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Self-energy and interaction of kinks

A. A. GOLEBIEWSKA (WARSZAWA)

THE SELF-ENERGY and interaction of two kinks with a dislocation is calculated. Our starting point
is the general formula describing the energy of two kinks [1]. It is assumed that a kink is
described by means of a linear function which depends on two parameters: the height of a kink
¢, and its width 1. The extended dislocation model in a weak-dispersion medium is studied. In
particular, we have obtained results concerning abrupt kinks, the dispersion and extension
being taken into account. Moreover, the expressions describing the dependence of energy on
the width of a kink are given, together with the corresponding Tables and diagrams concerning
the kinks on the edge and screw dislocations. The interaction energy up to the 1/r3-terms is
found (r is the distance between kinks). The problem of critical distance between kinks, at which
the interaction energy would change its sign, is studied in detail.

Korzystajac z ogdlnego wyrazenia na energie [1] dwoch przegie¢ na dyslokacji, obliczono energig
wiasng i oddzialywania dwoch przegiec. Zaklada sie, ze przegiecie jest opisane funkcja liniowa
zalezng od parametrow ¢ i A — czyli wysokosci i szerokosci przegigcia. Rozwazany jest model
dyslokacji rozmytej w osrodku stabodyspersyjnym. Otrzymano wyniki dla przegiecia skokowego
z uwzglednieniem dyspersji i rozmycia. Podano takze wyrazenie okreslajace energie w zaleznosci
od szerokosci przegiecia oraz odpowiednie tabele i wykresy dla przegie¢ na dyslokacji srubowe;j
oraz krawedziowej. Otrzymano takze energi¢ oddzialywania z dokladnoscia do czlonéw rzedu
1/r3(r — odlegtos¢ miedzy przegieciami). Zbadano problem odlegtosci krytycznej migdzy prze-
gieciami, przy ktérej oddzialywanie zmienialoby znak.

Ha ocnoge ofmei dopmynbl AJiA SHepruM ABYX NepernGoB Ha AMCIOKALMH [1] BBIUHCIEHBI
coGcTBeHHas OSHEPrHA W DHeprusi BaaumofeiictBua nByx nepernGos. Ilpeamonaraerca, uro
neperutbl ONHUCHLIBAIOTCA JIMHEHHBIMU QYHKUMAMH, 3aBHCALIMMHM OT NIAPaMETPOB ¢ — BBICOTHI
HA— LUHPMHBI Nepernba. PaccmaTpuBaeTcAa MoiesIb pasMbITON OUCIOKALMH B cnabomucnepc-
Ho# cpepie. ITosyueHs! pelenus Ans ckaukooOpasHoro neperunba, YUUTHIBAIOLINE TUCIEPCHIO
M pasmeITHe. BBIBEIEHB! TAaKMKE COOTHOUIECHHS, ONpeesAIoNINe SHEPIUIO B 3aBHCHMOCTH OT
mupuHe! neperuba. [puBonarcsa tabmuup! 1 rpaduxu 1A neperuboB Ha KPaeBOH M BHHTOBOMH
JMCNIOKALUUAX. BEIYHCIEHHA 3HEPrUM B3auMOJENHCTBHUA BBINOJHEHBI C TOYHOCTEIO [0 UIEHOB
nopsaka 1/r?, rae r oGo3navaer paccTosHue MexKay neperubamu. McenemoBan Bonpoc o KpH-
THYECKOM PACCTORHHM MEXAY neperuGamu, NMpM KOTOPOM MEHACTCH 3HAK B3aUMOJCHCTBHA.

Introduction

IN THE PREVIOUS paper [1], the general formula describing energy of two kinks on a dislo-
cations was obtained. The energy depends on the radius of the Brillouin zone and the
dispersion of a crystal. Moreover, it takes into account the inherent parameters of kinks.

Now, the results referred to will be applied to the study of self-energy and interaction
of kinks.

The problem of self-energy has been studied by Kroupra, BROWN [2], BRAILSFORD [3],
WALLACE and NUNES [4]. However, their results are not satisfactory. The energy calcu-
lated in [2 and 4] becomes negative for small kinks. Non-essential discrepancies between
[2 and 4] are the result of different cut-off of a core. The expression obtained in [3] does
not depend on the height of a kink, although the sign of energy depends on ». (In the case
of screw dislocation, for example, the sign of energy changes at v = 1/3).
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Furthermore, in all the papers indicated above, only abrupt kinks on dislocation
lines in continuous media are studied.

