into the common theoretical foundations of 
the theorems. Similarly, in a number of papers dealing with applications of variational 
methods in structural mechanics (e.g. [5, 11, 16]) use is made of the minimum theorems 
without referring to the dual relations between them. GOLDENBLAT's book [11] contains 
a discussion of extremum theorems and introduces the generalized mixed potentials of 
structural mechanics, but his purely formal considerations lead him to an erroneous 
formulation of the variational principle. 

In the present author's opinion, the most complete and self-consistent approach to 
the problems is to be found in the paper by SEWELL [7] in which the general theory 
is illustrated by examples from various fields of continuum mechanics. The theory 
of optimization and dual approximation is constructed on the basis of mathematical 
programming formulated, from the very beginning, in a dual approach. The paper is 
characterized by seeking a new, common approach to the problems both of mathematical 
programming and continuum mechanics. 

Several conclusions of a rather essential nature may be drawn from the short and 
certainly incomplete review presented above. The consistently dual approach to the 
foundations and principles of mechanics is relatively new, though the way for it was 
cleared long ago. This approach is not used particularly frequently despite the really 
urgent needs: on the one hand, application of approximate methods, both analytical 
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and numerical, necessitates the estimation of errors which determine the applicability of 
the corresponding methods and algorithms. Two-sided -usually the most valuable -
estimation may - in the majority of cases -be realized only by means of a dual approach. 
On the other hand, considering both the minimum energy theorems as particular cases 
of a more general principle creates a convenient basis for a more universal and through 
analysis of mechanical problems. 

2. Introduction 

The notion of duality will be considered in what foJlows to express the action of two 
principles, mutually independent and qualitatively different but complementing each other. 
This action is manifested in mechanics of elastic systems in the form of theorems by 
LAGRANGE (1788) and CASTIGLIANO (1875) [17], which were formulated on the basis of 
considerations of mainly linearly elastic systems and served for many years as satisfactory 
tools for solving systems of that type. 

The necessity of revision and generalization of these methods of analysis when applied 
to engineering structures made of materials exhibiting physical non-linearity effects was 
first observed by ENGESSER [1] in 1889. He found the Menabrea-Castigliano theorem on 
minimum of elastic energy (the least work of deformation principle [1, 17]) to be not 
a general theorem and to lose its validity in the case of structures made of materials which 
do not conform to Hooke's law. The least work of deformation principle was then replaced 
by the more general principle of least complementary work which remains true also in 
the case of arbitrary relation s = f(a). 

Engesser's formulation of the new principle of mechanics was a result of the introduction 
of a new notion of complementary work as opposed to the actual work. In spite of the fact 
that the notion was introduced in a purely formal manner (being defined as the quantita
tive ·'difference between the virtual and actual works"), it contributed to the construction 
of a new basis for a dual formulation of principles of mechanics. 

Without going into details, it may be observed that, in general, in the two mutually 
dual notions of work forces and displacements exchange their roles in the following 
manner: in the case of actual work, the force is expressed as a function of displacement, 
while in the case of complementary work, displacement plays the role of a function de
pending on the value of the force applied. It should be noted that the latter situation is 
in fact closer to our "everyday experience''- in the contrary to the first impression which 
might follow from the names of the two notions of work. The fact that the two notions 
are complementary is the reason why a full and complete approach to mechanical problems 
requires them being treated as inseparable. If only one of the notions is used, the approach 
will remain one-sided and incomplete. 

Dual interpretation of the virtual work principle is closely connected with the dual 
notions of work presented above. lt is known that this principle may be formulated either 
on the basis of a virtual kinematical state (Lagrange's virtual displacements principle), or 
on the basis of a virtual statical state (Castigliano's virtual forces principle). According to 
the mechanical sense of the principles, the first one should be called the principle of actual 

http://rcin.org.pl



1010 B. 0LSZOWSKI 

virtual work, the second -the complementary virtual work principle. One way or another, 
each of the principles involves a different mechanical meaning and thus they should be 
treated as completely independent. 

The Lagrange principle reveals a statical sense and may serve for deriving the equations 
of static equilibrium. The Castigliano theorem has a kinematic sense (as was established 
in 1936 by SouTHWELL [13]) and may be used for deriving the equations of kinematic 
compatibility (St. Venant's equations and boundary conditions in terms of displace
ments). 

