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On plane micropolar thermoelasticity in multiply-connected

domains and its application

Y. TAKEUTI (HAMAMATSU)

APPLYING Nowacki's theory [1], the present paper is concerned with some consideration of

plane micropolar thermoelasticity in finite multiply-connected domains.

Praca niniejsza przedstawia, w oparciu o teorie Nowackiego [1], pewne rozwazanie dotyczace
plaskich zagadnienn mikropolarnej termosprezystosci dla skonczonych obszaréw wielosp6jnych.

B craTthe u3NOXKEHBI HEKOTOpbIE pe3yJBTAaThl, MOJMYUYEHHbIE HA OCHOBE Teopuu HoBaukoro
[1], oTHOCALMECA K TUJIOCKMM 3ajladaM MHKpPOIOJIAPHON TEpMOYNMpPYTOCTH MJIA KOHEYHBIX

MHOrOCBA3HBIX obnacreii.

1. Introduction

THE PAPER begins with a presentation of fundamental relations of plane micropolar
thermoelasticity for finite muiltiply-connected domains. In the second part with a view
to illustrating the foregoing treatment, we deal with the steady thermal stresses in a regular
polygonal prism with a hole, within the framework of micropolar thermoelasticity. Numer-
ical work is carried out for the distribution of thermal stresses and couple-stresses in

a square prism with a central circular hole.

2. Analysis
2.1. Basic equations for plane micropolar thermoelasticity
The fundamental stress-strain relations in plane strain problems are:
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where

yij components of strain,
u; components of displacement,
%;j components of curvature,
w; components of rotation,
g;j components of stress,
uij components of couple-stress,
A, p Lame’s constants,
T temperature change,
a, f, ¥, € new material constants,
¥, material constant = o, E[(1—2),
v Poisson’s ratio,
a; coefficient of thermal expansion,
i partial differentiation with respect to i.

The stress components in the form of stress functions are given by [1]:

G113 = @22— VY12, 02 = = @21 +YP,11, 012 = —(@12+9,22)
022 = @11 F¥215  H13 =Y,15 M2z = P2

22

The fundamental differential equations for ¢ and y and the conjugate relations are:
2.3) Adp+kdr = 0,
2.4) (y—A24y),, = =2B*{(1-v)4¢ +a,E1},,,
(y—A424y),; = 2B*{(1-»)A¢ + o Ex},s,

where

k material constant = Eu,/(1—v),
A? new material constant = (¥ + &)(u+ o) [4uc,
B? new material constant = (y+¢)/du;

Egs. (2.3), (2.4) may be reduced to
(2.5) A(p—A*4y) = 0.
The boundary conditions are given by
P, =0, n+051,, P; =0y,0+05,n;,
83 = Hyafy+pa3ny,
where

P; components of surface traction,
g3 component of surface moment,
n; component of direction cosine of the normal to the surface.

Now, let us consider the general problem of micropolar thermoelasticity when the
cross-section of the body is multiply-connected. Let S be a connected region bounded by
n+1 non-intersecting contours Ly, L, , ..., L, of which L, contains all the others as shown
in Fig. 1. As shown in our previous paper [2], the boundary value of ¢ at a variable point
P; on the contour I,; becomes:
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FiG. 1. Multiply-connected domain bounded by smooth non-intersecting contours.

Pi

2.6)  [plp, = —fldx, f P;ds+fdx2 f P.ds+ (g3

+Ci(xy)p;+Cai (X1)p; + Cye

Moreover, the derivatives of ¢ and v on the contour become:

8 P Qi Qi

2.7 Fﬁ- + —(% = - Bf P,dscos(nx,) + :! Pydscos(nx,) 4+ Cycos(nx,) + Cy;cos(nx,).
For a simply-connected domain, it is permissible to take these constants as zero.
However, for multiply-connected regions, the constants C,;, C,; and Cj; generally assume
different values on each boundary curve, and then additional boundary conditions are
required to determine these constants. For this purpose, these constants must be so chosen
that the displacement and the rotation may be single-valued. The condition which makes
the change in rotation for an arbitrary path of integration (starting at a certain point
and returning to the same point after including the inner boundary L;) single-valued is

fmdw;, = _{L‘(wa.l dx; +ws,dx;) = f;_‘[(‘}’uJ —¥11,2) %1+ (V22,1 — V12,2)d%;.

Using the (2.1) to introduce the stress-strain relation into the integrand, and expressing
the strain in terms of the stress functions, we have

fz.;d% = dpua f {(Ay),, dx, +(4y),,dx,}

A2
Au(A+p)

Taking into account

§ L~ D)2+ (A9, s} s f (~Tad )

0x,[ds = —0x,/dn, Ox,[ds = dx,/dn,
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the integral becomes:

_ pta [0 A1 on x
§odos = B2 2 wast il b a0ty fu

Then, from the condition of §L,dm3 = 0, we obtain the next relation on each of the con-
tours L;

(2.8) fm [—:; (422) + (;) % {(1—=»)4¢ +En, v}]ds = 0.