In the present paper, we investigate the dependence of self-energy of such physical
factors as the width and extension of a kink and the dispersion of a medium. The height
of the kink is taken as one atomic distance.

The dependence of self-energy of the height of a kink will be given in a later paper.

1. The self-energy of a kink

The kink self-energy is given by:

W= L [ dykibt 4,00 +54: 001700 1 (k) x
(1.1) e
x f f 9, ()0 (x)cosk, (x—x')dx d¥’,
where
kz
A (k) = 4&(;{7) -—_' CZ(k) kZUCZ +k2)
k:kz k2k2

l =
Az(k) = C%(k) ';‘c‘}' —da(k) 77— kz(kz k2)2 ~4a (k) k4(k2 kz)

ci(k)—c3(k)
cik)
b = [b,,5,,0] (Burgers vector)

y(x) is a function describing a shape of a kink, ¢, , (k) — velocities of the transversal
and longitudinal waves, respectively.
To calculate the self-energy, we specify the functions occurring in the integral (1.1):

9.(x) = er™¥®y'(x),  ak) = k),

(1.1 y(x) = c(1=x[2), y'(x)= —c/A
Hence the integration in the variables x, x’ can be carried out explicitly:
AA
¥ = ffcosk1 (x = x")eR Iy (x)y' (x")dx dx" =
0
(1.2 ’ ¢® [ 1—=cos(k, A+k,c) . 1—cos(k, A—k;c)
=72z i - \? ’
(k +k2 ,2.) (kl—‘kz—;l‘
5in|k2|f
(1.3) g (&) = ——=>
k2|

{ is an extension parameter of a dislocation line; it depends on the properties of the
medium. The smallest physical values of £ are of the order of a few Burgers vectors; the
maximal ones are ten times larger. Obviously, y(k) = 1 corresponds to the dislocation
line without extension. But if we consider a dislocation in a crystal, it seems necessary
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to take the extension into account [6,7]. { depends on the medium properties. The
experimental values of the parameters are given in [6] (Chapter 6, § 4, Table 8)

2.2
(1.9 1 = 0| 1-— 5,

where k,, is a radius of the Brillouin zone.
Such a form of c?(k) describes weak-dispersion media. ¢f (k) = ¢?(0) describes non-
dispersion media. The general dispersion formula has the form:

212
» B°k?

2
3 sin 4k2 .

et = C?(O)n—zk“

If we wish to consider weak-dispersion media, then formula (1.4) gives a satisfactory
approximation. (Further, its form simplifies all the calculations). It is easily seen that the
largest contributions to W come from regions, where:

kl A+k2c = 0, and kl ;b_kzc = 0.

Let us investigate those two expressions separately. Making use of some transformations
(rotations in a Ok, k, — plane), we obtain:

W= 1‘5—1;3 ( d; k[b3( AT (k) + A7 (K)) +b3(43 (k) + 45 K))],

¢ 1—cosk,)/c*+ 22

2 -
vk = ki '
k2 k2c?+k2A2 12k k; Ac
s _ k3, 1 2 " K 102
(IS} Aj 4&(!{) * cz(k) kz[kg(cl+Az)+kfcz+k21212klk3;»C] ’

K22 2 +k2 22+ 2k, ey Ac)
* i
A3 = 300 — 4a) (e + 70 + k2 & + 2 A2 £ 2k, K, Ac]
e 20k 2 +k2 32 + 2k, kg Ac)
— 40 T £ D TR I 12 1 2k, K AT

In what follows, we discuss the dependence of W on the dispersion and extension
parameters. Let us put 2 = 0, which corresponds to the abrupt kink:

1
(16 W=—4r3 f dsk y*(k,) I:b,2 (4rx (k) i“ —c3(k) W}

K2k k2k2 1—cosk,c
2
+b% (Cz(k) Rl (ﬂw 4a(k) k*(k3 +k3) )] ko

We start with the simplest case: non-dispersion medium and non-extended line of
a kink, e.g., y*(k,) = 1, cf(k) = c#(0).

2 2
(1.7) W = b [——l 361—1011] Wi = C’;ff [2112—_0908].