The necessity of an entirely independent consideration of the qualitatively different 
theorems of LAGRANGE and CASTIGLIANO is not yet generally recognized, even today; 
this is evident from inspection of numerous examples encountered in literature, which 
attribute the same mechanical sense to the two theorems, stressing their equivalence etc. 

Application of the Castigliano theorem, typically kinematical in character, to the 
determination of states of static equilibrium contradicts the very sense of that theorem. 
In this manner, kinematical aspects of the problem, constituting the dual and necessary 
complement to the statical approach. become entirely lost. The only adequate application 
of Castigliano's theorem is for the analysis of compatibility ofkinematical states. Mechanical 
meanings of the Lagrange and Castigliano theorems are identified with each other mostly 
in those cases in which the corresponding dual notions of strain energy (actual and 
complementary) are not properly interpreted and discerned. 

The situation described seems to result from two reasons. First of aJJ, the principal 
domains of application of energy methods always were (and still usually are) the linear 
problems in which the two notions of energy are apparently similar: they are expressed 
by similar formulae containing the same factor 1 /2, and their numerical values are iden
tical. This makes it difficult to distinguish between the two types of energy and to establish 
and analyze all the dual relations. Of certain importance may also be the fact that the static 
approach is usually preferred, especiaJJy in structural mechanics. Such an approach may 
frequently be found in literature on the subject, which proves that the approach to these 
problems still remains too one-sided. 

The proper and logical interpretation of the Lagrange and Castigliano theorems, 
consistent with their physical sense resulting from the two notions of work, leads to the 
determination of certain relations of a general nature. Both theorems are found to constitute 
a pair of mutually dual relations called the dual Legendre transformation. It was shown 
by SEWELL [7] in 1969 that this transformation constitutes one of the common foundations 
of mechanics of continua and mathematical programming. 

3. Actual and complementary work 

In view of the fundamental meaning of the concept of distinguishing between the two 
qualitatively different but complementary notions of work-- actual and complementary
it appears to be useful to present two parallel mechanical interpretations of these 
notions. 
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For the sake of simplicity, let us consider a simple model in the form of a single bar 
(Fig. la) made of a material with non-linear elastic properties (Fig. 2). Horizontal 
displacement s of its upper end will be measured from the point 0 corresponding to the 
undeformed state. 

a b c 
s 

r o' 
A 

Oo----e-

s ds s 

F 

FIG. l. FIG. 2. 

Let us imagine that the horizontal load to be applied to the bar has been "stored" 
alongside the bar, at the reference line s = 0, and is then quasi-statically transferred, 
step by step, to the bar. A certain intermediate state of loading is shown in Fig. lb. The 
state is characterized by the action of a force S producing a corresponding deflection s 

of the bar. In order to apply some additional load dS (Fig. le), we have to perform. 
at first, the complementary work dL4 = s · dS along the displacement measured from 
the reference line to the line determined by the coordinate s, and then-- the actual 
work dL = S · ds due to the actual loading which makes the bar deflect by ds together 
with the load S already existing. The total work done during the additional loading is 
equal to 

(3.1) dLc = dLd+dL+ds· dS = s· dS+S· ds+ds· dS = d(sS)+ds· dS. 

Summing up, we may conclude that in the process of loading, the current force incre
ments do the complementary work on displacement already produced in the bar, and 
the force previously applied to the bar does the actual work on current increments of dis
placement. 

From the interpretation of the dual notions of the work presented, it follows that 
the actual, work is a function of displacement s, while the complementary work -
a function of the force S. The situation may sometimes be obscured by the fact of 
existence of a one-to-one correspondence between the variables s and S due to which 
any of the two variables may be used as an independent one. 

Integration of the Eq. (3.1) for an elementary total work within the limits determined 
by the original and final states of the loading process yields in the case considered (Fig. 2): 

(3.2) Lc(s, S) = L(s) + L4(S) = sS. 

To shed some additional light on the subject, let us discuss the possibility of another 
interpretation of the notions of work. To that end, let us consider the same system as before. 
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a b 

FIG. 3. 

In the process of loading (Fig. 3a), force S performs (on displacement s) the actual 
work which is numerically equal to the area L in Fig. 2. Assume the value of force S to 
remain constant after loading and try to bring the bar back to the unloaded state by means 
of an additional force F (Fig. 3b). In the process of unloading, force F performs the actual 
work on displacement f produced by itself and measured from the deformed state; 
the work is equal to the area Ld shown in Fig. 2. In this manner, it becomes evident that 
the complementary work of the loading force S is numerically equal to the actual work 
done by the unloading force F. The inverse relation also holds true. 