The condition for the single-valuedness of the displacement u, can be written as:

fL,dul =_{L, (uy,1 A%y +uy,2dx%,)

= _{h{d(xl V11) +d(X2y2,) —d(x;03) =X, dy — X2 dy s +Xydws )

If the strain and rotation are single-valued, then the first three terms in the integrand
must vanish:

L‘dul = _{L,“‘ [y Paa,0 +X210,2)d% 0 +{X Vin2 +X2(V21,2 +V12,2) — X2 V22,1 } dX2).

Applying the stress-strain relations and the stress-function relations, rearrangement of
the integral leads to

A42u ( d

=—-— A¢d.
L‘du, du(A+p) J L ¥1gs ~ X2 3!!) ods

- "(F+,u) fh( ''0s xlf )m‘s+ CACHIR LBt

1 ; 1
+ —2; [x2(0.12 +‘P.22)]jl_ E [fh(b.udxl +fh¢,udxz]

1
T[f,_l'!’.udxl T fh?’,zzdxz] .

If the stress is single-valued, then the third and fourth terms in the right-hand side of the
equation must vanish. Moreover, the fifth and sixth terms may be written as:

§d@,+v.2) = b, +v.alhi = Fa,

where F, is the resultant force in x,-direction. On account of the equilibrium of the force
on all the boundaries, F, must be zero. Hence we finally obtain the following condition
for the single-valuedness of u, :

8 8 Ex é 8
@9 {Lt (x’ s n )A¢ds+ 1—» fl.: (x‘ o2 W)Tds =0

Similar reasoning leads to the third condition for the single-valuedness of u, :

2.10) f (ng oy )Aqbds Bt ( 2 +x1§£)rds=0.

Ty Ju\* 2
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It is seen that the last two conditions (2.9) and (2.10) have the same forms as in classical
thermoelasticity. From the above reasoning, it follows that the Egs. (2.8)-(2.10) become
the additional boundary conditions for the multiply-connected domains in micropolar
plane thermoelasticity. Therefore, the values of constants C,; (m = 1, 2, 3) in the Eq. (2.6)
are so determined as to satisfy 3/ integral relations of the Egs. (2.8)-(2.10),

For the plane polar coordinates (r, 0), the Eqs. (2.4) become:

d 4 _ 21 Fj
- W—A*y) = =28 — - {(1-9)4¢ + Ea, 7},
.11 - )
o, et — 42 = 2__ . —
~ g (W= A424y) = 282 ((1-9)4¢ + B, 7},
where
A= d*or*+r~t - 3lor+r=2- 32/002.

Let a be the radius of an arbitrary hole in the multiply-connected domains, the non-
dimensional coordinate of r being defined as

(2.12) ro = rfa.

Taking these dimensionless polar coordinates, the general solution of steady heat
conduction with no heat source becomes:

213) T = A3+ BSlnro+ D, {(AFr5"+B}rs)cosnd +(Clrs"+D} r3)sinnf}.
n=1
In this case, the Eq. (2.3) naturally reduces to the well known biharmonic equation:
(2.14) A44¢ = 0.
The general solution of the Eq. (2.14) is
(2.15 ¢ = Aog+Bylnrg+Cord+Dordlnre+(A,rg' + B ro+C;rolnre+D, r3)cost

+(Lyrg'+M,ro+N, rolnre + O, r3)sinf + 2 {(Aura" +Barg+Cori ="+ Dyrd*")cosnt

1=n
+(Lyrg"+M,rg +N,rd™"+0,r3*")sinnb}.
Furthermore, the general solution of the Eq. (2.5) in plane polar form is

(216) 1w = Ro+Solnrg+Ugly(are/A)+VoKol(ary/A)

+ O =[{Rurs"+ S, ry + UpIo(aro|A) + V, K, (aro/ A) }cosnd

n=1
+Warg"+X,rs + Y, Io(aro[A) +Z, K,(aro/ A) } sinnf],

where 7, and K, are the modified Bessel functions. Substituting now the Egs. (2.13), (2.15),
(2.16) into Eqgs. (2.8)-(2.10), we next obtain the relations between the unknown coefficients
in the functions 7, ¢ and .

7
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So=W, =R =0, a*Ea,C¥+2(1-v)N, =0, a*Eq,A¥+2(1—-»)C, =0,

B ’ 2 %* a y —
(?) {2a Ea,D1+16(l—v)01}+(j) S, =0,
( ) {2a*Ea, Bf +16(1—)D, } — ( )X, -

) (2% Ea, C* +8(1—7)(1 —n)N, } — (

“"-—.-—"'
=
Il
e

a
A
(2.17)

h

{242 Eu, D¥ +8(1—v)(1 +n)0,} + 7) S,

a
Il
e

Y
L)

(3
(3)
7

) (2a2Eo, A* +8(1—1-)(1—-n)C,.}+(%) W, =
(%) {2a2Ea,B:‘+8(I—v)(l+n)D,,}—(a) ¥ =

2.2, Polygonal prism with a circular hole

As a practical example, we consider the problem, shown in Fig. 2, of the thermal
stresses and couple stresses in a regular p-sided polygonal prism having a central circular

