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On the existence of a magnetogasdynamic shock wave structure
with negligible shear viscosity

JAN SKIEPKO (WARSZAWA)

On THE BAsis of properties of the generalized thermodynamic potential (defined by Ger-
MAIN [2]), the existence and uniqueness of fast shock wave structure is proved, as well as
the existence of slow shock waves. The proof is based on the assumptions that the gas is ideal
and the first viscosity coefficient 1 is equal zero. The remaining three dissipation coefficients
are assumed to be positive functions of class C! of the physical parameters.

W oparciu o wiasnosci uogoélnionego potencjalu termodynamicznego (zdefiniowanego przez
GERMAINA [2]) udowodniono istnienie i jednoznacznos¢ struktury szybkich fal uderzeniowych
oraz istnienie struktury wolnych fal uderzeniowych. Dowéd przeprowadzono przy zalozeniu,
ze gaz jest idealny, a wspolczynnik pierwszej lepkosci 7 jest rowny zeru. O pozostalych trzech
wspdlczynnikach dysypacji zatozono, ze sa dodatnimi funkcjami klasy C' parametrow fizycznych.

Ha ocHoBe cBoMCTB 0G0DIIEHHOTO TEPMOIMHAMMUECKOTO ITOTEHUMANA, BBegeHHoro KepmeHom
B pabore [2], mokasaHBl CYIECTBOBaHHME H €HHCTBEHHOCTh CTPYKTYPbI OBICTPBIX YAapHBLIX
BOJIH, 2 TAK}Ke CYLIeCTBOBAHHE CTPYKTYPhI MeJIECHHBIX YAApHLIX BoMnH. [loKasaTesbcTBa OCHO-
BaHBl Ha MPEANOJIOMHEHHH O TOM, YTO a3 ABJAETCA HACANbHBLIM, a KoadduiMeHT nepBoi
BA3SKOCTH paBeH HyNo (77 = 0). Ha ocransHble KoahdHIMEHTH] JHCCHNIALNH, pacCMaTpHBaeMble
KaK (QYHKUHH OT (PU3HUECKHMX MapameTpOB, HaJIOMeHbI TPEOOBAHHA MOMOMKHUTEIBHOCTH H pe-
ryaspHocTH kiacca C'.

1. Introduction

INVESTIGATIONS concerning the structure of magnetodynamic shock waves have been
undertaken by MARsHALL [5], LupForp [4], GERMAIN [2], KuLikovsk1 and Liusivov [3],
ANDERSON [1] and others. The most important results were obtained by GERMAIN, who
proved the fast shock waves to be stable and the intermediate ones to be unstable.
But, in the case of slow shock wave — taking into account the serious difficulties in in-
vestigations of the existence of a shock waves structure — no satisfactory results have
been obtained. The papers on this subject deal mainly with the limited problem of the
influence of two dissipation coefficients on the existence of the shock wave structure.
Particularly carefully discussed has been the case in which the first viscosity coefficient
and heat conduction coefficient are equal to zero (n = k = 0) [4, 2, 3]. Connected with
the latter problem is considerable misunderstanding cf. [1, 2, 3, 4, 6].

Investigated in the present paper is the problem of existence and uniqueness of the
fast as well as the slow shock waves, with only one dissipation coefficient being disregarded
(of the four occurring in the classical magnetodynamics of fluids).

It has been shown that, with the coefficient of shear viscosity being equal to zero
(n = 0), the structure of the fast as well as the slow shock waves exists. The remainder
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of the positive dissipation coefficients &, k and 1/u%0 are assumed to have continuous
first derivatives with respect to the physical parameters. It seems that the results obtained
and the methods applied may be a convenient starting point for proving the existence of
the slow shock wave structure for all four positive dissipation coefficients.

1.2

On the basis of classical magnetodynamics of fluids, the structure of plane shock
waves is described by the following system of ordinary differential equations (cf. [2]):

1 dB Bt n dv
T (‘;: ‘““"’2)' W U4l
+ dt 2. . B*
k dT M?*r?2 o> Bt
_M -E = (G—T"-‘T“W—023+CIBY)+C3T—C4),

where 7 denotes specific density, e — internal energy, T — temperature, x4 = const —
magnetic permeability, M = u/z = const, [#, v, 0] — velocity vector, E = [0, 0,c, uM] —
electric field vector (¢, = const), B = [¢, uM, B, 0] — magnetic induction vector (¢, =
= const), ¢3, ¢4 — positive constants.

The system (1.1) has, in the most general case, four solutions (B;,2;, 7, T}),(i =
= 1, 2, 3, 4) that can be treated as points P;(B;, v;, 7;, T;) of the phase space (B, v, t, T).
Naturally, to every P; there corresponds a certain entropy. Applying numeration in accord-
ance with the growth of entropy — which is adopted from now on — the points P,, P,
determine the states of the fast shock wave, the points P;, P, the states of the slow shock
wave; the other pairs of points P;, P;, i < j, determine the states of intermediate shock
waves. The above classification is adjusted by the following inequalities, holding for the
point P;:

P u>cgep, Py: b <u<egy,

&2) Py: e, <u<b,, P uw<e.

The normal component of the velocity u determined by 7 from the equality M = %,
1
(Bg'r 2 1

b, = (M?ucit)? is the normal component of Alfven speed, ¢, and ¢, are speeds

of fast and slow magnetoacoustic waves, respectively, being the roots of the biquadratic
equation:

(1.3) u*—u*(a® +b3+5b})+a*b: = 0,
1

2.\2
cs<cp, by L4 (ﬂ) — tangent component of Alfven speed, a* = — ~-1—z- _62 , @ —
73 T2 07 [s=g,

speed of sound.
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The structure of a shock wave is described by the solution of the system (1.1) tending
at +oo to the state behind and at — oo to the state in front of the shock wave.

