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On the existence of a magnetogasdynamic shock wave structure 
with negligible shear viscosity 

JAN SKIEPKO (WARSZAWA) 

ON THE BASIS of properties of the generalized thermodynamic potential (defined by GER­
MAIN [2]), the existence and uniqueness of fast shock wave structure is proved, as well as 
the existence of slow shock waves. The proof is based on the assumptions that the gas is ideal 
and the first viscosity coefficient 'rJ is equal zero. The remaining three dissipation coefficients 
are assumed to be positive functions of class C1 of the physical parameters. 

W oparciu o wlasnosci uog6lnionego potencjalu termodynamicznego (zdefiniowanego przez 
GERMAINA [2]) udowodniono istnienie i jednoznacznosc struktury szybkich fal uderzeniowych 
oraz istnienie struktury wolnych fa! uderzeniowych. Dow6d przeprowadzono przy zalozeniu, 
ze gaz jest idealny, a wsp6lczynnik pierwszej lepkosci "'jest r6wny zeru. 0 pozostalych trzech 
wsp6lczynnikach dysypacji zalozono, :le S<l: dodatnimi funkcjami klasy C1 parametr6w fizycznych. 

Ha ocHoae caoiicra o6o6I.J.J;ennoro TepMOAt-maMHt-Ieci<oro rroTeHQHana, aae,geHHoro )KepMeHoM 
a pa6oTe [2], ,goi<a3aHhi cyi.J.J;ecraoaaHHe H e,gHHCTBeHHOCTb CTPYI<TYPhi 6biCTphiX y,gapHhiX 
aonH, a TaKme cyi.J.J;ecraoaaHHe crpyKTYPhi Me,gneHHhiX y,gapHhiX BOJIH • .Uoi<a3aTeJibcraa ocHo­
BaHhi Ha rrpe,AIIOJIO}I{CHHH 0 TOM , qTo ra3 HBJIHeTCH H,AeaJibHhiM, a I<03cpcpHQHeHT rrepBOH 
BH3I<OCTH paaeH Hymo ('r] = 0). Ha ocraJibHhie I<03cpcpHQHeHThi AHCCHIIaQHH, paccMaTpHaaeMhie 
I<ai< cpyHI<QHH OT cpH3Hqeci<HX IIapaMeTpOB, HaJIO}I{eHbl Tpe6oBaHHH IIOJIO}I{HTeJibHOCTH H pe­
rynHpHOCTH I<Jiacca C1• 

1. Introduction 

1.1 

INVESTIGATIONS concerning the structure of magnetodynamic shock waves have been 
undertaken by MARSHALL (5], LUDFORD (4], GERMAIN (2], KULIKOVSKI and LIUBIMOV [3], 
ANDERSON [1] and others. The most important results were obtained by GERMAIN, who 
proved the fast shock waves to be stable and the intermediate ones to be unstable. 
But, in the case of slow shock wave- taking into account the serious difficulties in in­
vestigations of the existence of a shock waves structure - no satisfactory results have 
been obtained. The papers on this subject deal mainly with the limited problem of the 
influence of two dissipation coefficients on the existence of the shock wave structure. 
Particularly carefully discussed has been the case in which the first viscosity coefficient 
and heat conduction coefficient are equal to zero ('YJ = k = 0) [4, 2, 3]. Connected with 
the latter problem is considerable misunderstanding cf. [1, 2, 3, 4, 6]. 

Investigated in the present paper is the problem of existence and uniqueness of the 
fast as well as the slow shock waves, with only one dissipation coefficient being disregarded 
(of the four occurring in the classical magnetodynamics of fluids). 

It has been shown that, with the coefficient of shear viscosity being equal to zero 
('YJ = 0), the structure of the fast as well as the slow shock waves exists. The remainder 
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924 J. SKIEPKO 

of the positive dissipation coefficients ~. k and 1 I ft 2 a are assumed to have continuous 
first derivatives with respect to the physical parameters. It seems that the results obtained 
and the methods applied may be a convenient starting point for proving the existence of 
the slow shock wave structure for all four positive dissipation coefficients. 

