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Self-energy and interaction of kinks 

A. A. GOL~BIEWSKA (WARSZAWA) 

THE SELF-ENERGY and interaction of two kinks with a dislocation is calculated. Our starting point 
is the general formula describing the energy of two kinks [1]. It is assumed that a kink is 
described by means of a linear function which depends on two parameters: the height of a kink 
c, and its width A. The extended dislocation model in a weak-dispersion medium is studied. In 
particular, we have obtained results concerning abrupt kinks, the dispersion and extension 
being taken into account. Moreover, the expressions describing the dependence of energy on 
the width of a kink are given, together with the corresponding Tables and diagrams concerning 
the kinks on the edge and screw dislocations. The interaction energy up to the l/r3-terms is 
found (r is the distance between kinks). The problem of critical distance between kinks, at which 
the interaction energy would change its sign, is studied in detail. 

Korzystaj<~:c z og6lnego wyrazenia na energi~ [1] dw6ch przegi~ na dyslokacji, obliczono energi~ 
wlasn<~: i oddzialywania dw6ch przegi~c. Zaklada si~, ze przegi~cie jest opisane funkcj<~: liniow<~: 
zalei:n<~: od parametr6w c i A- czyli wysokosci i szerokosci przegi~ia. Rozwai:any jest model 
dyslokacji rozmytej w osrodku slabodyspersyjnym. Otrzymano wyniki dla przegi~ia skokowego 
z uwzgl~dnieniem dyspersji i rozmycia. Podano takze wyrazenie okreslaj<~:ce energi~ w zaleznosci 
od szerokosci przegi~ia oraz odpowiednie tabele i wykresy dla przegi~c na dyslokacji srubowej 
oraz kraw~dziowej. Otrzymano taki:e energi~ oddzialywania z dokladnosci<~: do czlon6w rz~du 
1/r3(r- odleglosc mi~dzy przegi~iami). Zbadano problem odleglosci krytycznej mi~dzy prze­
gi~ciami, przy kt6rej oddzialywanie zmienialoby znak. 

Ha ocHose o6~eH $opMyJihi ~JIH :meprHH ~Byx neperH6oB Ha ~HCJIOI<ai..\HH [1] BhitiHcJieHbi 

C06CTBeHHaH :.meprHH H 3HeprHH B3aHMO~eHCTBHH ~BYX neperH60B. IlperoroJiaraeTCH, tiTO 

neperH6bi OllHCbiBaiOTCH JIHHeHHbiMH cPYHI<I..\HHMH, 3aBHCH~HMH OT napaMeTpOB C- BbiCOTbl 

H A- wHpHHbi neper116a. PaccMaTpHBaeTcH Mo~eJib pa3MbiTOH ~HCJIOI<ai..\HH B cJia6o~Hcnepc­
HOH cpe~e. IloJiylleHhi peweHHH ~JIH ci<al!I<oo6pa3Horo neper116a, yqHTbiBaiO~He ~HcnepcHIO 
H pa3MbiTHe. BbiBe~eHbi Tai<>Ke COOTHOWeHHH, onpe~eJIHIO~He 3HeprHIO B 3aBHCHMOCTH OT 

WHpHHbi neperH6a. IlpHBO~HTCH Ta6JIHI..\bl H rpa$HI<H ~JIH neperH60B Ha I<paeBOH H BIDITOBOH 

~HCJIOI<ai..\HHX. BhiliHCJieHHH :meprHH B3aHMo~eHCTBHH BhlllOJIHeHbi c TOliHOCThiO ~o l!JieHoB 

nopH~I<a 1/r3 , r~e r o6o3HattaeT paccToHHHe Mem~y neperH6aMH. I1ccJie~oBaH aonpoc o I<pH­

THlleci<OM paCCTOHHHH Me>K~y neperH6aMH, npH I<OTOpOM MeHHeTCH 3Hai< B3aHMO~eHCTBHH. 

Introduction 

IN THE PREVIOUS paper [1], the general formula describing energy of two kinks on a dislo­
cations was obtained. The energy depends on the radius of the Brillouin zone and the 
dispersion of a crystal. Moreover, it takes into account the inherent parameters of kinks. 