Therefore, such a solution joins the singular points determining the states of the
shock wave.

2. Equations describing shock wave structure for 5 = 0

When disregarding the shear viscosity (y = 0), the system (1.1) can be reduced to a
system of three ordinary differential equations, which can be written in the form:

dB Bt

813 = _it:{__CfB-{-cz,
dr . B?
(21) 62'a'x"—p+M T+ Tp‘,- —C3,
dT M?7*  c¢iB* B’t B
ESE =e— —2— - 3 —-Z‘—C-_) +C3T—0C4,

where the following notations are adopted: £, = 1/Mou?, &, = (M, &5 = k[M.
Moreover, between B and v the following relation holds:

2.2) v = ¢ B.

Therefore, the problem of existence of the shock wave structure for = 0 can be reduced
to investigation of the existence, in the three-dimensional space (B, 7, T), of the integral
curves joining the respective singular points of the system (2.1). Taking into account
the obvious unique relation between the singular points of the system (1.1) and the singular
points of the system (2.1), the latter will also be denoted by P; (i = 1, 2, 3, 4). We shall
assume that the coefficients & (i = 1, 2, 3), connected with the dissipation coefficients
1/ou?, & and k, are positive functions of class C! defined in the region 0 = {(B, 7, T):
:T > 0, > 0}. Following the generalized dissipation and generalized thermodynamic
of Germain potential, we shall define the functions F, and W, similarly.
These functions can be written in the form:

_1]e dB\* £, dr\? £y ar\?
&) # _?:T(E) +“z‘(:§) tar\a) |
2 2 2 2 p2
2.4) W, = -H 1;; + Mzr - C‘ZB —f(z , T)+c;B—c; r+c4},

where f is a mass density of the free energy. It is easy to verify that if we denote by ¢;
(i=1,2,3) B, r, T, respectively, and by g,(i = 1, 2, 3) their derivatives with respect
to x, then the system (1.2) can be written in the form:

oW, _ 0F,
o 04

(2.5) , i=1,2,3
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Because g (i = 1, 2, 3) are positive functions of the variables B, 7, T' and

(2.6) 2F = ‘a—-—“‘h,
then, taking into account (2.5), we have

3
_ N\oW, dg _dw, _ .
i e ket

i=1

hence, along the integral curves of the system (2.1):

2.7 Wy()—Wi(xo) = 2 [ Fdx > 0.

P
This means that W, increases along the integral ;urves of the system (2.1). Taking into
consideration the well known thermodynamic relation:
(2.8) df = —SdT—pdr,
where S — entropy and p — pressure, we verify that

oW,

2.9 - ki
(2.9) S=Wi+T

3. Investigation of the integral curves of the system (2.1) in the neighbourhood of the
singular points

According to the definition, the coordinates (B;, 7;, 7)) of each singular point P,
satisfy the system of equations:

Bl' i
-f_ —¢B+¢, = 0,
B2
3.1 o (Ti, w)+ M7+ 2;‘ —c3 =0,
M3t} ¢} B? B,
e(Ty, 1)—- LGe 8 -—t——c;,B;+c3 T,—cy = 0.

2 2 2

The linearized system (2.1) in the neighbourhood of P; has the form:

ll‘E
. B~ op\ - ap)—
3.2 gr B 2, (9P @
(2) i pB+[M +(3r)i]1+(6?‘,r'
ey dT 6‘p)_ ](Be =
T, dx ‘(ﬁi”?{ﬁfr’

where & = &(B;, 7, T), (k = 1,2,3;i=1,2,3,4), B= Bi+B, v = 2,47, T = T+
+T. The index i at the partial derivatives means that their value is taken at the point
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(1;, T;). During the linearization, we made use of the fact that the point P; satisfies the
system (2.1), and that p and e are connected by the thermodynamic relation:

. L(_@i +p)
aT T\or ’
The form of the integral curves in the neighbourhood of the singular points can be ob-
tained from the eigenvalues of the system (3.2). For our investigations suffices to know
the signs of the eigenvalues. They can be found from certain facts known in the theory
of quadratic forms.

Putting B = Bye™, 7 = 1oe**, T = Toe** and then dividing each equation by €**,
we obtain:

(3.3)

3.4) AUX = AX,
where X = [By, 7o, To)-

€ 0 0
(.5 gl e 30‘ ;

0 0 —;'—
(.6) Al Boapy (%)i (%);

(%), &)
| aT /; T:\aT ;|

The symmetric matrices U and A4 can be treated as the matrices of certain quadratic forms,
the matrix U corresponding to a positive form, since &,;, £5;, %‘Ti > 0. But, from the theory

of quadratic forms it is known that, for forms defined by matrices 4 and U, there exists
a linear nonsingular transformation which transforms the first form into the form having
the unitary matrix E, and the second form into canonical form. Let C be the matrix of
such a transformation. Then:

3.7) C'UC=E, ¢C'4dC=0D,

where E — unitary matrix, D — diagonal matrix.
Applying in the system (3.4) the substitution X = CY, we obtain:

(3.8 AUCY = ACY,
and as a result of multiplying the left-hand side by C”, we have:

3.9 ACTUCY = CTACY.
According to (3.7), we have finally:
(3.10 AEY = DY,
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from which it follows that the number of positive and negative eigenvalues is equal to
the number of positive and negative terms in the diagonal matrix D, respectively. From
the inertia theorem of quadratic form it is seen that to determine the number of positive
and negative eigenvalues suffices to transform, by means of an arbitrary nonsingular
transformation, the quadratic form having the matrix 4 to the diagonal form. The number
of positive (or negative) elements of such a diagonal matrix is equal to the number of
positive (or negative) eigenvalues.