1.2 

On the basis of classical magnetodynamics of fluids, the structure of plane shock 
waves is described by the following system of ordinary differential equations (cf. [2]): 

(1.1) (C- i 11 )M!!!_ = (p+M 2 r+!E_ -c3 ) 
3 dx 2ft ' 

k dT ( M
2
r 2 v

2 
B

2
r ) -- = e----------c2B+c1 Bv+c3 r-c4 M dx 2 2 2ft ' 

where r denotes specific density, e- internal energy, T- temperature, p, = const­
magnetic permeability, M = uj r = const, [u, v, 0] -velocity vector, E = [0, 0, c2 p,M]­
electric field vector (c2 = const), B = [c1 p,M, B, 0]- magnetic induction vector (c 1 = 
= const), c3 , c4 - positive constants. 

The system (1.1) has, in the most general case, four solutions (Bh vi. rh T;), (i = 
= I, 2, 3, 4) that can be treated as points P;(Bh v;, T;, T;) of the phase space (B, ·v, r, T). 
NaturaJly, to every P; there corresponds a certain entropy. Applying numeration in accord­
ance with the growth of entropy -- which is adopted from now on - the points P 1 , P 2 

determine the states of the fast shock wave, the points P 3 , P 4 the states of the slow shock 
wave; the other pairs of points P;, Pi, i < j, determine the states of intermediate shock 
waves. The above classification is adjusted by the following inequalities, holding for the 
point P;: 

(1.2) 
P 1 : U > Cj, 

P3: C5 <U<hx, 

P 2: hx < U < C j, 

P4: U < C5 • 

f 
. u 

The normal component of the velocity u determined by r rom the equality M = -, 
T 

1 

( 
BJ T )

2 
!_ hx = p = (M 2 p,cir )2 is the normal component of Alfven speed, c1 and c5 are speeds 

of fast and slow magnetoacoustic waves, respectively, being the roots of the biquadratic 
equation: 

(1.3) 

1 

(B2r)2 I opJ 
Cs < c1 , by~ -- -tangent component of Alfven speed, a2 = --2 ~ , a-

fl T uT is=so 

speed of sound. 
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ON THE EXISTENCE OF A MAGNETOGASDYNAMIC SHOCK WAVE STRUCTURE 925 

The structure of a shock wave is described by the solution of the system ( 1.1) tending 
at + oo to the state behind and at - oo to the state in front of the shock wave. 

Therefore, such a solution joins the singular points determining the states of the 
shock wave. 

2. Equations describing shock wave structure for r; = 0 

When disregarding the shear viscosity ('f} = 0), the system (1.1) can be reduced to a 
system of three ordinary differential equations, which can be written in the form: 

dB Br 2 el-d =--c1 B+c2 , 
X ,u 

(2.1) 

where the following notations are adopted: e 1 = 1/Mat-t2
, e2 = CM, s3 = k/M. 

Moreover, between Band v the following relation holds: 

(2.2) v = c1 B. 

Therefore, the problem of existence of the shock wave structure for r; = 0 can be reduced 
to investigation of the existence, in the three-dimensional space (B, r, T), of the integral 
curves joining the respective singular points of the system (2.1 ). Taking into account 
the obvious unique relation between the singular points of the system (1.1) and the singular 
points of the system (2.1 ), the latter will also be denoted by Pi (i = 1 , 2, 3, 4). We shall 
assume that the coefficients ei (i = 1, 2, 3), connected with the dissipation coefficients 
1faft2

, C and k, are positive functions of class C 1 defined in the region 0 = {(B, r, T): 
:T > 0, r > 0}. Following the generalized dissipation and generalized thermodynamic 
of Germain potential, we shall define the functions F 1 and W1 similarly. 

These functions can be written in the form: 

1 { B 2 r M 2
r

2 cf B2 
. } 

(2.4) wl = T 2;;- + -2- -·-2- -f(r 'T)+czB-c3 r+c4 ' 

where f is a mass density of the free energy. It is easy to verify that if we denote by qi 
(i = 1, 2, 3) B, r, T, respectively, and by t]i(i = 1, 2, 3) their derivatives with respect 
to x, then the system (1.2) can be written in the form: 

(2.5) i = 1' 2, 3. 
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Because e; (i = 1 , 2, 3) are positive functions of the variables B, r, T and 

3 

(2.6) 
,, aFl. 