To conclude the considerations, let us moreover observe that the simplest expression 
for the total work is obtained in the case in which both the displacement s and force S 
are measured from the natural state -i.e., from the strain-free and stress-free state of 
the system [Fig. 2 and Eq. (3.2)]. In the case in which s and S are measured otherwise 
e.g., from the state in which they assume the values s0 and S0 - we obtain 

Lc(so+s, So+S) = L(.\'0 +s)+Ld(S0 +S) = (s0 +s)(S0 +S) = 

= s0 S 0 +sS+s0 S+sS0 = Lc(s0 , S 0 )+Lc(s, S)+s0 S+sSo. 

FIG. 4. 

The increment of the total work value of the system due to passing from the original 
state to the actual one is then: 

L1Lc(s, S; So, So) = Lc(s0 +s, So+ S)- Le( so, S0 ) = 

= Lc(s, S)+s0 S+sS0 = sS+s0 S+sSo, 

as is shown in Fig. 4; L1Lc corresponds to the sum of shaded areas. 
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4. Potential of forces and displacements. Dual Legendre transformation 

Let us consider an arbitrary elastic element with displacements and loads which 
may be described by suitable single-column matrices sand S with components sa. and Sa.( ex = 

= 1, 2, ... , k). Assume that there exists a one-to-one (not necessarily linear) correspond
ence between the loads and displacements of the element. Returning to the example of 
Fig. I a, where k = I, we may represent that correspondence in the manner shown in Fig. 5. 

FIG. 5. 

Let us denote the areas OAs and OAS by U(s) and V(S), respectively. From Fig. 5 it 
immediately follows that 

(4.1) U(s) + V(S) = sS. 

If k > 1, the notation U(s) and V(S) should be identified with the notation U(s1 , s2 , ... 

... , sk) and V(S1 , S2 , ••• , Sk), the product sS being understood as a product sTS of matrices 
sTand S. 

From the definition of U(s) and V(S) it follows that 

s 
(4.2) U(s) = f S(~)d~, V(S) = f s('YJ)d'YJ. 

0 0 

For k > I, the operations of integration are to be understood in a suitably generalized 
sense. Thus we have 

(4.3) oU(s)fos = S(s), oV(S)foS = s(S), 

that is S(s) = grad U(s), s(S) = grad V(S). 

It follows from the Eqs. (4.2) and (4.3) and from Figs. 2 and 5 that U(s) is a potential 
of forces S(s) and its numerical value is equal to the actual work of these forces done on 
the corresponding displacements s treated as independent variables. The function U(s) 
is called the actual potential strain energy. 

An entirely similar reasoning leads to the conclusion that V(S) is the potential of ills
placements s(S) and its numerical value is equal to the complementary work performed on 
these displacements by the forces S treated as independent variables. The function V(S) 
will be called the complementary potential strain energy. 

The relations (4.3) derived in a purely formal manner and resulting from the definitions 
of functions U and V represent the analytical, well-known version of the Lagrange and 
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Castigliano theorems. In the case of linear relations between s and S and for corresponding 
values of the variables, the values of U and V are always equal. It should be stressed here 
that the Castigliano theorem in its original form: oUjoS = s is, in general, not true and 
yields good results only for linearly elastic systems in which U = V. This fact was observed 
by ENGESSER who proposed an improved, correct form oVjoS = s which remains true 
for any non-linear relation between S and s. This fundamental observation made by 
ENGESSER remained virtually unknown for a period of half a century- until 1941, 
when WESTERGAARD [8] revived the idea of complementary work. 

From the mathematical standpoint the relation (4.3) 1 written in terms of components 

(4.4) Sa.=oUfosa., a.=1,2, ... ,k, 

constitutes a certain transformation of old variables sa into the new ones Sa by means of 
the generating function U. In the case in which the function is of the class C2

, it is pos
sible to construct a square matrix H(U) with elements o2 Ujos ,osp, (a., {3 = 1, 2 ... , k) 
called the Hess matrix, identical with the Jacobi matrix with elements oS~fosp (a., {3 = 

= 1, 2, ... , k) constructed for the set of functions Sa.. 
The system of equations ( 4.4) may be solved for the old variables sa. in those 

regions of the space in which det H( U) =1= 0. This means that in these regions there 
exists a transformation inverse to (4.4); it may be proved to have the form of the 
relation (4.3h or 

(4.5) Sa = oVjoSa,, (J. = l, 2, ... 'k. 