Now, the results referred to will be applied to the study of self-energy and interaction 
of kinks. 

The problem of self-energy has been studied by KROUPA, BROWN [2], BRAILSFORD [3], 
WALLACE and NuNES [4]. However, their results are not satisfactory. The energy calcu­
lated in [2 and 4] becomes negative for small kinks. Non-essential discrepancies between 
[2 and 4] are the result of different cut-off of a core. The expression obtained in [3] does 
not depend on the height of a kink, although the sign of energy depends on v. (In the case 
of screw dislocation, for example, the sign of energy changes at v = 1 /3). 
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954 A. A. GOLJ;;BIEWSKA 

Furthermore, in all the papers indicated above, only abrupt kinks on dislocation 
lines in continuous media are studied. 

In the present paper, we investigate the dependence of self-energy of such physical 
factors as the width and extension of a kink and the dispersion of a medium. The height 
of the kink is taken as one atomic distance. 

The dependence of self-energy of the height of a kink will be given in a later paper. 

1. The self-energy of a kink 

The kink self-energy is given by: 

(1.1) 
w = l:n3 J d3k[hf A 1 (k) +hi Az (k)]x(k) x( -k) X 

x J J {}+ (x){}_ (x')cosk 1 (x-x')dxdx', 

where 

D±(x) = e±ikly(x)y'(x), 'X(k) = cf(k]f~:)Hk) d(k), 

b = [b 1 , b2 , 0] (Burgers vector) 

y(x) is a function describing a shape of a kink, c1 , 2 (k)- velocities of the transversal 
and longitudinal waves, respectively. 

To calculate the self-energy, we specify the functions occurring in the integral (1.1): 

(1.1') y(x) = c(l-x/A), y'(x) = -cj},. 

Hence the integration in the variables x, x' can be carried out explicitly: 
}. ). 

(1.2) 

(1.3) 

'P = JJ cosk1 (x--x')eik 2£y(x)-y(x'Hy'(x)y'(x')dxdx' = 
0 0 

= ~: r I Tos(k, A +?c) + 
k 1 +kz---).-

(k) = _sinlkz~E , 
X lkz!C 

E is an extension parameter of a dislocation line; it depends on the properties of the 

medium. The smallest physical values of C are of the order of a few Burgers vectors; the 
maximal ones are ten times larger. Obviously, x(k) = 1 corresponds to the dislocation 
line without extension. But if we consider a dislocation in a crystal, it seems necessary 
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SELF-ENERGY AND INTERACTION OF KINKS 955 

to take the extension into account [6, 7]. C depends on the medium properties. The 
experimental values of the parameters are given in [6] (Chapter 6, § 4, Table 8) 

(1.4) 

where km is a radius of the Brillouin zone. 
Such a form of cf(k) describes weak-dispersion media. er (k) = cf(O) describes non­

dispersion media. The general dispersion formula has the form: 

If we wish to consider weak-dispersion media, then formula (1.4) gives a satisfactory 
approximation. (Further, its form simplifies all the calculations). It is easily seen that the 
largest contributions to W come from regions, where: 

Let us investigate those two expressions separately. Making use of some transformations 
(rotations in a Ok1 k 2 -plane), we obtain: 

2(k) = C
2 

l-cosk1 yC2+Jl 
X . c2 + }. 2 kf ' 

k 2 kf c2 + k~ A. 2 ± 2k 1 k 2 A.c 
A 1± = 4lX (k) -· k- 43 - c22 (k) --:-::-::-:::-'-=--:---=----::-=:--:-; :--=--~-=-=---::-c:---::----;~ 

k2 [k~(c2 + A. 2) +kfc2 +ki A2 ±2kt k2 A.c] ' 
(1.5) 

A2
± 2 1 k~(kfc2 +k~}.2 ±2k1 k2A.c) = c2 (k)--k-2 - 4lX(k) 

k4 [k~(c2 + A.2) +ktc2 +k~A.2 ±2kt k2 A.c] 

kHkfc2 +k~ ).2 ±2kt k2 le) 
- 4lX(k) k 2 [kHc2 +A. 2) +kf c2 +k~ },2 ± 2kt k2 A.c]l · 

In what follows, we discuss the dependence of W on the dispersion and extension 
parameters. Let us put }. = 0, which corresponds to the abrupt kink: 

(1.6) 

We start with the simplest case: non-dispersion medium and non-extended line of 
a kink, e.g., X2(k 1) = 1, cf(k) = cl(O). 