2F = ..::6 ~qj, 
i=l ql 

then, taking into account (2.5), we have 

3 

2F = '\,l awl dq; = dW1 > o; 
? aqi dx dx 
l=l 

hence, along the integral curves of the system (2.1): 

X 

(2.7) W1(x)- W 1 (x0 ) = 2 f Fdx > 0. 
xo 

J. SKIEPKO 

This means that W1 increases along the integral curves of the system (2.1). Taking into 
considetation the well known thermodynamic relation: 

(2.8) df= -SdT-pdr, 

where S- entropy and p - pressure, we verify that 

(2.9) 
aw1 

S= W1 +T~. 

3. Investigation of the integral curves of the system (2.1) in the neighbourhood of the 
singular points 

According to the definition, the coordinates (B;, r;, T;) of each singular point P1 

satisfy the system of equations: 

B;T; 2 
--- -c1B;+c2 = 0, 

fl 

(3.1) ( ,.,.. ) 2 Bf 0 p .1;, T; +M r;+ 
2
fl -c3 = , 

M 2 r'f cf B'f B'f t'· 
e(T· r·)- --1 

-· + ----'-- -'-' - c2 B· + c3 t'·- c4 = 0 
I ' I 2 2 2fl I I • 

The linearized system (2.I) in the neighbourhood of P; has the form: 

(3.2) 

e3; dT _ (JL) r + _.!__(~) T 
T; dx - aT ; T; bT ; ' 

w~re eki = ek(B;, -r;, T;), (k = I , 2, 3 ; i = I , 2, 3, 4), B = Bi + B, r = r; +r, T = Ti + 
+ T. The index i at the partial derivatives means that their value is taken at the point 
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( T;, T;). During the Iinearization, we made use of the fact . that the point P; satisfies the 
system (2.1 ), and that p and e are connected by the thermodynamic relation: 

(3.3) op = __!_(_a!!_ + P) ar r or · 
The form of the integral curves in the neighbourhood of the singular points can be ob­
tained from the eigenvalues of the system (3.2). For our investigations suffices to know 
the signs of the eigenvalues. They can be found from certain facts known in the theory 
of quadratic forms. 

Putting B = B0 eA.x, T = r0 eA.x, f = T0 e;.x and then dividing each equation by eA.x, 
we obtain: 

(3.4) J,UX = AX, 

where X= [B0 , To, T0 ]. 

[' 0 

E~~l (3.5) u ~ :' 
e2; 

0 

T; 2 B; 
0 --cl 

fl fl 

(3.6) A~ 
B; M2 + ( Op) ( ;~). fl OT i 

0 (;~). I ( Oe) 
T; oT; 

The symmetric matrices U and A can be treated as the matrices of certain quadratic forms, 

the matrix U corresponding to a positive form, since e1;, e2 h e;~ > 0. But, from the theory 
J 

of quadratic forms it is known that, for forms defined by matrices A and U, there exists 
a linear nonsingular transformation which transforms the first form into the form having 
the unitary matrix E, and the second form into canonical form. Let e be the matrix of 
such a transformation. Then: 

(3.7) eruc = E, er Ae = D, 

where E- unitary matrix, D - diagonal matrix. 
Applying in the system (3.4) the substitution X= eY, we obtain: 

(3.8) J.UeY = AeY, 

and as a result of multiplying the left-hand side by er, we have: 

(3.9) ;.er UCY = er ACY. 

According to (3.7), we have finally: 

(3.1 0) J.EY= DY, 
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928 J. SKIEPKO 

from which it follows that the number of positive and negative eigenvalues is equal to 
the number of positive and negative terms in the diagonal matrix D, respectively. From 
the inertia theorem of quadratic form it is seen that to determine the number of positive 
and negative eigenvalues suffices to transform, by means of an arbitrary nonsingular 
transformation, the quadratic form having the matrix A to the diagonal form. The number 
of positive (or negative) elements of such a diagonal matrix is equal to the number of 
positive (or negative) eigenvalues. 