To the matrix 4 [see (3.6)] corresponds the quadratic form g(XX) having the following
form:

: B, P
(G.11)  gXX) = (%—c%}x}+2—ﬁ X1 % 4 [M%(—a”;) az+2(§§,) X35
B; 5
1 58 Ti m
*?:('a‘f).- §=(?"f) Bk iy
——c
“ 1
i (ap )2 (Bl )2 ap z
ap) aT B 1 (ae) aT);
2 ST ¥ caiy T [V STURR oG] Mk e :
M (3r 1 [de T Y F\T)\ T T ey
aT|, pu ! T "Ef),_

It suffices to apply a nonsingular linear transformation with the matrix:

e T
7;— pci
(3.12) c=|0 1 ol E=140
[
aT);
PoTEe) !
T\ oT),

to reduce the quadratic form corresponding to the matrix 4 to the form:

Bg ap\
(3.13) g(YY) = ( +|m24+ ) 1)y a") :
¥ g - # yl 51.' ; _|' EY ( ) Ya.
It is easy to prove that the coefficients at y; and y3, the quadratic form being defined
by (3.13), are respectively equal to:

( bi.) 1 (u‘—cﬂ)(u.—cs.)
M

1 — 2=
uf i uf —b%

The coefficient at p3 is always positive. Taking into consideration the above remark and
the inequality (1.2), we can formulate the theorem:
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THEOREM 1. At the point P, all eigenvalues are positive, at the points P, and P, two
eigenvalues are positive and one is negative, at P, two eigenvalues are negative and one is
positive. '

Additional analysis is needed in the case in which 7; = uci, which takes place for
¢, = 0 and concerns “switch on” and “switch off” shock waves. Let us transform g(XX)
by the assumption that 7; = pc?:

B;
oo e e 3
i i i

aT T, \oT
G || (2).
5 1 de Ef,' 2 'p -3_fg
—?.(ar), st ey 2|t M+(?f);“ 1[0\ |
T\ oT), ?,_T)t
B (B.-)’
o ’ &
X Xy— 3;! 2 3p 3 x%-
)
2 it ey RN ! 2 ;] [
e (Z), dpeey ! MH\er) T e
7.\ eT), T\ oT),

The coefficient of the first binomial of the second degree is always positive and the coef-
ficient of the second has the opposite sign in comparison with the coefficient of x7. At
points P,, P;, as in the case in which ¢, # 0, two eigenvalues are positive and one negative.
This completes the proof for ¢, = 0.

4. Qualitative analysis of the surface W, = const in the neighbourhood of the singular
points

We shall analyse the surface W,(B, 7, T) = A, where W,(B, =, T) is the function
defined by (2.4) and A is a constant. It is evident that the domain in which the variable
B, 7, T could change is limited by the inequalities = > 0, T > 0. The gradient of W,(B,
7, T) is equal to zero only at the singular points of the system (2.1) [this results from
the equivalence of the system (2.1) and (2.5)], hence the surfaces W,(B, 7, T) = const,
which do not pass through the points Pi(i = 1, 2, 3, 4), are everywhere regular and
the surfaces passing through the points P; (i = 1, 2, 3, 4) have singularities only at these
points.

We shall start the investigations of the character of the surface W, = const in the
neighbourhood of the singular points of system (2.1). Let 4; denote the value of the function
W,(B, T, T) at the point P;, 4; = W,(P;) = S(P;). We develop the function W,(B, 7, T)
in the neighbourhood of P; into Taylor series, preserving the terms up to the second order.
Since the first derivatives are zero, and the differential of the second order of the function

4  Arch. Mech. Stos. nr 6/73
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W.(B, 7, T) is defined at P; by the form g(XX) [see (3.11)], then the development into
Taylor series can be written as

WiB, 7, T) = it 5 8(XX) +(O),
21

where X = [B-B;, t—1;, T—Tj], (0)> —remainder of the third order. By taking into
account a sufficiently small neighbourhood of P;, the term (0)* can be made negligible
in comparison with the other terms.

The surface W,(B, 7, T) = A; in the neighbourhood of P; can be sufficiently well
described by the equations

1
@1 Aﬁjﬁg(XX) =4, g(XX)=0.

Applying a nonsingular linear transformation of the system, defined by the matrix C
[see (3.12)], we finally obtain:

4.2 g(YY) =0,

where g(Y'Y) is defined by (3.13). Following Theorem 1, we obtain the following corollary

CoroLLARY 1. In the neighbourhood of the point P, the surface W, (B, t, T) = 4,
is reduced to the point P,, in the neighbourhood of the point P; (i = 2, 3, 4) the surface
W,(B, t, T) = A; is topologically equivalent to a cone.

To investigate the character of the surface W,(B, v, T) = A in the neighbourhood
of P; but not passing through P; (i = 1, 2, 3, 4), it suffices in the right-hand side of (4.1)
to substitute 4,4+ 4 for 4;, 6 being close to zero. After performing transformations defined
by the matrix C, we obtain:

4.3) g(YY) = T;6.

But the Eq. (4.3) describes a quadric. When analysing the signs of coefficients in the form
g(YY), we finally obtain the following result:

W(BT,T)=As

/

Wy (B,T,T)=As+8
Wf(ﬁ,f, T)-A‘f*d

Wf(B,T,T)'A‘f

W (B,1,T)=Aq4-6




ON THE EXISTENCE OF A MAGNETOGASDYNAMIC SHOCK WAVE STRUCTURE 931

COROLLARY 2. The surface W,(B,t,T)= A,+96, (6 > 0) is in the neighbourhood
of P, topologically equivalent to a sphere, and the surface W,(B, v, T) = A4;+ 9, (6 > 0),
is in the neighbourhood of P; (i = 2, 3) topologically equivalent to a hyperboloid of one

sheet and in the neighbourhood of P, it is topologically equivalent to hyperboloid of two
sheets.