(1.7) w~ = cp.bt [ 1.361 - 1.011] 
8n 1-v ' 

wo = cp.b~ [ 2.112 _ 0.908]. 
1 8n 1-v 
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956 A. A. Got.~BIEWSKA 

If we take into account a dispersion, we obtain additional terms: 

(1.8) LJ W = _ cp,bf_[0.129 -O 055] 
1 8n 1-P · ' 

LJ w2 = - cp,b~ [0.204- 0.087]. 
8n 1-P 

Numerical data are as follows ( . . . cp,b2 . ) energy IS given m -----gn - uruts : 

')I 0 1/3 ')I 0 1/3 1/2 
w~ 0.350 1.030 1.711 wg 1.304 0.750 0.296 

LJW1 -0.074 -0.137 -0.403 LJW2 -0.117 -0.074 -0.032 

W~+LlW1 0.276 0.893 1.308 wg+LJW2 1.187 0.676 0.264 

It is seen that the dispersion diminishes the values of self-energy. Putting., = 1/3, which 
corresponds to typical crystals, we obtain: LJ W/W0 ~ 10%. 

If we did not restrict ourselves to weak-dispersion crystals, the effect indicated might 
be much more apparent. 

Now, let us turn to the extension dependence. The following approximate formula 
is valid for the values of the extension parameter which are of physical significance: 

we= wo·R cp,bf (1-R)J[ 1n(4C
2

+1) _1_]_1 ___ 1} 
1 1 e + 8n e l 2C + 2C 1 -., C ' 

(1.9) 
we = wo . R cp,b~ (1 _ R ) {[ In( 4C

2 
+ 1) _1_] _ n

2 
__ 1_ . _1 .} 

1 2 e + 8n c 2C + 2C 96C 1 -., C ' 

where Re = 1/2C, C = C/c. 
We do not insert a graphical picture of W(C), because C, like p, and .,, is a medium­

dependent quantity. To calulate W for a given C, we have to put appropriate values of 
p, and ., in the energy expression instantaneously. However, it is possible to compare the 
energy values of the extended and non-extended dislocation, in the same medium. For 
example, we have: 

for Cu: Wf = 0.096 eV and W1 = 0.161 eV, 

for AI: Wf = 0.140 eV and W1 = 0.158 eV. 

It is seen that the self-energy depends markedly on the extension. It can be disregarded 
only when C < b; that is the case, for example, for Fe and Si. For most crystals, the para­
meter C is much larger than b, and the extension has to be taken into account, even in 
an abrupt kink model. The values of self-energy calculated from the formula (1.9) are 
larger than experimental data. This discrepancy is due to the width of a kink having been 
overlooked. 

Let us put A. > c. We obtain the following expressions for the self-energy of a kink 
on the screw (W1) and edge tW2) dislocations, respectively: 

Wf = cp,bf {R [1.488 -1. 131]+(1-R;.)[ ln(4n
2

+1) _ln(4n
2
+1)+2]}, 

8n ;. 1-P (l-v)2n 4n 
(1.10) 

W~ = cp,b~ {R [2.263 _ 0.935 J + (1- R ) [ ln(4n
2 

+ 1) +2 _ 2ln(4n
2 

+ 1) +3]1' 
8n ;. 1 -., ;. 2n (1-., )8n 
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SELF-ENERGY AND INTERACTION OF KINKS 957 

1 cpbf { [ 0.254 J [ n 2 
I ,.2 ]} L1W;. = --- R;. ---0.205 +(1-R;.) -- ·-----

8n I - v 48n I - v 96n ' 
(1.11) 

L1W2 = _ cpbi {R{o.4II _ 0.334]+(I-R >[~ __ I-~]}. 
"' 8n I - v "' 48n 1 - v 864n 

where n = J.fc and Ll W denote additional dispersion-terms. The n-dependence of wl 
and W2 is visualized in Tables 1, 2 and in diagrams I, 2. 