To the matrix A [see (3.6)] corresponds the quadratic form g(XX) having the following 
form: 

( 
r; 2) 2 2 Bi [M2 ( 8p) 2 ( 8p) (3.11) g(XX) = /i -c1 x 1 + #x1 X2 + . + 7Jr ; X2 +2 aT i X2X3 

1 ( ae ) 2 (r; 2 ) ( 1 )
2 

+ T~ ·ar ,X•"' -,;-c, x, +;-cl x, 

l- ( ap )
2 

( B; )

2 

] ( ( ap ) ) 
2 

+ M 2 + (!!!__) _ aT_; __ {t x~+-1 ( 8e) x
3
+ 7ft; x~ 

ar i _1 (!!__) 2 -d T; aT i _1 (!!__) ~ 
T; 8T i fl T; aT ; 

It suffices to apply a nonsingular linear transformation with the matrix: 

B; 
0 

i;- flci 

(3.12) C= 0 0 c = 1 =I= 0, 

0 
(~~). 

I ( ae) 
T; .aT i 

to reduce the quadratic form corresponding to the matrix A to the form: 

(3.13) 
( dp )2] 

aT . 1 ae 

_I (i) Y~+ T, (ar),Y~· 
T; aT i 

It is easy to prove that the coefficients at yi and y~, the quadratic form being defined 
by (3.13), are respectively equal to: 

1 (uf-c};)(uf-c1;) 
rr uf-bi; 

The coefficient at y~ is always positive. Taking into consideration the above remark and 
the inequality (1.2), we can formulate the theorem: 
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THEOREM I. At the point P1 all eigenvalues are positive, at the points P2 and P3 two 
eigenvalues are positive and one is negative, at P 4 two eigenvalues are negative and one is 
positive. 

Additional analysis is needed in the case in which Ti = p,ci, which takes place for 
c 2 = 0 and concerns "switch on" and "switch off" shock waves. Let us transform g(XX) 
by the assumption that Tj = p,cf: 

[ 
( op) ]

2 

_ I oe oT i 

= T, ( OT ), x, + ~+~=-) x, + 
T, oT i 

M2+( op) _ (#rf l x 

oT i _I (~) 
Ti oT i 

(;)' 
----~__:___--~-xi . 

( ap )2 

M 2 + ( op) _ F i 

oT i _I(~) 
Ti oT i 

The coefficient of the first binomial of the second degree is always positive and the coef­
ficient of the second has the opposite sign in comparison with the coefficient of xi. At 
points P 2 , P 3 , as in the case in which c2 =I= 0, two eigenvalues are positive and one negative. 
This completes the proof for c2 = 0. 

4. Qualitative analysis of the surface W 1 = coast in the neighbourhood of the singular 
points 

We shall analyse the surface wl (B' T' T) = A' where wl (B' T' T) is the function 
defined by (2.4) and A is a constant. It is evident that the domain in which the variable 
B, T, T could change is limited by the inequalities T > 0, T > 0. The gradient of W1 (B, 
T, T) is equal to zero only at the singular points of the system (2.I) [this results from 
the equivalence of the system (2.I) and (2.5)], hence the surfaces W1 (B, T, T) = const, 
which do not pass through the points Pi(i = I , 2, 3, 4), are everywhere regular and 
the surfaces passing through the points Pi (i = I , 2, 3, 4) have singularities only at these 
points. 

We shall start the investigations of the character of the surface W1 = const in the 
neighbourhood of the singular points of system (2.1). Let Ai denote the value of the function 
W1 (B, T, T) at the point Ph Ai = W1 (Pi) = S(PJ We develop the function W1 (B, T, T) 
in the neighbourhood of Pi into Taylor series, preserving the terms up to the second order. 
Since the first derivatives are zero, and the differential of the second order of the function 
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930 J. SKIIEPKO 

W1 (B, -r:, T) is defined at Pi by the form g(XX) [see (3.11)], then the development into 
Taylor series can be written as 

wlcB, -r:, r) = Ai+-lr~gcxx)+(0) 3 , 
I 

where X= [B-Bh r- rh T- Ti], (0)3 - remainder of the third order. By taking into 
account a sufficiently small neighbourhood of Pi, the term (0) 3 can be made negligible 
in comparison with the other terms. 