Similarly, we obtain Corollary 3.

CoROLLARY 3. The surface W,(B, v, T) = A;— 6, (6 > 0), is in the neighbourhood of
P; an empty set for i = 1, a set topologically equivalent to a hyperboloid of two sheets for
i = 2,3 and a set topologically equivalent to a hyperboloid of one sheet for i = 4.

Corollaries 1, 2 and 3 are also immediate results of the Morse lemma. Figure 1 illus-
trates the above considerations.

5. Sections of the surface W,(B, 7, T) = A by straight lines parallel to T axis

Our further considerations will be performed on the assumption that the equation of
state for perfect gas holds —

(5.1) pt = RT.
Then,
(5.2) 5—5850 = cInRTT™Y, e=c¢,T.

To simplify the notation, we shall omit the constant S,, which is not important in our
considerations.

Taking into account in the formula defining W,; [see (2.4)], the thermodynamical
relation f = e— TS, and then applving the Eqgs. (5.1) and (5.2), we obtain:

1[{B* M3*2* (iIB?
(5.3) W,(B,r,T)-?( e

—coT+¢, TInTRT ™!

+c; B—c3 'r+c4).

Substituting in (5.3) (B, 7) = (By, 7o), we obtain a function of a single variable T. It is
easy to see that for every (By, 7o), where 7, > 0,
(549 lim W,(By, 75, T) = o0

Toom
holds.
The limit of the function W,(B,, 7o, T')at the point T = 0 can be expressed as follows:

+o0 for (By, 1) €D

(55) lim Wl(Bo; To, T) = {—(D for (BO! 'l.'o) ¢D’

T
where
2 p2 2
dat MZ ‘r% Cy Bg Bo To

37 "2 T

(5.6) D = {(Bo, 7o): K(By, 7o) +c2Bg

—c3Totcs > 0,7 > 0}.

4
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Note that
dWl(Bo, Tos T) _ 1 _an
(5.7 S = 7Tz [eo T—K(Bo, 70)] = T B=Bo‘
r='t°
From the above follows:
AW, (Bo, 7o, T)

COROLLARY 4. For every (By, 7o) € D, the sign of is changed one

daT
and only one point of the interval (0, o), and for (B,, t,) ¢ D, the function W,(B,, 1o, T)
incerases monotonically over the whole interval (0, o).

Denote by %z, ;) a straight line parallel to the 7' axis and intersecting the plane
(B, t) at the point (B, 7).

From the corollary 4, the following corollary ensures:

COROLLARY 5. For every (By, to) ¢ D and for every A, the surface W,(B, ©, T) = A
has one and only one point of intersection with the straight line # g, . If, on the contrary,
(Bo, to) € D, then the number of intersection points depends on the constant A. Thus the
straight line & g,y may intersect W,(B, v, T) = A at two points, may be rangeni to
the surface and have no common points with the surface.

On the basis of (5.7) and corollary 4, we can state that, for every point (B,, 7o) € D,
there exists 7%, ) = C%K(Bo, 7o) such that min W,(Bo, 7o, T) = W;(Bo, 7o, T(h,, o))

0<T<eo
£ W1(Bo, 7o) = S(To, Tlhe, )
Hence we have:

COROLLARY 6. The straight line % ,,+, intersects the surface W,(B, v, T)= A at
two pointsif (By, 7o) € D and W¥(B,, to) < A, and it is tangent to the surface if (B,, to) € D
and W¥(By, 1) = A. If (By, t0) € D and W§(B,, 7o) > A, then £ (s, ) has no common
points with the surface W,(B, t, T) = A.

In order to characterize the domain D, let us investigate its boundary S defined by
the equation K(B, ) = 0, v > 0. Definition of the function K(B, t) can be derived from
(5.6). The equation of & can be written in the form:

(5.8) B’(E:-‘——%%) +CzB+£;—Y—z—“'CgT+C¢ =0,

or

(5.9) M;TZ i (‘;;;-ca)wczs— "’2‘82 +cq = 0.
T M?2¢?

The discriminant 4 = ¢5— 2(; - cf) (— —cat+ 04) of the Eq. (5.8) is a polynomial

2
of the third degree with respect to the variable 7, with negative coefficient by the highest
order term. Hence a number N must exist such that for every = > N the Eq. (5.8) has no
roots. For 7 = uc? £ 7, and ¢, # 0, we have 45 > 0, and taking into account the con-
tinuity, we have 45 > 0 in the neighbourhood of = = z,. It is seen that for = = 7, the
Eq. (5.8) becomes linear with respect to B. Let us take ¢, < O (the opposite case ¢, > 0

can be obtained by changing the orientation of B axis), then with T — 73, we have B— —
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and with 7 — 7§ (for = > 7,), we have B - +c0. For t =0, 45 > 0, (¢, > 0), from
(5.8) it is seen that the product of the roots B,, B, is negative.

From analysis of the Eq. (5.9), it results that for B = 0, if there exist roots of this
equation, then both of them are positive. The discriminant of the Eq. (5.9) is a polynomial
of the fourth order with a positive coefficient of the highest order term; hence, for suffi-
ciently great | B, it has two roots and, as may easily be noticed, they are of different signs.

c
3 | b i | e |

From the above it results that the qualitative character of the plot of the curve X" can
be shown — depending on the constants M, c,, c,, ¢3, ¢, — as in Fig. 2.

The arrows in Fig. 2 indicate the domain D. For ¢, = 0 the plot of # can be simplified,
being then symmetric with respect to the 7 axis.