Tablet 

Wt 

n Wt(v) 1 1 
v=O V=T v=-z 

0.394 
10 ----0.250 1-v 0.144 0.341 0.538 

0.301 
15 ---0.184 1-v 0.117 0.266 0.420 

0.243 
20 ----r=v- 0.146 0.097 0.220 0.340 

0.206 
25 ---0.121 0.085 0.188 0.291 1-v 

30 
0.177 

---0.104 0.073 0.161 0.250 1-v 

35 
0.157 
---0.091 1-v 0.066 0.144 0.223 

40 
0.141 

---0.081 1-v 0.060 0.130 0.201 

50 
0.117 

---0.067 1-v 0.050 0.108 0.167 

60 
0.100 

--r=v-0.058 0.042 0.092 0.142 

70 
0.088 

0.126 ---0.050 0.038 0.078 1-v 

80 
0.077 

--r=v-0.045 0.033 00.070 0.109 

90 
0.071 

0.030 0.066 0.101 ---0.040 1-v 

100 
0.065 

0.028 0.060 0.093 ---0.037 1-v 

http://rcin.org.pl



958 A. A. GOLJ~BIEWSKA 

Table 2 

W2 

W2(v) 
V=O 1 1 

v=T V=T 
n 

0.226 
10 0.498-

1
_

21 
0.272 0.159 0.046 

0.170 
15 0.371-

1
_

21 
0.201 0.116 0.031 

0.134 
20 0.292- -i-v 0.158 0.091 0.024 

0.112 
25 0.242-

1
_

21 
0.132 0.074 0.018 

30 
0.096 

0.208---
1-v 0.112 0.064 0.016 

35 
0.085 

0.182-
1

_
21 

0.097 0.056 0.012 

0.076 
0.163--- 0.087 0.049 0.011 1-v 40 

0.062 
0.134--- 0.072 0.041 0.010 1-v 50 

0.054 
0.115--- 0.061 0.034 0.008 1-v 

60 

0.047 
0.101--- 0.054 0.030 0.007 1-v 

70 

0.042 
0.090--- 0.048 0.027 0.006 1-v 

80 

0.038 
0.081--- 0.043 0.024 0.005 1-v 

90 

0.035 
0.074-

1
_

21 
0.039 0.022 0.004 100 

If we have experimental values of self-energy and the coefficients p,, v for a given medium, 
then the Table above enables us to determine the width of a kink in an arbitrary crystal. 
Then, we can find the full energy of interactions between kinks in any material (the de­
pendence of interaction energy of the kink width will be discussed in the next chapter). 

The self-energy values calculated above are positive in the regions of physical 
significance of all parameters appearing in the energy expression. Let us observe that the 
maximum of the energy corresponds to the abrupt-kink model. This special case has been 
studied by several authors. If the extension of a line is taken into account, the energy 
values decrease. If A.~ oo, then W ~ 0. This is one more reason not to treat kinks as 
segments of a straight dislocation line: if we had done so, then we would have obtained 
W ~ oo, when A. ~ oo. 
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SELF-ENERGY AND INTERACTION OF KINKS 959 

Wl and W2 depend On V in a different fashion: Wl is an increasing function Of V, and 
W2 - a decreasing one. This reflects the fact that kinks are "fastened" to straight-line 
segments of dislocations. 

Let us consider now the expression Wf [cf. (1.7)] which describes the energy of a kink 
on a screw, dislocation. The second term corresponds precisely to the "fastening" effect. 
It does not depend on v, in the same manner as the energy of screw dislocations does 
not depend on v. When v increases, then the first term increases as well and the second 
one remains constant; in consequence, wr is an increasing function of V. 