The two mutually inverse transformations (4.4) and (4.5) are characterized by a typical 
symmetry in variables sa and Sa. and by the fact that their generating functions U and V 
satisfy the relation (4.1); they bear the common name of dual Legendre transformation 
[7' 14]. 

From these remarks it follows that an arbitrary elastic element with a one-to-one cor
respondence between the displacements s and forces S, may always be interpreted as 
a certain mechanical "Legendre transformer" realizing that correspondence. The Hess 
matrices H(U) and H(V) play here the roles of the stiffness and compliance matrices, 
respectively. 

5. States of compatibility of displacemeots and equilibrium of forces 

Let us imagine an arbitrary nodally loaded system "assembled" from certain 
definite elastic elements joined together at the nodes. Let us treat the elements and nodes 
as completely independent components of the structure, though exerting certain forces 
of interaction. In such a case, the states of displacement and loading of all the elements 
may be uniquely described by two single-column matrices s and S with elements sa. and 
Si a. = 1, 2, ... , m). Similarly, the states of displacement and loading of all the nodes 
may be determined by means of single-column matrices rand R with elements rp and Rp 

({3 = 1, 2, ... , n). The system is assumed to be kinematically and statically linear and 
made of a material with arbitrary though strictly increasing elastic characteristics ensuring 
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a one-to-one correspondence between the variables s and S. The loads are assumed to 
be sufficiently small to exclude the unstability of the equilibrium states. 

In the case when the system considered is statically determinate, in the full set 
of its states determined by the variables s, r, S, R only one of these states is actual and 
satisfies the equations of 

(1) compatibility of displacements s = Ar, 
(5.1) 

(2) equilibrium of forces S = CR. 
Let us apply the principle of virtual work to the actual state of the system: srs = Rrr. 

In view of the Eq. (5.1), we have 
srs = (CR)T Ar = RTCT Ar, 

hence 

and it follows that 
(5.2) er= A- 1 and AT= e-t, 
and also ACT= E = CAr. 

Multiplying the left-hand sides of the Eqs. (5.1) by er and Ar, respectively, we obtain 
in view of the Eqs. (5.2) another, equivalent form of these equations: 

(1) compatibility of displacements r = er s, 
(5.3) 

(2) equilibrium of forces R = Ars. 
The relations (5.1) and (5.3) determine the unique [due to the Eqs. (5.2)], one-to-one 

correspondence between the variables r, s and R, S characteristic for all statically deter
minate systems. On the basis of these relations, the following interpretation of columns 
and rows of the matrices A, C may be given. 

The columns of A(C) constitute a set of n states of displacements s (loads S) produced 
by consecutive unit states of displacements rp = 1 (loads Rp = 1) for {J = 1, 2, ... , n. 

The rows of A(C) constitute a set of m states of loads R (displacements r) cor
responding to the consecutive unit states of loads Sa. = 1 (displacements sa. = 1) 
for a = 1, 2, ... , m. 

Let us now assume that the system considered is statically indeterminate and denote 
by r0 and R 0 the displacements and forces occurring in the system. Using the Lagrange 
concept, we may transform the system into a statically determinate one by releasing it from 
the hyperstatic constraints. As a result, certain displacements r * appear which did not 
exist in the original system, and also the corresponding forces R* replacing the action of 
the constraints removed. The released system is statically determinate, therefore the rei a
tions (5.1)-(5.3) hold true except for the fact that 

(5.4) A = (A 0 A.), C = (C0 C.), r = G:). R = (~:)· 
Satisfaction of the Eqs. (5.1) or (5.3) has now a sense somewhat different from 

the previous one since it is not equivalent to satisfying the complete set of conditions 
of compatibility of displacements and equilibrium of forces in the original, statically 
indeterminate system; it merely concerns the conditions valid for the released auxiliary 
system. 