6. Connections between singular points of the curves Q4 and singular points of the surface
W,(B, t,T) = A. Analysis of the properties of the curves Q,

As a result of the orthogonal projection of the surface W,(B, r, T) = A on the plane
(B, 1), we obtain a set in the semiplane 7 > 0, the boundary of which consists of the B
axis and the curve Q4. In our considerations, the important role is played only by the
curve 0, and hence in discussing the boundary, we shall take into consideration only
this curve. It is evident that points of the curve Q, are the projections of the points of
tangency of the surface W,(B, 7,T) = A and the straight lines # (s, . Such points
have to satisfy the following system of equations:

6.1) WiB, 7, T) = 4, (B, 7,T)=0,
or, on the basis of (2.9), the equivalent system:
6.2) Sz, T) = A, &‘%T’Q sl

Making use of the formulae describing S(z, T') [see (5.2)] and W, /dt [see (5.7)] and then
eliminating T from the system (6.2), we obtain the equation of Q,:

A
e,

(6.3) K(B, 7) = 1
=
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where

M2z2  IB? " Bz +¢.B %
2 b 2# Ca C3T+C4).
Note that to every point (B, 7) € D [see (5.6)] there corresponds one and only one
curve Q4 [the one that passes through (B, 7)], and to every (B, 7) € D and to every curve

Q4 there corresponds one and only one point (B, 7, T') of W,(B, 7, T) = A —- namely
A

the point (B, 7, earl‘?;'R). Therefore, we have established a one to one correspondence
between the points of (B, 7) € D and certain points of the (B, 7, T') space. Naturally, the
latter fulfill the condition ¢W,/é¢T = 0. In particular, to every singular point P; (i =1, 2,
3, 4) there corresponds one and only one point of the (B, 7) plane. This will be denoted
by Pi(B;, 7).

The gradient of the function W,(B, t, T) vanishes at the singular points of the system
(2.1), and similarly the gradient K(B, ) vanishes at the point P;(B;, 7;). Indeed:

(64) K(B,7)= 1"'K(B,7) = ‘r"“(

oK ., 0K _ M(Br " )
"—B;-- T .E-E =T ————C;B'i'(.'z
and
oK oK y—1 B2
= (p—1)7""2 o Sainlntpnges, (b ¥ () SN 2 s 2
e (y—D"2K(B, 1)+ e T ( = KB, )+ M?3*t+ 2% c3

We must prove that if Py(B;, 7;, T;) satisfies the system (3.1) withe = ¢, Tand p = RT/r,
then P;(B;, ;) satisfies the equations

t?-l(Ef_._ch+cz) =0,
6.5) R
ﬂ[&w ~c)+ﬂ4f='-z+-‘?i —c ] =0
T ’ 24 '
It is not difficult to observe that taking into account the equation of state for an ideal
gas in system (3.1) and eliminating T from this system, a system equivalent to (6.5) can
be obtained.

On the other hand, if the point Pi(B;, ;) satisifes the Egs. (6.5), then the corresponding
A

point P,(B_;, Tiy e;r}“’,’R) satisfies the system (3.1). Moreover, note that by using the
function K(B, t) we can establish the system describing the shock wave structure in the
case in which # = k = 0. Indeed, it suffices to denote:

. - Myt _(dB i _(dr Yo s
=g =g FoalR) +alg). Revrxes
in order to obtain the final result:
oF 8K
(6-6) B R j = 192:
aq; aq; 4

where ¢, = B, q, = 7, q; = dg;ldx.
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It can easily be proved that along the integral curves of the system (6.6) the function
K(B, 7) increases. From the above consideration results Theorem 2.

THEOREM 2. A point P; of the surface W,(B, t, T) = A; is singular if the correspond-
ing point P; of the curve Q4:K(B, 1)1"~! = const is singular.
Comparing the equation of the curve J":

(6.7) K(B,7) =0,
with the equation of the family of curves Q,:
A
(6-8) K(B, T) = _‘})é_l_ea -rl‘?, y =5 1,

we can formulate the following theorem:

THEOREM 3. For arbitrary & > 0 there exist such A, that in the domain {(B, 7):t > d}
all the curves Q4 corresponding to A < A, lie sufficiently near the curve X .

Proof. Indeed, the fact that we consider only the domain {(B, 7): 7 = 0} enables us
to choose such A, that by A < 4, the right-hand side of the Eq. (6.8) is sufficiently close
to zero —i.e., from the right-hand side of the Eq. (6.7). By virtue of the continuity of
the function K(B, ), for an arbitrary bounded domain it is possible to choose such A,
that for 4 < A, the parts of the curves Q, belonging to this domain lie sufficiently near
the curve X". Since for B — o the curves Q, and X have a common asymptote (7 = 7,)
and for sufficiently small 4 do not leave the domain {(B, t):7 < L}, L being a constant,
then the theorem holds for the whole domain {(B, 7): 7 = 4}.

Making use of the equation of the family of curves Q, rewritten in the form
-7

c2B—cyt+ey) =—- e,
+c2 3 +4) y—i

2.2 2 p2 2
69) (M'r 2B B%z

2 2 + 2u
we can obviously state that every straight line T = 7v,: crosses the curve Q, at two points,
is tangent to Q4 or has no common points with Q,. The only exception is the straight
line T = 7,, which crosses every curve Q, at a single point (with ¢, < 0).

Substituting B = B, into the Eq. (6.9), we obtain the equation that must be satisfied
by the coordinates 7 of the intersection points of the straight line B = B, and the curve
O4. The plot of the left-hand side of this equation (parabola) may intersect the plot of the
right-hand side of this equation (generalized hyperbola) at one, two or three points.
Hence it results that every straight line B = B, intersects the curve Q4 at one, two or
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three points, respectively. On the basis of similar considerations, the following theorem
can be proved (see Fig. 3).

THEOREM 4. Let the straight line B = B, intersect the curve dat the points (B, ),
(Bo, ©) [or at a single point (B, )], then one and only one point of intersection (B,, ¥)
of the straight line and the curve satisfies the inequality v > max (z,, t;) (or T > 7¢).

