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On the optimal nonhomogeneity of an elastic bar in torsion; numerical 
examples 

B. KLOSOWICZ (WARSZAWA) 

THE PROBLEM of optimization of a linearly-elastic, nonhomogeneous bar subject to torsion 
is examined. Application of the algorithm formulated in [1] is studied on two examples of bars 
with square and elliptic cross-sections. It is shown that the maximwn rigidity of the bar is 
achieved when its cross-section is composed of two materials with compliances Umax and Umtn. 

W pracy rozpatruje si~ zagadnienie optymalizacji niejednorodnosci liniowo-spr~zystego pr~ta 
poddanego skr~caniu. Zbadano przydatnosc algorytmu sformulowanego w [1] na przykladzie 
pr~ta eliptycznego i kwadratowego. Okazalo si~, i:e maksymalnC~: sztywnosc ma pr~t zloi:ony 
z dwu material6w o podatliwosciach Umax i Umtn. 

PaccMaTpHBaeTcn onTHMaJihHaH 3a.Qa"tJa o Kpy-qemm JlllHeii:Ho-ynyroro Heo~opo~oro 
crep>KHH. AnropHTM "tJHcJieHHoro peweHHH~ c<l>opMYJIHPOBaHHbiH B pa6oTe [1], HCCJie,IJ;OBaH 
Ha npHMepax crep>KHeii 3JIJIHllTH"tJeCKoro H KBa.Qparnoro ce"tJe:mlli. IloKa3aHO, "tJTO HaH-
6oJihweii >KeCTKOCTbiO 06Jia,QaeT COCTaBHOH crep>KeHI> H3 MaTepHaJIOB ~ xapaKTepH3yeMhiX 
llO,QaTJIHBOCTHMH Umax li Umtn • 

1. Statement of the problem 

THE PROBLEM of determination of the optimum type of nonhomogeneity of a twisted 
bar was studied in [1]. In the present paper we shall discuss certain numerical solutions 
concerning bars with elliptical and square cross-sections. 

Let us consider an elastic, prismatic and nonhomogeneous bar of a given cross-sec­
tion D. The nonhomogeneity of the bar is described by the compliance function 1/G(x ,y) = 
= u(x' y) Er, r being a subset of L«)(D) bounded according to the inequalities 

(1.1) 0 < Umin ~ vraisupu(x, y) ~ Umax 

and subject to one of the constraints 

Id~=~, 
D 

(1.2) or J udD = UaoD, 
D 

Uav denoting the given average compliance. 
In [4] the Prandtl function z was shown to minimize the functional 

(1.3) J [u(gradz)2 - 2z]dD 
D 

under the condition zl<m = 0; a different formulation of the problem may be found 
in [1]. 
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If the function z was known, we would be able to determine the stress tensor com­
ponents r 13 = - oz 1 oy, r 2 3 = az 1 ox and the torsional rigidity of the bar 

(1.4) I[u] = J zdD. 
D 

Our purpose consists in prescribing a function u(x, y) Er in such a manner that the func­
tional (1.4) attains its maximum value, and the functional (1.3)- its minimum value. 

Let us consider the problem of maximization of I[u] by taking into account the first 
of the constraints (1.2). From the theoretical analysis [1] it follows that three possibilities 
may be considered: the optimum compliance either takes the intermediate values 
(1.1), or is equal to Umax or Um1n, according to the local conditions 

U = Umax' W > Umax' 

(1.5) 

here w = yl(grad z) 2
, y is a Lagrange multiplier for the integral constraint (1.2). 

Let us now suppose that at the r-th step of iteration the function ur is known. The 
value of u,+ 1 is calculated according to the following algorithm: 

1. Calculate z, from Eq. (1.3); 
2. Construct a new control u,+ 1 locally different from ur according to the conditions 

(1.5). 
This algorithm was shown in [1] to be convergent. 

2. Remarks on the numerical solution 

According to the algorithm proposed, at the r-th step of iteration and at a given value 
of u, we have to determine the corresponding Prandtl function z, which is a solution 
of Eq. (1.3). A considerable difficulty consists in the fact that the line dividing the regions 
described by Eqs. (1.5) is still unknown. 