87 1— 1-
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If we take into account a dispersion, we obtain additional terms:

__cub? | 0129 __ cub3 _0.087
(1.8) AW, = W[_i_ 0.055 AW, = e 0.204 = |
2
Numerical data are as follows (energy is given in c;f — units):
v 0 1/3 v 0 1/3 1/2
we 0.350 1.030 1.711 W9 1.304 0.750 0.296
AW, —0.074 -—0.137 —0.403 AW, -0.117 -0.074 —0.032

We+AW, 0.276 0.893 1.308 WS+A4W, 1.187 0.676 0.264

It is seen that the dispersion diminishes the values of self-energy. Putting » = 1/3, which
corresponds to typical crystals, we obtain: AW/W, ~ 10%.

If we did not restrict ourselves to weak-dispersion crystals, the effect indicated might
be much more apparent.

Now, let us turn to the extension dependence. The following approximate formula
is valid for the values of the extension parameter which are of physical significance:

mn cub? n@cz+n) 1] 1 1
Wi = W3 Re+—g (I_R‘){[Tﬂ' 2€] 1—» _T}’

(1.9)

_ ) cub? In(4£2+1) 1 72
W= WorRetg ““R‘)i[ 13 +2c] 96 1-1: c:}

where R, = 1/2f, ¢ = E;‘c.

We do not insert a graphical picture of W({), because £, like x and v, is a medium-
dependent quantity. To calulate W for a given £, we have to put appropriate values of
w and » in the energy expression instantaneously. However, it is possible to compare the
energy values of the extended and non-extended dislocation, in the same medium. For
example, we have:

forCu: Wi{=1009eV and W, =0.161¢eV,

for Al: W{=0.140eV and W, =0.158¢V.
It is seen that the self-energy depends markedly on the extension. It can be disregarded
only when ¢ < b; that is the case, for example, for Fe and Si. For most crystals, the para-
meter ¢ is much larger than b, and the extension has to be taken into account, even in
an abrupt kink model. The values of self-energy calculated from the formula (1.9) are
larger than experimental data. This discrepancy is due to the width of a kink having been
overlooked.

Let us put 4 > ¢. We obtain the following expressions for the self-energy of a kink
on the screw (W,) and edge (W,) dislocations, respectively:

_ cub? 1.488 In(@n?+1) _ In(dn®+1)+2
o Wi = {Ri[ = ,1131]+(1 Rl)[ % o ]}

2 cubl _0935 B In(4n*+1)+2  2In(4n* +1)+3 }
w o T =R1[2263 —— |+ (1—R) i (1=)8n ’
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1
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2

« _ _ cpbt 0.254 3 >
AW = lRA[ 0.205 |+ (1—R;) 4%
(1.11)

1

Fy 4

2

T 96n }}

I

2 2
~ —Cg‘iz {RA [0.411— 0'334]+(1—R1)[ e

[—»

AW?

48n  1—v 864n

I}

where n = i/c and AW denote additional dispersion-terms. The n-dependence of W,

and W, is visualized in Tables 1, 2 and in diagrams 1, 2.

Tablel
W,
n Wi(») 1 1
vr=10 r= 3 ¥ = 5

0.394

10 s P 0.250 0.144 0.341 0.538
0.301

15 -T_—v"—0.184 0.117 0.266 0.420
0.243

20 T 0.146 0.097 0.220 0.340

25 01'2_{_)5 —0.121 0.085 0.188 0.291
0.177

30 T —0.104 0.073 0.161 0.250
0.157

35 1, —0.091 0.066 0.144 0.223
0.141

40 o 0.081 0.060 0.130 0.201
0.117

50 T 0.067 0.050 0.108 0.167

60 01' Lo,? —0.058 0.042 0.092 0.142

70 (;(18: —0.050 0.038 0.078 0.126
077

80 Olﬂ_y —0.045 0.033 00.070 0.109

90 %—0_3:——0.040 0.030 0.066 0.101

0.
100 065 —0.037 0.028 0.060 0.093
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Table 2
W
n W, () 5D _1 ) 1
3 2
0.226
10 0.498 — Ty 0.272 0.159 0.046
0.170
15 0.371— Teow 0.201 0.116 0.031
0.134
20 0.292— i g 0.158 0.091 0.024
0.112
25 0.242— T=9 0.132 0.074 0.018
0.096
30 0.208— ——- 0.112 0.064 0.016
0.085
35 0.182— =y 0.097 0.056 0.012
0.076
40 0.163— =y 0.087 0.049 0.011
0.062
50 0.134— Ty 0.072 0.041 0.010
0.054
60 0.115- 1= 0.061 0.034 0.008
0.047
70 0.101— =% 0.054 0.030 0.007
0.042
80 0.090— e 0.048 0.027 0.006
0.038
20 0.081— T 0.043 0.024 0.005
0.035
100 0.074— 1= 0.039 0.022 0.004