The expression W2 [cf. formulae (1. 7)] describes the energy of a kink on an edge­
dislocation. In W 2 only the second term depends on v. The first term is constant (it describes 
the behaviour of a kink as a piece of a screw dislocation line). Thus, the second term is 
responsible for the "fastening", effect. In fact, the kink is then fastened to the edge 
dislocation, the energy of which depends on v (it increases with increasing v). The second 
increasing term is subtracted from the constant first term, and finally, W~ is a decreasing 
function of v. Tt is very essential that W~ depends in some way on v. A consequence of 
this dependence is that it is impossible to treat a kink as a segment of a straight dislocation 
line. 

wl and w2 depend markedly on V. Hence it is impossible to state in general which 
of these quantities is larger (as a matter of fact they are almost equal). Hence, in typical 
crystals, the self-energy values of kinks on screw and edge dislocations, differ by about 10%. 

2. The interaction energy of two kinks 

Let us investigate now the interaction, energy. It is given by: 

(2.1) W = 4~3 J d3 kx2 (k2)[biA 1 (k)+b~A 2 (k)]J J eik21Y(x)-y(x'>ly'(x)y'(x')x 

x [sin2k1 asink 1 (x +x'- },)-cos2k1 acosk1 (x+x'- J.)]dxdx'. 

Now, we represent this expression as a one-dimensional Fourier transform of some function 
of k 1 : 

W = W(a) = J [/1 (k1)sin2k1 a+f2(k1)cos2kta]dkt. 

Let us change the integration variables. In spherical coordinates we have: 

k 1 = kcosO, k 2 = ksinOcos<p, k 3 = ksinOsin<p 

dk 1 dk2dk3 = k 2sin0dkd0dcp 

and a is the first component of the vector a = [a, 0, 0]. In such a coordinate system, 
cos 2k 1 a depends on k and () only, and is evidently independent of cp. Substituting A 1 

and A 2 as in 1.1 and expanding the integrand of (2.1) nearly k = 0, we obtain an expression 
which can be explicitly integrated in the variables () and (p. The integrand depends then 
on k only and the whole integral becomes the one-dimensional Fourier transform W(a): 

W(a) = J [sin2kaj1 (k)+cos2kaf2 (k)]dk. 
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The point k = 0 is the only singularity of the integrand; this justifies our expansion nearly 
k = 0. To calculate W(a) we shall make use of the following Lighthill theorem (1962) [5]: 
Let us assume that: 

-a distribution f(x) possesses a finite number of singularities x 1 , ... , xM ; 

- for arbitrary m, the N-th derivative of f(x)- F m(X) is absolutely integrable in any 
interval containing Xm; Fm is a linear combination of distributions: lx-xmi.B, lx-xmi.B x 
x sgn(X-Xm), lx-Xmi.Blog!(X-Xm)l, IX-Xmi.Blog(x-Xm)sgn(X-Xm) and b(P)(X-Xm) for 

some values of fJ and p; 

-fN(x) is good-behaving at infinity. 

Then: 

The Fourier transform of f(x) satisfies the following equation: 

M 

g(y) = .J; Gm(Y) +o(lyi-N), when IYI ~ oo. 
m=l 

In the above equation, g(y) is a Fourier transform off(x) and Gm(Y) are Fourier transforms 
of Fm(X). 

All the values of integrals appearing in the interaction energy expression are collected 
in the Table below. The integrands are written in the first column. The subsequent columns 
contain three-dimensional integrals of these functions -i.e. the angular integrals followed 
by k-integrals. Their values are as Table 3. 

Table 3 

/(k) J /(k)d3k J f(k)k2d3k J f(k)kfd3k J f(k)k~d3k 

1 nz nz nz 
-cos2kla 0 

2a3 4a3 k2 a 

k~ nz nz nz nz 
-cos2kla 

2a 4a3 4a3 8a3 k4 

k~ cos2k1a nz nz 3n2 
0 

P(k~+kn 2a 4a3 8a3 

k~k~ cos2kla nz nz nz 
0 

P(k~+kn2 8a 16a3 32a3 

ki k~cos2kl a nz nz n2 nz 

k4(k~+k~) 8a 16a3 16a3 16a3 

More strictly, all expressions in the Table above should be multiplied by sgna. However, 
we restrict ourselves to positive vaJues of a only; hence there is no need to insert this 
factor. 
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The full interaction energy (up to I/a 3
- terms) is as follows: 