The surface W1 (B, r, T) = Ai in the neighbourhood of Pi can be sufficiently well 
described by the equations 

(4.1) 

Applying a nonsingular linear transformation of the system, defined by the matrix C 
[see (3.12)], we finally obtain: 

(4.2) g(YY) = 0, 

where g(YY) is defined by (3.13). Following Theorem I, we obtain the following corollary 
CoROLLARY 1. In the neighbourhood of the point P 1 , the surface W1 (B, r, T) = A 1 

is reduced to the point P 1 , in the neighbourhood of the point Pi (i = 2, 3, 4) the surface 
W 1 (B, r, T) = Ai is topologically equivalent to a cone. 

To investigate the character of the surface W1 (B, r, T) = A in the neighbourhood 
of Pi but not passing through Pi (i = I, 2, 3, 4), it suffices in the right-hand side of (4.1) 
to substitute A1 + d for Ai, d being close to zero. After performing transformations defined 
by the matrix C, we obtain: 

(4.3) g(YY) = Tid. 

But the Eq. (4.3) describes a quadric. When analysing the signs of coefficients in the form 
g(YY), we finally obtain the following result: 

FIG. 1. 
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ON THE EXISTENCE OF A MAGNETOGASDYNAMIC SHOCK WAVE STRUCTURE 931 

COROLLARY 2. The surface W 1 (B, T, T) = A 1 + fl, ( fJ > 0) is in the neighbourhood 

of P 1 topologically equivalent to a sphere, and the surface W1 (B, T, T) = A; + <5, ( fJ > 0), 
is in the neighbourhood of P; (i = 2, 3) topologically equivalent to a hyperboloid of one 
sheet and in the neighbourhood of P 4 it is topologica/ly equivalent to hyperboloid of two 
sheets. 

Similarly, we obtain Corollary 3. 
COROLLARY 3. The surface W 1 (B, T~ T) = A;-fl, (<5 > 0), is in the neighbourhood of 

P; an empty set for i = 1, a set topological/y equivalent to a hyperboloid of two sheets for 
i = 2, 3 and a set topologically equivalent to a hyperboloid of one sheet for i = 4. 

Corollaries 1, 2 and 3 are also immediate results of the Morse lemma. Figure 1 illus­
trates the above considerations. 

5. Sections of the surface W 1 ( B, T, T) = A by straight lines parallel to T axis 

Our further considerations will be performed on the assumption that the equation of 
state for perfect gas holds -

(5.1) pT =RT. 

Then, 

(5.2) 

To simplify the notation, we shall omit the constant S0 , which is not important in our 
considerations. 

Taking into account in the formula defining W1 [see (2.4)], the thermodynamical 
relation/= e- TS, and then applying the Eqs. (5.1) and (5.2), we obtain: 

1 ( B 2T M 2T2 c2 B 2 
(5.3) W 1(B, T, T) = T 2;;- + -

2
--T -cvT+cvTlnTRT1 -

1 

+c2 B-c3 r+c4 ). 

Substituting in (5.3) (B, T) = (B0 , T 0), we obtain a function of a single variable T. It is 
easy to see that for every (B0 , T 0 ), where T 0 > 0, 

(5.4) lim w.(Bo, To, T) = 00 
T-+oo 

holds. 
The limit of the function W1 (B0 , To, T) at the point T = 0 can be expressed as follows: 

(5.5) 1. W (B T) _ {+oo for (B0 , To) eD 
Im I o' To' - c (B ) ,J. ' 

T-+oo -00 10r 0 , To 'F D 

where 

{ 

df M 2 T~ ci B~ B~ T 0 
(5.6) D = (B0 , T 0): K(B0 , T0) = -

2
---

2
- + -z,;:- +c2Bo 

-C3To+C4 > 0, T > 0}. 
4* 
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Note that 

(5.7) 

From the above follows: 

( ) h 
.+ dW1 (Bo, T 0 , T) h 

CoROLLARY 4. For every B0 , To E D, t e sign o1 dT is c anged one 

and only one point of the interval (0, oo), and.for (B0 , T 0) f#D, the function W1 (B0 , T0 , T) 
incerases monotonically over the whole interval (0, oo ). 