If we have experimental values of self-energy and the coefficients u, » for a given medium,
then the Table above enables us to determine the width of a kink in an arbitrary crystal.
Then, we can find the full energy of interactions between kinks in any material (the de-
pendence of interaction energy of the kink width will be discussed in the next chapter).

The self-energy values calculated above are positive in the regions of physical
significance of all parameters appearing in the energy expression. Let us observe that the
maximum of the energy corresponds to the abrupt-kink model. This special case has been
studied by several authors. If the extension of a line is taken into account, the energy
values decrease. If 4 — oo, then W — 0. This is one more reason not to treat kinks as
segments of a straight dislocation line: if we had done so, then we would have obtained
W — oo, when A - o0,
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W, and W, depend on v in a different fashion: W, is an increasing function of ¥, and
W, — a decreasing one. This reflects the fact that kinks are “fastened” to straight-line
segments of dislocations.

Let us consider now the expression WY [cf, (1.7)] which describes the energy of a kink
on a screw, dislocation. The second term corresponds precisely to the “fastening” effect.
It does not depend on », in the same manner as the energy of screw dislocations does
not depend on ». When » increases, then the first term increases as well and the second
one remains constant; in consequence, W7 is an increasing function of ».

The expression W, [cf. formulae (1.7)] describes the energy of a kink on an edge-
dislocation. In W, only the second term depends on ». The first term is constant (it describes
the behaviour of a kink as a piece of a screw dislocation line). Thus, the second term is
responsible for the “fastening”, effect. In fact, the kink is then fastened to the edge
dislocation, the energy of which depends on » (it increases with increasing »). The second
increasing term is subtracted from the constant first term, and finally, W2 is a decreasing
function of ». It is very essential that WY depends in some way on ». A consequence of
this dependence is that it is impossible to treat a kink as a segment of a straight dislocation
line.

W, and W, depend markedly on ». Hence it is impossible to state in general which
of these quantities is larger (as a matter of fact they are almost equal). Hence, in typical
crystals, the self-energy values of kinks on screw and edge dislocations, differ by about 10%,.

2. The interaction energy of two kinks

Let us investigate now the interaction, energy. It is given by:

@) W= [ dk BT 4,09 453 4,00] [ [ etbersny () x)s
x [sin2k, asink,(x +x'— A)—cos 2k, acosk,(x +x"— A)]dxdx’.

Now, we represent this expression as a one-dimensional Fourier transform of some function
of k, :

W= W) = [ [fi(k)sin2k, a-+f;(k;)cos 2k, aldk;
Let us change the integration variables. In spherical coordinates we have:

ky = kcosB, k, = ksinfcosp, ki = ksinOsing

dk,dk,dky = k*sin6dkdf dp

and a is the first component of the vector a = [a, 0, 0]. In such a coordinate system,
cos2k;a depends on k and 6 only, and is evidently independent of ¢. Substituting A4,
and 4, asin 1.1 and expanding the integrand of (2.1) nearly k = 0, we obtain an expression
which can be explicitly integrated in the variables 6 and ¢. The integrand depends then
on k only and the whole integral becomes the one-dimznsional Fourier transform W(a):

W(a) = [ [sin2kaf, (k) +cos2kaf,(k)]dk.
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The point k = 0 is the only singularity of the integrand; this justifies our expansion nearly
k = 0. To calculate W(a) we shall make use of the following Lighthill theorem (1962) [5]:
Let us assume that:

— a distribution f(x) possesses a finite number of singularities x,, ..., Xy ;

— for arbitrary m, the N-th derivative of f(x)—F,(x) is absolutely integrable in any
interval containing X, F,, is a linear combination of distributions: |x—xp/?, [x—x,./% x
X sgn(X —Xp), |x—xmlflog)(x—xn), |x—x./flog(x—x,)sgn(x—x,) and 8" (x—x,) for
some values of § and p;

—f¥(x) is good-behaving at infinity.