9* 
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6. Kineto--static potentials 

6.1. Statically determinate systems 

Let us pass to the problem of determining the state of equilibrium of a statically 
determinate system loaded by given forces P and satisfying the condition of com
patibility (5.1) 1 of displacements s and r. According to the Lagrange principle, the 
problem may be replaced by an equivalent problem of constrained minimization of 
the corresponding potential of forces with respect to the independent displacements. 
This potential is represented by the total actual energy of the system : 

(6.1) F 1 = U(s)- pT r 

whose minimum is sought for under the constraint s = Ar. The necessary (and under 
the assumptions made in Sec. 5 --also sufficient) condition of existence of minF

1 

(6.2) 
oF1 au as T 
--= ----P=A S-P=O ar as ar 

is the equation of equilibrium of forces. Owing to the uniqueness of S(s), the Eq. (6.2) 
has exactly one solution 

(6.3) s = CP, i = s(S) = s(CP) = s(P), r = CTs(P) = r(P), 

uniquely determining the state of equilibrium sought for. 
The same problem may also be solved by the method of Lagrange multipliers owing 

to which the constrained minimization of the potential (6.1) is transformed into an equiv
alent problem of unconstrained determination of the stationary point of another poten
tial of forces 

(6.4) 

in which the role of a La grange multiplier is played by the force S = S(s ). Function F; 
may be interpreted as a properly generalized potential energy of the system subdivided 
into separate elements and nodes, taking into account the actual work of forces S done 
on the kinematic incompatibilities Ar-s which appear as a result of absence of nodal 
joints in the system. In the case considered the variables s and r are not subject to any 
constraints and thus they remain independent. Two necessary and sufficient conditions 
of existence of a stationary point of F~ appear: 

aF' au asT a/ = as+-----as(Ar-s)-S = H(U) · (Ar-s) = 0, 

oF{ = -P+ATS = 0. 
ar 

On the basis of the assumptions quoted in Sec. 5, detH(U) ::1= 0, and thus the necessary 
and sufficient conditions mentioned above take the form: 

(6.5) Ar-s = 0, ATS-P = 0. 

It follows that the stationary point ofF{ satisfies simultaneously the conditions of compa
tibility of displacements and of equilibrium of forces. Since we are dealing with a statically 
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determinate system in which the unique state of compatibility of disp1acements is, at ·the 
same time, the only state of equilibrium of forces, both the Eqs. (6.5) have exactly one 
solution identical with (6.3). 

Let us now remark that, in view of the identity ( 4.1 ), function F{ may be represented 
in the completely equivalent two forms: 

(6.6) 

If we take into account that s = s(S) and useS and r instead of sand r, then the necessary 
and sufficient conditions take the form of the equations: 

oV A 4 0 ooFr{ -- A.rS-P -- 0, - -+ r = ~ r-s = as ' 
entirely identical with (6.5). 

The formally derived identity (6.6) is of a fundamental significance owing to its appli
cations. Let us observe that, on the basis of it, the problem of seeking the stationary point 
ofF; in the set of states of displacements compatibility determined by the condition Ar = s 
is reduced to the formerly considered minimization of F 1 with the constraint Ar = s. 
If our considerations are confined to the set of states of forces equilibrium determined by 
the condition Ars = P, it is readily observed that F{ is transformed into the negative 
complementary strain energy of the system. The problem may then be viewed from another 
standpoint - namely, through the Castigliano theorem. 

To that end let us formulate the problem of determination of the state of compatibility 
in the system satisfying the equation of equilibrium (5.3)z of forces S and R = P. 
According to the Castigliano theorem, the problem may be replaced with the equivalent 
problem of constrained minimization of a corresponding displacement potential with 
respect to S. This potential is represented by the complementary strain energy of the 
system V(S) whose minimum should be found with the constraint Ars = P. Owing to 
the fact that the system is statically determinate and loaded by given forces P, there 
exists exactly one state of equilibrium and thus the force S can not be considered 
as an independent variable. The triviality of the problem is now obvious provided 
that we are dealing with statically determinate system; it disappears when passing to 
statically indeterminate systems possessing the entire set of solutions S. 

Using the concept of Lagrange multipliers, constrained minimization of the function 
V(S) may be transformed into a unconstrained problem of determination of a stationary 
point of another displacement potential 

(6.7) 

in which the role of Lagrange multiplier is played by the displacement r. On comparing 
the Eqs. (6.7) with (6.6), it is seen that F~' = -F~. Consequently, the problem of minimi
zation of V(S) with the constraint AT S = Pis identical with the problem of maximization 
ofF{ with the same constraint. 