Denote by .P (Bo. To) a straight line parallel to the T axis and intersecting the plane 
(B, T) at the point (B0 , T0). 

From the corollary 4, the following corollary ensures: 
CoROLLARY 5. For every (B0 , T0 ) f# D and for every A, the surface W1 (B, T, T) = A 

has one and only one point of intersection with the straight line .P<Bo. To). If, on the contrary, 
(B0 , T0) E D, then the number of intersection points depends on the constant A. Thus the 
straight line .P(Bo. To) may intersect wl (B' T' T) = A at two points, may be tangent to 
the surface and have no common points with the surface. 

On the basis of (5.7) and corollary 4, we can state that, for every point (B0 , To) E D, 

there exists Ttso.-ro) = -
1
-K(B0 , T0 ) such that min W1 (B0 , T0 , T) = W1 (B0 , T0 , T<*so,-ro)) 
~ O<T<oo 

~ Wf(B0 , T0) = S(To, T(\
0
,-r0 ))· 

Hence we have: 
COROLLARY 6. The straight line .P(Bo. To) intersects the surface wl (B' T' T) = A at 

twopointsif(B0 , T0) EDandWf(B0 , T0) < A,anditistangenttothesurfaceif(B0 , T0)ED 

and Wf(B0 , T0) = A. If (B0 , T0) E D and Wf(B0 , T0) > A, then .P(B0 , To) has no common 
points with the surface W1 (B, T, T) = A. 

In order to characterize the domain D, let us investigate its boundary :K defined by 
the equation K(B, T) = 0, T > 0. Definition of the function K(B, T) can be derived from 
(5.6). The equation of :K can be written in the form: 

(5.8) 

or 

M2 T2 ( B2 ) cf B2 
(5.9) -

2
- + 

2
# -c3 T+c2B- -

2
- +c4 = 0. 

The discriminant L1 8 = d-2 ( ; -cl) ( M~ r 2 

- c3 r + c4 ) of the Eq. (5.8) is a polynomial 

of the third degree with respect to the variable T, with negative coefficient by the highest 
order term. Hence a number N must exist such that for every T > N the Eq. (5.8) has no 
roots. For T = pcf g; T* and c2 =1= 0, we have L1s > 0, and taking into account the con­
tinuity, we have L1s > 0 in the neighbourhood ofT = T*. It is seen that for T = T* the 
Eq. (5.8) becomes linear with respect to B. Let us take c2 < 0 (the opposite case c2 > 0 
can be obtained by changing the orientation of B axis), then with T-+ T;, we have B-+ - oo 
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and with r--+ rt (for r > r*), we have B--+ + oo. For r = 0, LIB > 0, (c4 > 0), from 
(5.8) it is seen that the product of the roots B1 , B2 is negative. 

From analysis of the Eq. (5.9), it results that for B = 0, if there exist roots of this 
equation, then both of them are positive. The discriminant of the Eq. (5.9) is a polynomial 
of the fourth order with a positive coefficient of the highest order term; hence, for suffi­
ciently great IBI, it has two roots and, as may easily be noticed, they are of different signs. 

a b c 
T T T 

FIG. 2. 

From the above it results that the qualitative character of the plot of the curve :K can 
be shown- depending on the constants M, c1 , c2 , c3 , c4 - as in Fig. 2. 

The arrows in Fig. 2 indicate the domain D. For c 2 = 0 the plot of :K can be simplified, 
being then symmetric with respect to the r axis. 