czp, I b2( ) b2( ) c4p, I [b2 
(2.2) W = - Sn(I-v) 20 [ 1 I +v + 2 I-2v] + 96n(I-v) (2a)3 1 (3P-1) 

b2I( 4 J c2).2p, [b2( ) 2 1 
+ 22 1- v) + 12n(l-P) 1 1+v +b2(1-2v)](2a)3 

c4p, 1 [bz 1 b2] c4C2p, 1 [bl( 1 2 J 
+ 48n(l-P) (2a)3 1 -4 2 + 24n(l-v) (2a)3 1 3P- 1)+ 2b2 (1-4P) , · 

Restricting ourselves to 1/2a- terms only, we obtain: 

(2.3) Wo = - Sn~:~v) ;a [bf(I +v) +bH1- 2v)] 

(in the first-order of approximation). 
Let us cJassify separately terms occurring in (13) as regards their physical meaning: 

The characteristic abrupt-kink term: 

(2.4) W, = 96:(~-v) (~)3 [hi(3v-l)+ ~ bW-4v)J. 

The term which takes into account the finite width of a kink: 

(2.5) 
cz). zp, I 

W;. = 12n(1-v) (2a)3 [bi(l +v) +b~(l- 2v)]. 

The dispersion term: 

(2.6) 

More generally, Wd has the form: 

(2.6) 

The extension of line-term: 

(2.7) 

The term W;. in the Eq. (2.5) has been calculated for a kink which was described by a linear 
function: y(x) = c(l- x f J.). When the shape of a kink is given by the arbitrary function 
y(x), then: 

(2.8) 

where: 

00 

C;. = J J rj'(x)rj'(x') (x+x') 2 dxdx', 
-oo 

r/ (x- ; ) ~ y'(x). 

6 Arch. Mech. Stos. nr 6/73 
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We did not insert into the Table above, the function integrated with sin2k1 a, because 
in a linear approximation we have: 

J J y'(x)y'(x')eik2[y(x)y(x'>Jsink 1 (x+x'-l.)dxdx' = 0. 

More generally, for arbitrary symmetric kink i.e. such that 

A/2 0 

J y(x)dx = J y(x)dx), 
0 -A./2 

the integral referred to also vanishes. One can expect that "sinusoidal" terms give rise to 
the interaction energy of non-symmetric kinks. However, the lowest order of approxima­
tion sensitive to these corrections is a- 4 • That is why we disregard them. 

Obviously, the term W0 , proportional to a-1, makes the main contribution to the 
interaction energy. Let us bear in mind that our investigation applies to great distances 
only - i.e. to large values of a. Nevertheless, let us estimate the critical value of a, at 
which 2a- 3 - term become equal to a- 1 -term. Let us start with the simplest case 
of abrupt-kink a non-dispersive medium (i.e. we neglect terms W4 , Wr, W;.) 

(2.9) 

c2 pbi 1 1 +v c4 pbf 1 3v-1 
wl =- 8n 2a -r=;-+96n (2a)Tl=P' 

c2pb~ 1 1-2v c4 pbi 1 1-4v 
8n 2a --f-v + 192n (2a) 3 1-v 

W1 and W2 correspond to the screw and edge dislocations, respectively. It is seen that, 
as in the case of self-energies, W1 is an increasing function of v, and W2 - a descreasing 
one (it decreases to zero when v = 1/2). This last phenomenon is well known in the theory 
of elasticity. An abrupt-kink is then described as a segment of a straight-line screw dislo­
cation, whose Burgers vector is b2 • Consequently, W2 then describes an interaction of 
two segments of parallel screw dislocations. The critical values of a distance between kinks 
are then as follows: 

c V 3v-I 2a1 = -
2 3(1 +v) ' 

c ,./ l-4v 
2
a2 = 2 Jl 6(1 +v) 

The maximal values of 2a1 and 2a2 are equal to c/6 and cf2y6, respectively. Both of 
them are situated far below the limits of applicability of our approximation: afc ~ 1. 
It is of interest that both the terms of wl have the same sign for V < 1/3. Similarly, w2 

behaves in such a way when v > 1/4. Obviously, when we consider the case of large a, 
the phenomenon referred to is not very important because in W1 and W2 the second 
terms are much smaller than the first ones. Consequently, an interaction of abrupt kinks 
in non-dispersive medium is described by (2.3). This expression agrees with the results 
of BRAILSFORD [3] and that of KROUPA and BROWN [2]. Their approach was based on 
the elastic medium theory. 
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Let us investigate now an extended kink of width A., on a dislocation line in non­
dispersive medium: 

c2t-t I c2 
).