From the considerations presented, it follows that F~ represents a kind of kineto-static 
potential with a saddle point corresponding to the actual state of the system in which 
the conditions of compatibility and equilibrium are satisfied. The potential is transformed, 
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in the set of compatibility states, into the total actual energy, and in the set of states of 
equilibrium - into the negative complementary strain energy of the system. Owing to 
that property, the problems of Castigliano and Lagrange may be considered as a pair of 
dual problems: 

min[U(s)-PTr] = minF~, 

(6.8) 
Dt Dt 

minV(S) = max[-V(S)] = maxF~, 
Dz D2 D2 

where D 1 = {s, r: Ar = s}, D2 = {S: ATS = P}. 
It turns out that the problem of calculation of a statically determinate system subject 

to a static load Pis accompanied by an analogous problem arising in the case of a kinematic 
load p. To stress that analogy let us regard in a slightly different manner the problem of 
determination of the state of equilibrium which constituted the starting point of our pre
vious considerations. 

Let us confine ourselves to the states of compatibility of displacements s and r, and 
to the states of equilibrium of forces S and R in a statically determinate system - that 
is, assume a one-to-one correspondence between the variables s, r, S, R defined by the 
identities 

s = Ar, S = CR, s = s(S), or 

r = CTs, R = ATS, S = S(s). 
(6.9) 

The identities yield R = R(r) and r = r(R), which indicates the existence of a dual 
Legendre transformation between the variables r and R. Indeed, on the basis of (4.3) 
and (6.9): 

(6.10) 
ov ov os T 
-=-··-=Cs=r. 
oR os oR 

The condition of equilibrium for an arbitrary load P may now be written shortly as 
R-P= 0 or Ojor[U(s)-PTr] = 0. An analogous form is also assumed by the condition 
of compatibility ofdisplacements for an arbitrary p: r-p = 0 or o/oR[V(S)-pTR] = 0. 
Two potentials, analogous and corresponding to each other, appear in these conditions: 

(1) potential of forces F 1 = U(s)- pT r, 

(2) potential of displacements F2 = V(S) - pT R. 
(6.11) 

In the case of a system shown in Fig. la in which r =sand R = S, functions F1 and F2 
may be interpreted as the respective areas of figures indicated in Figs. 6a, 6b. 

Using the analogy of potentials (6.11), the problem of determination of the com
patibility state for given displacements p forced into the statically determinate system 
satisfying the conditions of equilibrium ( 5.1 h, may be replaced by the problem of 
constrained minimization of the potential F2 with the constraint S = CR. Function F2 
may be interpreted as the total complementary energy of the system. The necessary and 
sufficient condition of existence of min F 2 , 

(6.12) oF2 ov os T 
-=-·--p=Cs-p=O 
oR os oR 
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a b 
s 

S=P~----~--~~ 

s s s=p s 

FIG. 6. 

is the equation of compatibility of dispJacements having exactly one solution: 

(6.13) s = Ap, s = S{S) = S(Ap) = S(p), R = ATS(p) = R(p), 

uniquely determining the state of compatibility of displacements. 
Using the method ofLagrange multipliers, we may replace the constrained minimization 

of F 2 with an equivalent problem of unconstrained determination of the stationary point 
of another displacement potential : 

(6.14) 

which may be interpreted as a suitably generalized complementary energy of the system, 
taking into account the complementary work done by non-equilibrated forces CR- S on 
displacements s. Since the variables Sand Rare not subject to any constraint, they both 
are independent variables. This leads to two necessary and sufficient conditions of 
existence of a stationary point of F~, 

oF' av asr 
0;- =as-+ oS (CR-S)-s = H(V)· (CR-S) = 0, 

oF~ r 
oR-= -p+C s = 0, 

or, in view of detH(V) -=1= 0, to 

(6.15) CR-S = 0, crs-p = 0. 

From the Eqs. ( 6.15) it follows that the stationary point of F~ satisfies simultaneously 
the conditions of compatibility and of equilibrium. Solution of the Eqs. (6.15) does not 
differ from ( 6.13). 

The identity (4.1) yields, similarly to the Eq. (6.6), the result: 

(6.16) F~ = V(S)-pTR+sT(CR-S) = - U(s)+RT(CTs-p). 