7Y |

(%,6)

Fi1G. 2. Regular polygon with a circular hole,

hole under a steady temperature distribution with consideration of micropolar thermo-
elasticity. Let us assume that the inner and outer surfaces are at constant temperatures
of T, and zero, respectively. Let a be the inner radius of the hole and b be the outer bound-
ary of the prism. Now, we may show that the temperature and stress function must
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satisfy the boundary conditions. For this purpose, the numerical calculation required to
obtain the unknown coefficients in 7, ¢ and p are enormous. Therefore, we use the point-
matching technique to satisfy the boundary conditions at a selected finite set of outer

boundary points of the polygonal region. If we replace > in the Eqgs. (2.13), (2.15) and
n=1

N
(2.16) by > approximately, we have to solve the equations of a finite number of unknowns.
n=1

The solutions obtained satisfy almost exactly the prescribed boundary conditions in the
interior of the body; and those on the outer boundary —approximately.
Considering the symmetry of the body, the Eq. (2.13) becomes:

N
(2.18) T = A¥+B§lnr,+ 2 (Apra®" + B}, rg")cosnph.

n=1

Boundary conditions for temperature are:

(2.19) at Fo = 1, T = To,
1 b zs
(2.20) at x;, =0, r(m?m) =0, 5=0,..,N,,

where N, is a finite integer and represents a number of divisions of the angle =/p.
From the Egs. (2.18) and (2.19), we have

A =T,, A% =—B%.
Then
N
@.21) v = To+BSInre+ 3, (r8"—rg™) B cosnpb.
n=1

Substituting the Eq. (2.21) into (2.20), we obtain the following (N,+1) equations:

N
1 B} 1 b\" 1 b )""}
(2.22) n ( cos m'/pN,) Ty ¥ "Z; {( cosas/pN, ' 7) - (cos 7t [pN a

nns B¥
X €08 —— + —&- =

N T, =k

where N < N;.

Using the method of least squares, we can determine (N+1) unknown coefficients
B, and B}, in the function 7. Therefore, the temperature distribution in this problem
may be entirely determined.

Now, we consider the stress problems. Because of the symmetrical arrangement, the
stress functions become:

N
(2.23) ¢ = Ao+Bolnro+Cord+Dorélnr,+ 2 (Apnr5™ + Bt + Cpurg"?*?

+D,,rg?**)cosnpb,
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N
(2.24) Y= Z {Wpnro"™ +Xpuare? + YpuIpn(aro/A) + Z pu Kpn(ar | A) } sinnpb.

n=1
Substituting the Egs. (2.23) and (2.24) into Eq. (2.2), the thermal stress components
and the couple-stress components become:

(225)  0pa® = —rg2By+2Co+(2Inro+3)D,

N
¥ 2 [np(np + 1)*‘3"" 2Anp +HP(-’1P == l)rS"" % Bnp + (ﬂp -—2)(!!..0 m— I) rE"anp

nm=1
+(np +2)(np +1)rg? D,y —np(np + 1)rg"? =2 W, , +np(np— 1)rg?=2X,,,
+ {np(ajAro)l,,_ (aro[A)—np(np + 1)rg *1,,(are[A)} Y,
— {np(alAro)K,,_1(aro/A) +np(np + 1)rg 2K,y(are/A)} Z,,)cosnpb ;

N
2.26)  paa= D [~nprs" Wy +npri~ Xy + {(@] A)]p_y(aro/A)

ne=1

i "PF‘E llnp(ar(.h"‘A)} Yilp_ {(a/A)Kn -1 (aro,r‘A) +"P-"6 IKnp(arD!A)}an] Sil‘l ”Ps ;

N
(227) Moz @ = Z {npr—np-l Wnp +"P’3P_1an +ﬁPr6’fup(Gfo;’A)Yup

n=1

+nprg 'K, p(ary[A)Z,,} cos npb.

For the sake of brevity, the expressions for g,,, 0,4 and g, are omitted here. Boundary
conditions for the stress distribution are:

(228) at ro = 1, Opp = Opg = lpr = 0;
(2.29) at x; =50, 0 =0, =p,=0.

Using the Egs. (2.17) and (2.28), we can express the stress components by the terms
with coefficients C,, C,, and D,,. Then we use the point-matching technique to satisfy
the outer boundary condition of the Eq. (2.27). Thus we can solve 3(N, +1)— simultaneous
equations for a selected finite set of the outer boundary points, and then the unknown
coefficients of the stress functions are completelv determined, and the problem is solved.

3. Numerical examples

The foregoing solutions will be illustrated numerically by the following data:
p = 4 (Square prism), N = 5, N, = 9.

The variations in o4 are shown in Figs. 3 and 4. Figures 5-8 illustrate the relation between
(dﬁ)mnm (er)mn’ (P‘Br)mu and b,"ﬂ or B;A
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