Applying the Eq. (6.9) of the curve Q,, we obtain:

THEOREM 5. For every curve Q4, there exists dy > 0 such that the distance of this
curve from B axis cannot be smaller than p .

Indeed, taking an arbitrary but constant 4, by virtue of the inequality 1—y < 0, for
t sufficiently small, the right-hand side of the Eq. (6.9) is great, while the left-hand side,
for small 7, is upper bounded. Therefore, there exists d, > 0 such that for v < d, the
Eq. (6.9) cannot be satisfied.

7. Analysis of changes in the character of the curves O,

Proofs of existence of the shock wave structures will be based on the fact that, along
the integral curves of the system of equations describing the structure, the function W,
increases. To make use of this fact, we must analyse the surface W, (B, t, T) = A, paying
particular attention to changes which may — by means of continuity of the function
W,(B, 7, T) — occur only during the crossing of the parameter 4 through the values
corresponding to singular points of the system (2.1). The properties proved in 3, 4, 5 and
6 enable us to reproduce with sufficient accuracy the shape of the surface W, (B, 7, T) = A,
on the basis of its projection on the plane (B, 7). By virtue of Theorem 2, changes of
a topological character in the surface W,(B, 7, T) = 4 can be analysed on the basis of
changes in the topological character of the curves Q,. Analysis of the curves Q, yields
interesting information, which together with the proved properties of the surface
W,(B, 7, T) = A enable us to prove the existence of the shock waves structure. This analy-
sis can conveniently be performed together with the analysis of the character of the curve
X . Hence we shall do it separately for each of the three cases considered in 5.

Let us begin from the set of constants M, ¢,, ¢,, ca, ¢4 to which corresponds a curve
2" shown in Fig. 2a. We may observe that for such a set of constants the discriminant of
the Eq. (5.9)

2 2
(6.10) (% —ca) — M?*(2c,B—c?B*+2¢,) =0

has only two real roots. Let us assume additionally that the system (2.1) has four singular
points P; (i = 1, 2, 3, 4). The character of these points was determined in 3 and the charac-
ter of the surface W,(B, 7, T) = A in the neighbourhood of singular points P; was analysed
in 4. Taking into account a one to one correspondence of the singular points of the surface
W.(B, 7, T) = A, and the singular points of the curve Q, (see Theorem 2), the above
assumption guarantees the existence of the points P; (i = 1, 2, 3, 4) in the plane (B, 7)
(they are orthogonal projections of the points P; on the surface (B, 7)). The points P; are
singular points of the system (6.6) and it is known (see [3]) that all the integral curves
leave P,, two integral curves leave and two curves enter P, and P;, and all the integral
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curves enter P,. From the character of the point P; results the behaviour of the curves
Q, in their neighbourhood. The character of the curves @ can also be deduced from the
character of the surface W(B, 7, T) = A.

We shall begin the analysis of the surface W,(B, t, T') = A4 for very small parameter
A (A changes from — oo to +o0). According to Theorem 3, the curves Q4, being the
boundary of the projection of the surfaces, have to pass in the neighbourhood of the
curve A ". This concerns only the domain v > é > 0. The further behaviour of Q, ex-
plains Theorem 4, and the fact that every straight line 7 = 7, intersects Q4 at two
points at most. Therefore, the curve Q,, for sufficiently small 4, consists of a single
branch as shown in Fig. 4. In Figs. 5, 6, 8 and 9 replace P; by E(f =1,2,3,4).

The domain bounded by the B axis and the curve @, forms an orthogonal projection
of the surface W,(B, 7, T) = A on the plane (B, 7). To every point in the shaded part

‘A

Te

Fic. 4.

of the domain, defined by the condition K(B, 7) > 0, there correspond two points on the

surface W, (B, 7, T) = A. With increase of the constant 4, the shaded domain D, = (B, 7):
A

10 < K(B, 1) < e |y—1,7 > 0} grows (if A" > 4”-D,, > Dy,) and the topological
character of the curve Q, changes for the first time when 4 exceeds the value W,(P,) =

f

i
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= S(P,). Taking into account the charakter of the point P, or the character of the point
P,, we state that for W,(P,) < A < W,(P,) the curve O, consists of two branches Q)
and QY the second of which is closed. The form of the curve is presented in Fig. 5.

Now, D, forms the union of two domains D} and D} (see Fig. 5). The further increase
of A is accompanied by an increase in D} and DY and when A reaches the value W,(P,),
the branches Q) and QY have one common point in the domain = > t,. Indeed, if the
singularities in P, did not correspond to the common boundary of Q% and QJ, then that
would have to be realized at a further stage of increase of 4 and in the domain = > 7.,
because the domains D, and 7 < 7, have to be disjoint. In the opposite case, Q4 could
intersect the straight line T = 7, at there points at least which is impossible. It is known,
therefore, that in the domain 7 > t* there exist only two singular points; thus when 4
reaches the value W,(P,), then Q% must be in contact with QY (see Fig. 6).

A

C

Ta

72

FiG. 6.

Fic. 7.
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Q4

2

FiG. 8.

After exceeding the value of S(P,) = W,(P,) = 4, by A, the qualitative picture of
the curve Q, will be equivalent to the initial picture (corresponding to small A4) for every
W(P,) < A < W(P;) (see Fig. 7).

For A = W,(P;) = A, the curve Q, must have the singularity at the point P,. This
point is situated in the domain 7 < 7,. From the character of the singular point P; it
results that P, is a saddle point. Hence the curve 0, must form a loop in the domain 7 < 7,
(see Fig. 8).