FIG. 1. 

The solution will be sought for by means of a square net with the mesh size h, parallel 
respectively to the axes x, y. Let us assume the five-point approximation, the integrand 
(1.3) written for an interior mesh GHEF has the form 
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Q = -4~2 [(uH +ua) (zn-za) 2 +(uE +uF) (zF-zE) 2
] + 

4
!2 [(ua +uE) (za -zE)2 

+(un +uF) (zn-zF) 2
]--} (za +zn+zE +zF)· 

The condition necessary for the functional (1.3) to reach an extremum with respect 
to z at the point G is obtained by differentiating the sum of expressions (2.1) with respect 
to zG. Conditions written for all meshes of the net form a system of linear equations 
Az+b = 0; here z is unknown n-dimensional vector, where n is equal to the number 
of nodes of the net since b is an n-element vector depending on h; A is the nxn matrix. 
For an interior point G, for instance, the equation has the form 

(2.2) (4ua +u,. +uB+uE +uF)za- (u,. +ua)zA- (uH+ua)zH-

-(uB+ua)zB-(uE+ua)zE-2h2 = 0. 

STIEFEL and RuTISHAUSER [2] proposed several algorithms for minimizing the func­
tionals of the type of Eq. (1.3), one of them being a combination of the methods of 
conjugate gradients and Chebysheff polynomials; this method makes it possible to solve 
great systems of linear equations, e.g. such as Eqs. (2.2). 

In accordance with the results of Sec. I, the parameters of the problem under consid­
eration are the bounds umax and umtn for the nonhomogeneity function and its mean value 
Uav· Once Uav is known, the Lagrange multiplier y for the constraint (1.2) may be determined. 

The procedure applied in numerical solutions is reversed: y is treated as a parameter 
of the problem, while Uav has to be evaluated at every step r for the control function u,.. 

In view of a limited computer store, the calculations are performed for a possibly 
large number of nodes: 126 nodes in the case of an elliptical section (mesh size h = 0.1) 
and 100 nodes for a bar with a square cross-section (h = 0.05). 

The initial nonhomogeneity function u0 (x, y) is assumed to be constant in D and 
equal to umax or umtn. In order to check the influence of u0 on the final result and on 
the convergence of the algorithm applied, the values of the cost function I and of the 
average compliance Uau were calculated at every step r of the procedure. 

On the basis of the results enabling to estimate the convergence of the functional /, 
the number of iteration steps is experimentally established for each case. The computations 
are terminated once the values calculated for two extreme initial values of u0 (x, y) differ 
but at the third decimal place. It is observed that then the values of the control function 
in individual nodes of the net differ by magnitudes of order less than O(h2

), and the solution 
obtained may be treated as an optimal one. 

3. Elliptical cross-section 

The region bounded by an ellipse of semi-axes a = 1.5, b = 1.0 is covered by a net 
with meshes h = 0.1 containing 126 interior nodes. Owing to the symmetry, only the 
region D = {0 ~ x ~ 1.5, 0 ~ y ~ yl-2.25 x2

} is considered. The dimensions of the 
cross-section are selected so as to make it possible to compare the results with the well 
known results concerning a circular cross-section [5]. The computations are performed 

s• 
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for the parameters Umax = 1.0, umtn = 0.5, y = 0.3. The results are shown in Fig. 2. Figure 
2a presents the contour lines of the Prandtl function z. In accordance with the classical 
theory of torsion, the directions of tangents to the contour lines of z coincide with 
the directions of stress vectors, their absolute values being proportional to jgrad zl 
(Fig. 2b). 

The state of stress in a cross-section may be analyzed on the basis of Figs. 2a and 2b. 
Figure 2c presents the ordinates of the nonhomogeneity function u(x, y) and the lines 

Uav = 0.85 

FIG. 2. 

separating the regions in which u(x, y) is equal to umax or Um1n. These lines represent the 
lines of constant gradients [cf. Eq. (1.5)] and are found from the analysis of the ordinates 
of the function jgrad zj. The most rigid material should be located at the ends of the 
minor axis, where the stresses reach their maxima. Thickness of the reinforcement 
depends on the amuont of rigid and flexible material at our disposal, i.e. on the average 
compliance Uav. 