Then:

The Fourier transform of f(x) satisfies the following equation:

M
g0) = D Gu()+o(ly™"), when |y] > co.
m=1

In the above equation, g(y) is a Fourier transform of f(x) and G,(») are Fourier transforms
of Fn(x).

All the values of integrals appearing in the interaction energy expression are collected
in the Table below. The integrands are written in the first column. The subsequent columns
contain three-dimensional integrals of these functions — i.e. the angular integrals followed
by k-integrals. Their values are as Table 3.

Table 3
S J f®dsx Jfokdk  [f@kidk [ f@kidk
1 n? w2 2
& cos2k,a = 0 ey o
kg 2 n? 2 n?
e 2 ) “4@ 8
2cos2k,a 1"' " 3 n? 3n2
K2 (k2 +k3) 2a 4a° 8a*
k3 k3 cos2k,a _:f_ o B -_ri _.f.:,
K2(k2+k2)? 8a 16a° 324°
k3kicos2k,a n? ? n? n?
Kk +k3) 8a 16a° " 16a® 162

More strictly, all expressions in the Table above should be multiplied by sgna. However,
we restrict ourselves to positive values of a only; hence there is no need to insert this
factor.
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The full interaction energy (up to 1/a® — terms) is as follows:

_ c* o 2 ctu 1 ”
22) W=-— S “ )2 [63(1 +v) +b3(1—20)] + 967 (1 = )(Za}s[bl(lh'-—l)

b%%(l —4v)] + E;é—i) [B3(1 +) +b3(1 —29)1(2%3

___"" o 2 1., *Pu 1 oy D s :
48:1(1 —v) (a)* l:b bz] 247(1—) (2a)° [bl G-+ Ebz(lwhv)].

Restricting ourselves to 1/2a — terms only, we obtain:

= c "u 2 —_—
(in the first-order of approximation).
Let us classify separately terms occurring in (13) as regards their physical meaning:
The characteristic abrupt-kink term:

. 1 2 g 1 _

The term which takes into account the finite width of a kink:

212

3 i T G

[62(1 4%) +b2(1 — ).

The dispersion term:

. cu 1 21 2l
28 Wa = 8a(1—v) (a)® [”‘ E
More generally, W, has the form:

__ cud’(0) 1 ay K g
(2.6) W = an(—») @) [bl 3 b;].

The extension of line-term:

22 2 41
24(1—) (2a)3 [b (Bv— l)+b3—2—(1 4)].
The term W) in the Eq. (2.5) has been calculated for a kink which was described by a linear
function: y(x) = ¢(1—x/2). When the shape of a kink is given by the arbitrary function
»y(x), then:

@.7) W, =

o uC 2
(2.8) W, = 27;(1;) (2a)3 [b 1 +»)+b2(1— 2v)]

where:
Co= [[n'eI') e +x)dxax, o ("“w —;‘) =@

6 Arch. Mech. Stos. nr 6/73



962 A, A. GOLEBIEWSKA

We did not insert into the Table above, the function integrated with sin2k,a, because
in a linear approximation we have:

[ [ ¥ o' (' )etateonensink, (x +x' — Ddxdx’ = 0.

More generally, for arbitrary symmetric kink i.e. such that

A2 0

[ yxax= [ ye)a),

0 =
the integral referred to also vanishes. One can expect that “sinusoidal” terms give rise to
the interaction energy of non-symmetric kinks. However, the lowest order of approxima-
tion sensitive to these corrections is a~*. That is why we disregard them.

Obviously, the term W,, proportional to a~', makes the main contribution to the
interaction energy. Let us bear in mind that our investigation applies to great distances
only —i.e. to large values of a. Nevertheless, let us estimate the critical value of a, at
which 243 —term become equal to a~! —term. Let us start with the simplest case
of abrupt-kink a non-dispersive medium (i.e. we neglect terms W,, W,, W;)

W = — c’ubi 1 1+» e cubi 1 3v—1
1 8t 2a 1l-v 9%n (2a)° 1—»

W = — ctubt 1 1-2 ctubi 1 1—4v
47 8x 2a 1—v 192z (2a)* 1—» °

(2.9)