With S = S(s) and using the variables s, R instead of S and R, the necessary and 
sufficient conditions of existence of a stationary point of F~ assume the form: 

oF~ ou 
- = --+CR = -S+CR = 0 

os os ' 

oF' 
---

2 = crs-p = 0 
oR ' 

and the solution of the problem- the form (6.13). 
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Without going into further details we may also now establish the existence of 
a pair mutually dual problems 

1) min[V(S)-pTR] = minF~, 
D3 D3 

(6.17) 
2) min U(s) = max[- U(s)] = maxF~, 

v. v. v. 

where D 2 = {S, R: CR = S}, D4 = {s: CTs = p}. 

6.1. Statically indeterminate systems 

Generalization of the previous considerations to the case of statically indeterminate 
system consists in introducing certain constraints. 

In the problem of seeking the states of equilibrium of forces under a prescribed load
ings P, the set of compatibility conditions 

(6.18) 

consists of the condition (5.1)1 written by means of (5.4), and of the additional condition 
r* = p describing the kinematic constraints which make the system statically indeter
minate. Condition (6.18) 1 presents the kinematic relations concerning the system 
released from redundant constraints. 

In the case of constrained minimization of the potential H 1 = U(s)- pT r0 in the set 
of compatibility states determined by (6.18), r0 is the independent variable. The necessary 
and sufficient condition of existence of m in H 1 

(6.19) oH1 = oU __!!__p = A~S-P = 0 
oro os oro 

is an equation of the displacement method having the solution 

(6.20) ro = ro(p, P), s = Aoro(p, P)+A*p = s(p, P), s = S(s) = S(p, P). 

The concept of Lagrange multipliers leads to the construction of a new kineto-static 
potential L1 which may be written [by means of (4.1)] in two equivalent forms: 

(6.21) L 1 = U(s)-PTr0 +ST(Ar-s)+R~(p-r*) = 
= -V(S)+pTR*+rT(ATS-R)-r~(P-Ro). 

From (6.21) it follows that potential L 1 in the set of compatibility states defined by 
(6.18) is transformed to the potential H 1 = U(s)-Prr0 , and in the set of equilibrium 
states defined by conditions 

(6.22) R = ATS, R 0 = P, 

-to the potential H 2 = - V(S) +pT R*. 
Determination of a constrained minimum of the potential H~ = - H 2 = V(S)- PT R* 

in the set of equilibrium states with respect to the independent variable R* leads to the 
necessary and sufficient condition of existence of min H~ = maxH2 , 

(6.23) an~ av as T 

oR = as oR -p = C*s-p = 0' 
* * 
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which is an equation of the force method. Its solution is 

(6.24) R* = R~(P,p), s = CoP+C*R:(P,p) = s(P,p), s = s(S) = s(P,p). 

By analogy to the Eq. (6J 1 ), we might also formulate the problem of determination 
of the displacements compatibility state at a prescribed displacements p, for which the 
set of equilibrium conditions 

(6.25) 

would consist of the condition (5.l)z written by means of the Eq. (5.4), and of the additional 
condition R0 = P determining the given load of the system. 

In a purely formal manner, by applying the analogy with previous considerations, 
a kineto-static potential may be introduced: 

(6.26) L 2 = U(s)-PTr0 -RT(CTs-r)+R~(p-r*) = 

= - V(S)+pTR*-sT(CR-S)-rJ(P-R 0 ), 

differing only by the sign from its counterpart in (6.16). The potential in the set of compa
tibility states defined by the conditions 

(6.27) 

is transformed to the potential H 1 , and in the set of equilibrium states defined by (6.25)
into the potential H 2 • It is seen that the two potentials L 1 and L 2 are equivalent in the 
sense that in the respective sets of states of the system they are transformed to identical 
energy potentials. Consequently, the necessary and sufficient conditions of existence of 
stationary points for L 1 and L 2 form equivalent systems of the equations 

iJL 1 /iJs = S-S= 0, 

iJL1 /iJS = Ar-s = o, 
iJLzfiJS = -s-s = 0, 

8L2 /os = S-CR = 0, 

(6.28) iJL 1 /iJr0 = AJ S-P = R 0 -P = 0, iJL2 /iJR0 = r0 -C6s = 0, 

(6.29) iJL 1 /or* =; A~S-R* = 0, cL 2 /cR* = p-r* = p-C!s = 0, 

iJLtfiJRo = ro-ro = 0, 

iJL 1 /iJR* = p-r* = 0, 

oL2 jiJr0 = R0 -P = 0, 

iJL2 /iJr* = R*-R* = 0. 