In elliptical cross-sections the regions of rigid and flexible (u = 1.0) materials are 
separated by intermediate regime. From theoretical considerations it followed that with 
constraints of the type of (1.2)1 , the nonhomogeneity function u(x, y) could have jumps 
only in the case of a circular cross-section; otherwise it was a continuous function. 

4. Square cross-section 

Let the cross-section be a square with sides a = 1.0. Owing to the symmetry properties 
of the problem, one quarter of the section is considered, i.e. the region D = {0 ::::;; x ::::;; 0.5, 
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0 ~ y ~ 0.5}. Assuming the meshes h = 0.05, a net with n = 100 nodes is constructed. 
Computations are performed for the following values of parameters: umax = 1.0, um1n = 0.5, 
y = 0.006, 0.012, 0.015. Figure 3 demonstrates the results for y = 0.012. In Fig. 3a the 
contour lines of Prandtl's function are shown in Fig. 3b- absolute values of the gradient 
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Uav = 0.78 

of z, lgrad zl, and in Fig. 3c- the nonbomogeneities u(x, y), the regions of constant 
values of u(x, y) being marked. 

Similarly to the case of a homogeneous square cross-section, the maximum shearing 
stresses occur at the centers of lateral surfaces what follows from the contour lines of 
lgrad zl (Fig. 3b). Depending on the proportions between the rigid and flexible materials 
(that is, on the average compliance Uav), the results are qualitatively different. When the 
rigid material prevails (ua" close to um1J, it forms a belt around the center of the cross~ 
section. The center itself and the corners should be made of the flexible material. When 
the flexible material prevails (ua" close to umax), the rigid reinforcements should by located 
at the centers of lateral surfaces (walls) of the bar. In [3] was considered the problem of 
optimization of the plastic nonhomogeneity of a prismatic bar, and the results obtained 
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were qualitatively similar, what follows not only from engineering premises but also 
from the fact that the both problems may be reduced to a similar mathematical question 
belonging to the optimum control theory. In both cases we are seeking a maximum 
rigidity of the bar described by the functional (1.4), depending on the stress function z, 
and with identical constraints (1.1), (1.2) 1 imposed over the control function. In the elastic 
problem, the control function is the shear modulus, while in the plastic problem -the 
yield limit. The differential equations combining the stress function with the control 
function are in both cases different [Eq. (1.3)]. Considerable influence on the solution 
has the fact that the states of stress in both the elastic and plastic cases are described by 
similar functions. Rigid reinforcements placed at the points of greatest stresses are located 
in the same subregions of the cross-section. 

S. Conclusions 

The algorithm described is practically simple though it requires the knowledge of 
Weierstress conditions which must be formulated in each particular case thus causing 
serious difficulties. In addition, every iteration step requires a separate solution of the 
problem (1.3). Realization of that part of the program absorbs most of the computation 
time. 

In [1] it was shown that the problem of optimal nonhomogeneity had a solution, 
though its uniqueness could not be proved. Consequently, the theorem of convergence 
of the algorithm does not secure that it converges to the solution of the problem stated. 
For the cross-sections and parameters considered in the paper, the algorithm converges 
rapidly and the results remain independent of the initial values assumed. 

The numerical results obtained in the paper may serve as certain indications of theo­
retical nature: they enable us to draw conclusions concerning the uniqueness of solution 
and the convergence of the algorithm employed. 

In view of a rather large mesh size and a simplified, five-point approximation, the results 
are of a qualitative character. However, from the point of view of engineering applications, 
the accuracy achieved seems to be satisfactory. Construction of intermediate regimes 
in practice is not possible; they are small, after all, and may be replaced by a homo­
geneous material. The maximum rigidity of the bar is attained by arranging two 
materials according to the conclusions drawn in Sec. 3 and 4. 

All computations were performed at the Polish Academy of Sciences Computing Center, 
on ODRA-1204 digital computer. 
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