2 f-t 1 
W = - Sn(I-v) 2a [bt (I +v) + b~(l- 2v)] + I2n(I-v) (2a)3 [bf(l +v) + b~(l- 2v)]. 

The critical distance for the screw and edge dislocations is 2a = A.y 2/3. But the definition 

of distance between kinks implies that 2a > A.. Consequently, that result is outside the 
physical interest. Nevertheless, it does not seem justified to omit the second term, especiaJly, 
when it is desired to be precise. In fact, if J.fc ~ I, then the second term at distances of 
a few ). diminishes the interaction energy by I 0-20 per cent. 

The dispersion does not modify anything significantly; the critical value of a is situated 
below the limit of applicability of our approximation. It is of interest, however, that W24 

is negative, and, consequently, it is added to W0 • Therefore, there is no critical distance 
at all and the kinks always attract one another. 

Now, let us take into account the extension of dislocation. In the interest of simplicity 
we investigate the abrupt-kink a non-dispersive medium. 

In the case of screw dislocation, we have: 

c2t-tbf I I+v c4C2t-tbf I 3v-l 
wl = -~ 2a I-v +- 24n . (2a)3 ~· 

The critical distance does exist provided ·v > 1/3, and equals: 

-, f 3v-l 
2a1 = C Jl 30 +v) . 

Hence it is very small in typical, real media -in the case Ag, for example, it equals I.2c 

(It happens that v < I /3 in crystals with large values of C, of order 40b). 
The energy of edge dislocation is as follows: 

c2t-tb~ I I- 2v c4C2t-tb~ I I-4v 
8n 2a ~+ 48n (2a)3 I-v 

The critical value does exist, provided v < 1/4, and is equal to: 

-- (1=4V-
2a2 - C ~ 6(1 +v) 

In the case of Cu, we have, for example: 2a2 = 23c [6]. When we pass over to the general 
dislocation, the situation becomes much more complicated. Although there exists a critical 
distance for the term proportional to bf, this is not the case for term proportional to bi. 
If v < I /4 or v > I /3, then the very existence of critical distance depends markedly on 
the relative direction od b with respect to the dislocation line. 

If I /4 < v < 1/3, then the critical distance does not exist at all. Consequently, the 
interaction energy increases when the line-extension is taken into account. In the screw 
and edge cases the v-dependence of energy is different: the interaction energy of screw 
dislocations is an increasing function of v, and that of edge dislocations -a decreasing 
one. 

6'* 
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In the limit-case, when v = I /2, the first term, proportional to (2a) -I, vanishes, and 
the energy of edge dislocation is as follows: 

c4C2~tb~ I c4ftb~ I C4ftb~ I 
w2 = - 24n (2a)3 - 96n (2a)3 - 96n (2a) 3 = w, + wd +wk. 

However, this possibility is somewhat abstract and academic, because our model is appli­
cable to crystals only, where 0.2 < v < 0.4 

Finally, at large distances, we have the following estimation of the interaction energy 
as Eq. (2.3). 

The expression (2.3) depends on the height of a kink and on elastic material constants 
only. For small distances, the shape parameters of a kink and the material parameters 
should be taken into account, because they may modify the energy significantly. It is 
known that the most probable distance at which double kinks are created equal 20b [7]. 
The continuation of the process depends precisely on the interaction energy of kinks. 
At such small distances the formula (2.3) is useless; rather the general formula (2.4) 
should be used. 

10 
10 

80 100 ).[c] 
20 40 60 80 100 ). 

FIG.l. FIG. 2. 
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