6. Connections between singular points of the curves QA and singular points of the surface 
W 1 ( B, r, T) = A. Analysis of the properties of the curves QA 

As a result of the orthogonal projection of the surface W1 (B, r, T) = A on the plane 
(B, r), we obtain a set in the semiplane r > 0, the boundary of which consists of the B 
axis and the curve QA. In our considerations, the important role is played only by the 
curve QA and hence in discussing the boundary, we shall take into consideration only 
this curve. It is evident that points of the curve QA are the projections of the points of 
tangency of the surface W1 (B, r, T) = A and the straight lines .P(B, 1:). Such points 
have to satisfy the following system of equations: 

(6.1) W1 (B, r, T) =A, 
awl 

---;rr(B, r, T) = 0, 

or, on the basis of (2.9), the equivalent system: 

(6.2) S(r, T) =A, 
awl(B, r, T) = 

0 ar · 
Making use of the formulae describing S(r, T) [see (5.2)] and oWtfot [see (5.7)] and then 
eliminating T from the system (6.2), we obtain the equation of QA: 

- I ~ 
(6.3) K(B r) = --ecv 

' y-1 , 

http://rcin.org.pl



934 J. SKIEPKO 

where 

- (M2 r2 c2 B2 B2 r ) 
(6.4) K(B, r) = r1-

1K(B, r) = r 1-
1 

-
2
--T + 2;;:- +c2B-c3 r+c4 • 

Note that to every point (B, r) E D [see (5.6)] there corresponds one and only one 
curve QA [the one that passes through (B, r)], and to every (B, r) E D and to every curve 
Q ... there corresponds one and only one point (B, r, T) of W1 (B, r, T) = A --namely 

A 

the point (B, r, ec;; r 1
- 1/R). Therefore, we have established a one to one correspondence 

between the points of (B, r) E D and certain points of the (B, r, T) space. Naturally, the 
latter fulfill the condition awl I oT = 0. In particular, to every singular point pi (i = 1' 2, 
3, 4) there corresponds one and only one point of the (B, r) plane. This will be denoted 
by Pi(Bi' Tj). 

The gradient of the function W1 (B, r, T) vanishes at the singular points of the system 
(2.1), and similarly the gradient K(B, r) vanishes at the point fi;(Bb rJ Indeed: 

oK y-1 oK Y-1 ( Br 2 ) 
oB =r oB-=r fl-c 1 B+c2 

and 

oK oK ( y- 1 B 2 
) -- = (y-1)r"~- 2K(B, r)+r"~- 1- = r 1 - 1 --K(B, r)+M2r+- -c3 • 

01' 01' T 2fl 

We must prove that if Pi(Bb rb Ti) satisfies the system (3.1) with e = Cv Tand p = RTjr, 
then fi;(Bi, ri) satisfies the equations 

(6.5) 

It is not difficult to observe that taking into account the equation of state for an ideal 
gas in system (3.1) and eliminating T from this system, a system equivalent to (6.5) can 
be obtained. 

On the other hand, if the point Pi(Bi, Tj) satisifes the Eqs. (6.5), then the corresponding 
A 

point Pi(Bh T;, ecvrl-1/R) satisfies the system (3.1). Moreover, note that by using the 
function K(B, r) we can establish the system describing the shock wave structure in the 
case in which 'YJ = k = 0. Indeed, it suffices to denote: 

- r>'-1 CMrY-1 
Bt = 2aflM ' 82 = . 2 F = £, ( ~: r +E, ( ~:-r. K = ,,_. ·K(B, <), 

in order to obtain the final result: 

oF ax 
aq1 aq1 

(6.6) j = 1, 2, 

where q1 = B, q2 = r, q1 = dq)dx. 
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It can easily be proved that along the integral curves of the system (6.6) the function 
K(B, r) increases. From the above consideration results Theorem 2. 

THEOREM 2. A point Pi of the surface W1 (B, r, T) = Ai is singular if the correspond­
ing point Pi of the curve QA:K(B, r)rY-t = const is singular. 