With further increase of A4, the curve Q, is again divided into two branches Q% and

19 :
L (see Fig. 9).
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As A increases, the branch Q) will include a smaller and smaller region and at the
moment when A reaches the value W,(P,), the curve Q, will be reduced to a point,
P,. With further increase of A, the curve Q, will be characterized by the branch QY and
its topological character will not be changed.

Note that the above considerations were made assuming that all the four singular
points P; do exist. From the discussion concerning the curves Q, it is easily seen that
the singular point P, exists if the singular point P, exists, and the point P, exists if the
point P; exists. Thus there remain two cases to analyse:

(i) there exist only P, and P,,

(ii) there exist only P; and P,.

In the first case, changes in the topological character of the curves Q4 will occur, as
was shown above, up to the moment when A exceeds the value 4,. These changes are pre-
sented in Figs. 5, 6 and 7. For 4 > A,, the topological character of the curves O, will be
preserved.

In the second case, the first change of topological character of the curves Q@ will occur
for A = A; (see Fig. 8). For A5 < A < A, (W,(P;) = 4;), the change of the curves
0, will agree with that shown in Fig. 9. For 4 = A4,, the branch Q, will be reduced to
a point P, and for 4 > A,, the curve O, will consist of only one branch and its topological
character will not change. The existence of fast shock wave corresponds only to the first
case, the existence of slow shock wave only to the second.

For sets of constants M, ¢,, ¢,, ¢3, ¢, such that the Eq. (6.10) has four real roots, the
curve X consists of three branches, one of which is closed jand is situated in the region
7 > 7, (see Fig. 2b). From Theorems 3 and 5, and from obvious properties of the Eq.
(6.10), it results that every curve Q4, corresponding to a sufficiently small parameter
A, consists of two branches QY and QY situated in the neighbourhood of the curve % .
The branch Q) forms a close curve and is situated in the region 7 > 7, (see Fig. 10).

Fic. 10.

We shall prove that, in the situation now under consideration, existence of the point
P, is not possible and existence of the point P, is necessary. Indeed, if the point P,
exists, then for 4 = A4, the curve Q, would consist of the two branches Q4 and QY%
and the point P,. For A, slightly greater than 4,, three branches of the curve O, ought
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to form. Two of them could be closed and they would be situated in the region = > 7,
(this results from the character of the point P,). Because of the continuity of the function
K(B, 7), all the branches would have to be connected with each other to form a single
curve. For reasons already indicated, the connection would have to occur in the region
T > T,, but this is linked with the necessity of existence of at least three singular points
in the region T > t,, and this is impossible. Note that the branches Q% and QY for 4 in-
creasing must join with each other (as a result of continuity of K(B, 7)) in the region
T > T, and this proves the existence of P, .

Thus, if the parameter 4 reaches the value 4., the branches Q% and QY join with each
other and for 4 > A, the image of the curves 0, will be in accordance with that presented
in Fig. 7. In the next stage of increasing of 4, a closed branch Q) may occur in the case
in which the point P, exists (see Fig. 8). The next change of topological character will be
connected with degeneration of QY into a point P, for A = A,. For A > A, the curve
Q4 consists of a single branch. It is possible that for the set of constants M, ¢,, c,, €3, ¢4,
which is now under consideration the points P; and P, do not exist. Then, after the
branches Q) and QY join with each other for A = A,, no other changes in the topological
character of Q4 occur.

It remains to analyse the case corresponding to such a set of constants M, ¢,, ¢,, ¢, ¢4
for which the Eq. (6.10) has no real roots. The curve " corresponding to that case is
shown in Fig. 2c. For sufficiently small 4, the curve Q, consists of two branches, one
of which forms a closed branch (see Fig. 11).

1'11

%
M,a%x

Fic. 11.

Note, however, that with a further increase of A, a closed branch of the curve Q4 cannot
be formed, according to Theorem 4, in the region T > 7, this excludes the possibility
of existence of the point P, and hence the existence of the point P,. Also in the region
7 < 7, the branch QJ cannot be separated into two parts because this would be con-
nected with the necessity of existence of at least three singular points in the region 7 < 7.
Hence the point P; cannot exist. But with increase of A4, the curve Q, will bound a smaller
and smaller region, up to the moment when for 4 = 4, = S(P,) it will be degenerated
into a point P,. Thus in the situation described, only one singular point exists, so that
there are no shock waves here.
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8. Proof of the existence of fast and slow shock wave structures

~The results of the discussion in 7 enables us to reconstruct the shape of the surface
W,(B, tr,T) = A. Tt is known, however, that the region G, = G uD,, where G =
= {(B, v):K(B, ©) < 0, T > 0}, is the projection of the surface W,(B, 7, T)= A on
the plane (B, 7). This region is bounded by the curve Q, and the straight line 7 = 0.
Since G N D = ¢ (¢ — empty set), then, according to Corollary 4, to every point (B, 1) € G
there corresponds one and only one point on the surface W,(B, v, T) = A. But accord-
ing to Corollary 6, every point (B, r) € D, is an orthogonal projection of two and
only two points situated on the surface W (B, 7, T) = A. Straight lines parallel to T,
passing through points of the curve Q4 are tangent to the surface W,(B, r, T) = A4, and
every point (B, 7) situated on Q, is an orthogonal projection of a single point of the sur-
face W (B, 7, T) = A.

A more careful analysis of the surface W,(B, t, T) = A4 enables us to state that pro-
jections of the points (B, t, T) of the surface W (B, t,T) = A for T — 0" tend to the
points of the curve X, or to the points of the straight line t = 0.

Assuming that (i = 1, 2, 3, 4) are positive functions of class C! of the variables
(B, ©, T), we shall prove the existence of the fast and slow shock waves structure.