The identities S-S = 0, - s +s = 0, r0 - r0 = 0, R*- R* = 0 occurring in the Eqs. (6.28), 
(6.29) are consequences of assuming the variables of S, s, r0 , R* for Lagrange mul
tipliers in the Eqs. (6.21)1 and (6.26)z. Arising from (5.4), the Eqs. (6.28h and (6.28)4 

and also (6.29h, (6.29)4 may be written jointly 

(6.30) Ar-s = 0, p-r* = 0, ATS-R = 0, R 0 -P = 0; 

(6.31) r-CTs = 0, p-r* = 0, S-CR = 0, R 0 -P = 0. 

The equations (6.30), (6.31) form two equivalent and complete sets of all equations 
of compatibility of displacements and equilibrium of forces, hence it follows that the two 
potentials L 1 , L 2 have a common saddle point, being the solution of the problem and 
corresponding to the actual state of a statically indeterminate system subject to the loads 
P and p. 

http://rcin.org.pl



1022 B. 0LSZOWSKI 

In conclusion, let us mention the mixed approach consisting in a two-stage solution of 
the problem. In the first stage, we are seeking ::XL' in the set D of states of the system 
partiaJiy satisfying the constraints, L' being uderstood as any of the potentia Is L 1 , L 2 

reduced to the set D. As a result, we determine a certain subset D' of extremal states of 
the system, and a new potential L" = :a!L' defined in the subset D'. The second stage 
consists in finding=: L" in the subset D', which leads to the determination of the actual 
state of the system satisfying all the required constraints. 

Let us, for instance, consider a statically indeterminate system under the action of 
loads P and p. Assume that in the first stage of our procedure the potential 

L'(s, r, R*' P,p) = U(s)-PTr0 +R~(p-r*) 

is minimized with the constraint Ar = s defining the set D of states of the system. The 
necessary and sufficient conditions of existence of min L' 

D 

oL' = A6S-P = o, oL' =AT s-R = o 
oro or* * * ' 

have a solution in the form of a function of R* : 

r 0 = r 0 (R*' P), r* = r*(R*' P), s = Ar(R*, P) = s(R*, P), 

defining the set D' of states of the system. In view of the fact that in the first stage we have 
to deal with a statically determinate system released from redundant constraints, the sets 
D and D' are identical. The new potential 

L'(s,r,R*, P,p) = U(s)-PTro+R!(p-r*) = L"(R*,P,p) 

is already a function of the single variable R*. 

FIG. 7. 
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The second stage consists in caJculating maxL". The necessary and sufficient condition 
D 

of existence of that maximum: oL" /oR* = 0 is an equation enabling us to calculate 
"' " "' A -" #"\ "' "" R* = R*(P, p) and, consequently, ; =r [R*(P, p)] = r (P, p), s = Ar(P, p) = s (P, p). 

The procedure is illustrated by Fig. 7. 

7. Conclusions 

A consistently dual approach to energy problems makes it possible to establish that 
the minimum theorems by Lagrange and Castigliano constitute two mutually dual aspects 
of a single, more general principle of stationary value of a certain Lagrange function. 
The function introduced in Sec. 6, L 1 or L 2 , is the general kineto-static potential of me
chanics of discrete, elastic, nodally loaded systems with bilateral constraints. The po
tential contains all the particular cases, what eliminates the necessity of using any other 
potentials (e.g. the set of potentials proposed by Goldenblat [11]). Identification of the 
kineto-static potential with the Lagrange saddle function explains why the mixed approach 
to the problem of caJculation of statically indeterminate systems leads to the determination 
of a stationary point, and not of a minimum of that potential. Extremal theorems appear 
only in those particular cases when the potential is reduced to definite subsets of states 
of the system (compatibility of displacements or equilibrium of forces). 

The approach to problems of mechanics of discrete systems presented in the paper 
has been purposely confined to nodal loads. That makes it possible to avoid discussing 
certain details inessential from the point of view of the general concept of dual approach 
which, on the other hand, may be generalized to the case of arbitrary loads. On the basis 
of mathematical programming methods, and of the Kuhn-Tucker theorem in particular, 
this approach enables to solve problems concerning systems with unilateral constraints. 
One of the principal aims of the paper consisted in proving the dual formulations to be 
purposeful and effective not in mathematical programming only. 
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