W, and W, correspond to the screw and edge dislocations, respectively. It is seen that,
as in the case of self-energies, W, is an increasing function of », and W, — a descreasing
one (it decreases to zero when » = 1/2). This last phenomenon is well known in the theory
of elasticity. An abrupt-kink is then described as a segment of a straight-line screw dislo-
cation, whose Burgers vector is b,. Consequently, W, then describes an interaction of
two segments of parallel screw dislocations. The critical values of a distance between kinks
are then as follows:

c Iv—1 c 1—4v

2a; =7]/ 3(1+v) ° 2"2=Tl/ 6(1+7)
The maximal values of 2a, and 2a, are equal to ¢/6 and c/2)/6, respectively. Both of
them are situated far below the limits of applicability of our approximation: afc > 1.
It is of interest that both the terms of W, have the same sign for » < 1/3. Similarly, W,
behaves in such a way when » > 1/4. Obviously, when we consider the case of large q,
the phenomenon referred to is not very important because in W, and W, the second
terms are much smaller than the first ones. Consequently, an interaction of abrupt kinks
in non-dispersive medium is described by (2.3). This expression agrees with the results
of BRAILSFORD [3] and that of KrourA and BROWN [2]. Their approach was based on
the elastic medium theory.
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Let us investigate now an extended kink of width A, on a dislocation line in non-
dispersive medium:

___r 1, - > c?iu
W = 8n(l—7) 2 [62(1 +v) + b3(1 — )]+ 37 —7) (23)

The critical distance for the screw and edge dislocations is 2a = J.}/fﬁ But the definition
of distance between kinks implies that 2a > A. Consequently, that result is outside the
physical interest. Nevertheless, it does not seem justified to omit the second term, especially,
when it is desired to be precise. In fact, if A/c > 1, then the second term at distances of
a few A diminishes the interaction energy by 10-20 per cent.

The dispersion does not modify anything significantly; the critical value of a is situated
below the limit of applicability of our approximation. It is of interest, however, that Wy,
is negative, and, consequently, it is added to W,. Therefore, there is no critical distance
at all and the kinks always attract one another.

Now, let us take into account the extension of dislocation. In the interest of simplicity
we investigate the abrupt-kink a non-dispersive medium.

In the case of screw dislocation, we have:

Aubi 1 1+v  c*Publ 1 3v—1
8z 2a 1—» | 24 (2a)® 1-»

The critical distance does exist provided » > 1/3, and equals:

_7 l/ 3v—1
3(1+v)
Hence it is very small in typical, real media — in the case Ag, for example, it equals 1.2¢

(It happens that » < 1/3 in crystals with largs values of £, of order 40b).
The energy of edge dislocation is as follows:

cfubi 1 1-2v % cAlubl 1 14
8z 2a 1—v 48n (22 1-v °

The critical value does exist, provided » < 1/4, and is equal to:

+ [62(1 +9) + b2(1 — 29)].

W!=_

W2=—

- 1—4v
o= l/ KEDN
In the case of Cu, we have, for example: 2a, = 23¢ [6]. When we pass over to the general
dislocation, the situation becomes much more complicated. Although there exists a critical
distance for the term proportional to b?, this is not the case for term proportional to 53.
If v < 1/4 or » > 1/3, then the very existence of critical distance depends markedly on
the relative direction od b with respect to the dislocation line.

If 1/4 <w» < 1/3, then the critical distance does not exist at all. Consequently, the
interaction energy increases when the line-extension is taken into account. In the screw
and edge cases the v-dependence of energy is different: the interaction energy of screw
dislocations is an increasing function of », and that of edge dislocations — a decreasing
one.

6
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In the limit-case, when » = 1/2, the first term, proportional to (2¢)~!, vanishes, and
the energy of edge dislocation is as follows:

bl 1 ctwbi 1 ctuby 1
T " 24 (20° 96a (@° 96a (2a)°
However, this possibility is somewhat abstract and academic, because our model is appli-
cable to crystals only, where 0.2 <v < 0.4

Finally, at large distances, we have the following estimation of the interaction energy
as Eq. (2.3).

The expression (2.3) depends on the height of a kink and on elastic material constants
only. For small distances, the shape parameters of a kink and the material parameters
should be taken into account, because they may modify the energy significantly. It is
known that the most probable distance at which double kinks are created equal 20b [7].
The continuation of the process depends precisely on the interaction energy of kinks.
At such small distances the formula (2.3) is useless; rather the general formula (2.4)
should be used.

W, =

= Wr+Wd+ W‘.

£, [ubkc/8n]

& [ubzc/n]
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