Existence of the fast shock waves structure is equivalent to existence of the integral
curves of the system (2.1) connecting the singular point P, with the singular point P,.
A pair of such points belonging to the region 0 = {(B, =, T):7 > 0, T > 0}, as shown
in 7, can exist only if the constants M, ¢,. c,, c3, ¢, are so chosen that the Eq. (6.10)
has two real roots only. To such a set of constants corresponds a curve # consisting
of two branches (see Fig. 2a). Let us analyse changes of the surface W, (B, 7, T)= 4
for —o0 < 4 < 0. Let us begin from a very small A. Then, according to Theorems
3 and 5, the points of the curve Q4 have to be situated near the curve &£ or near B axis,
and they belong obviously to the region D. The curves Q4, for very small 4, consist of
one branch (see Fig. 4). On the basis of the interpretation of the region G, bounded
by the curve Q, and the straight line = = 0, we can state that the surface W, (B, r, T) =
= A is, for small 4, topologically equivalent to a plane. This situation cannot be changed
with increase of 4 up to the value A, = W(P,). When this value is reached at an iso-
lated point, P, is adjoint to the curve Q,. Hence the surface W,(B, =, T) = A, con-
sists of two disjoint parts — the part topologically equivalent to a plane, and the point
P, being disjoint with the first part. For 4, < 4 < A4,, the surface W,(B, 7, T)= A4
consists of two parts, having no common points, since its projection consists of two dis-
joint regions (see Fig. 5). The part of the surface corresponding to the branch QY (see
Fig. 5) forms a closed surface, the point P, being its internal point. (This results from
7 as well as from properties of the singular point P,). As the parameter A increases,
the parts of the surface W, (B, t, T) = A referred to approach — each other. They will be in
contact when the parameter 4 reaches the value 4, (this results from the behaviour of
the curves 0, and from a one to one correspondence between the points of the curve
Q4 and the points of the surface W, (B, 7, T) = A4.).

The analysis of the character of the singular points carried out in 4 shows that
all the integral curves leave the point P,. It is clear that for A4 sufficiently small,
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but greater than 4,, the intersection of the integral curves leaving the point P, with the
surface W,(B, 7, T) = A forms the closed part of the surface W,(B, 7, T)= 4. With
A increasing, the situation will be similar [W, increases along the integral curves of system
(2.1)] up to the moment when A reaches the value A4,. Then, the two parts of the sur-
face W,(B, t, T) = A will come into contact. Hence only one integral curve leaving the
point P, must enter the point P,. The other curve, of the integral curves considered
as entering P,, enters P, with the opposite sense, therefore it came out of the region
bounded by closed surfaces. This proves the uniqueness of the fast shock wave structure.

The problem of existence of the slow shock wave structure for n = 0 is equivalent
to the problem of existence of an integral curve of system (2.1) joining the singular point
P, with the singular point P,. The pair of points P;, P, belonging to the region
0= {(B,7,T):t >0, T>0} can exist in two cases only (see 7). The first case is
connected with a set of constants M, ¢,, ¢,, c3, ¢4 for which the Eq. (6.10) has four real
roots, the second for which the Eq. (6.10) has two real roots. Qualitalively different ima-
ges of the curve & and, as a consequence, different regions G, correspond to those cases
(see 2a and 2b). That cases a certain difference between the shapes of the surface
W,(B, t, T) = A corresponding to the above cases. As was shown in 7, the qualitative

image of the curves Q, for A > A, is in both cases the same. The regions G U D, cor-
responding to those cases are also qualitatively the same.

Since along the integral curves of system (2.1) W,(B, 7, 7) increases, then every inte-
gral curve coming out of the point P; and coming into the point P, must be situated in
the region {(B, 7, T):4; < W,(B, 7, T) < A,}. In connection with the above remarks,
we shall carry out analysis of the cross-section of the two-dimensional manifold formed
by the integral curves coming out of the point P; and the surface W,(B,t,T)= A4
for A; < A < A,. For A = A,, this manifold degenerates into a point. Since the point
P, is an elementary singular point to which there correspond two positive eigenvalues
and one negative eigenvalue, then, according to Hadamard-Peron’s lemma, the manifold
formed of the integral curves leaving the point P, is in the neighbourhood of this point
diffeomorfic to a plane. By Corollary 1, the surface W,(B, t, T) = A; is in the neigh-
bourhood of the point P, topologically equivalent to a cone, and each of the surfaces
W,(B,7,T)= A3+d (6 > 0 — small)is in the neighbourhood of P; topologically equiva-
lent to a hyperboloid of one sheet (see Fig. 1). The surface formed of the integral curves

W,(B,7,T)=A=A3+d

FiGc. 12.
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leaving the point P; cannot go into the interior of the cone W,(B, t, T) = A; because
the relation W,(B, 7, T) < A; holds there. This surface, being locally diffeomorphic
to a plane, must intersect the surface W,(B, 7, T) = A3+ (6 — sufficiently small) along
the closed curve %, (see Fig. 12). Let us observe that, W,(B, 7, T) = 4 remaining on
the surface, we cannot continuously transform the curve %, into a point. Projection
of the curve %, into the plane (B, 7) must form a closed curve .#,, having common
points with the branches Q) and QY (see Fig. 9). With increase of 4, the curve %4 cannot
be split at a finite point of the region 0 = {(B, 7, T7):T > 0, 7 > 0} (that would con-
tradict the continuity). Since the branch QY does not tend to infinity, and to every point
situated on this branch there corresponds a finite point situated on the surface, then £,
has to possess for all 4; < A < A, a common point with the branch QY. But the branch

i, with increase of 4, bounds a smaller region and for 4 = A4, is degenerated to a point
P,. Hence it results that the curve &, for 4 = A, passes through the point P, and, in
consequence, £ 4 for 4 = A, has to pass through P,. This means that at least one integral
curve leaving the point P; and entering P, exists. Thus the existence of the structure of
slow shock waves is proved.
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