Comparing the equation of the curve :ft: 

(6.7) K(B, r) = 0, 

with the equation of the family of curves QA: 

I ~ 
(6.8) K(B r) = - --- ecv r 1

-Y y > I, 
' y-1 ' 

we can formulate the folJowing theorem: 
THEOREM 3. For arbitrary~ > 0 there exist such A 0 that in the domain {(B, r): r ~ d} 

all the curves QA corresponding to A < A 0 lie sufficiently near the curve .ff.. 
Proof. Indeed, the fact that we consider only the domain {(B, r): r ~ ~}enables us 

to choose such A 0 that by A < A 0 the right-hand side of the Eq. (6.8) is sufficiently close 
to zero- i.e., from the right-hand side of the Eq. (6.7). By virtue of the continuity of 
the function K(B, r), for an arbitrary bounded domain it is possible to choose such A 0 

that for A < A 0 the parts of the curves Q A belonging to this domain lie sufficiently near 
the curve~. Since for B-+ oo the curves QA and :f{ have a common asymptote ( r = r*) 
and for sufficiently small A do not leave the domain { (B, r): r < L }, L being a constant, 
then the theorem holds for the whole domain {(B, r): r ~ b}. 

Making use of the equation of the family of curves QA rewritten in the form 

( 
M2r2 d B2 B2r ) rl-)' ~ 

(6.9) --
2

- - -
2
- + -

2
ft + c2 B-c3 r+c4 = y-_:: Tecv, 

we can obviously state that every straight line r = r 0 : crosses the curve QA at two points, 
is tangent to QA or has no common points with QA. The only exception is the straight 
line r = r*, which crosses every curve QA at a single point (with c2 < 0). 

Substituting B = B0 into the Eq. (6.9), we obtain the equation that must be satisfied 
by the coordinates r of the intersection points of the straight line B = B0 and the curve 
QA. The plot of the left-hand side of this equation (parabola) may intersect the plot of the 
right-hand side of this equation (generalized hyperbola) at one, two or three points. 
Hence it results that every straight line B = B0 intersects the curve QA at one, two or 

T1-( ~ 
T=-ecv 

------~~----
FIG. 3. 

T 

http://rcin.org.pl



936 J. SI(IEPI<CO 

three points, respectively. On the basis of similar considerations, the following theorem 
can be proved (see Fig. 3). 

THEOREM 4. Let the straight line B = B0 intersect the curve at the points (B0 , r 1 ), 

(B0 , r 2) [or at a single point (B0 , r 0)], then one and only one point of intersection (B0 , 1r) 
of the straight line and the curve satisfies the inequality r > max ( r 1 , r 2 ) (or r > r 0 .). 

Applying the Eq. (6.9) of the curve QA, we obtain: 
THEOREM 5. For every curve QA, there exists dA > 0 such that the distance of this 

curve from B axis cannot be smaller than p A. 
Indeed, taking an arbitrary but constant A, by virtue of the inequality 1- y < 0, for 

r sufficiently small, the right-hand side of the Eq. (6.9) is great, while the left-hand side, 
for small r, is upper bounded. Therefore, there exists dA > 0 such that for r < dA the 
Eq. (6.9) cannot be satisfied. 

7. Analysis of changes in the character of the curves QA 

Proofs of existence of the shock wave structures will be based on the fact that, along 
the integral curves of the system of equations describing the structure, the function W1 

increases. To make use of this fact, we must analyse the surface W1 (B, r, T) = A, paying 
particular attention to changes which may -by means of continuity of the function 
W1 (B, r, T)- occur only during the crossing of the parameter A through the values 
corresponding to singular points of the system (2.1 ). The properties proved in 3, 4, 5 and 
6 enable us to reproduce with sufficient accuracy the shape of the surface W1 (B, r, T) = A, 
on the basis of its projection on the plane (B, r). By virtue of Theorem 2, changes of 
a topological character in the surface W1 (B, r, T) = A can be analysed on the basis of 
changes in the topological character of the curves QA. Analysis of the curves QA yields 
interesting information, which together with the proved properties of the surface 
W1 (B, r, T) =A enable us to prove the existence of the shock waves structure. This analy­
sis can conveniently be performed together with the analysis of the character of the curve 
:/{". Hence we shall do it separately for each of the three cases considered in 5. 

Let us begin from the set of constants M, c1 , c2 , c3 , c4 to which corresponds a curve 
:/{"shown in Fig. 2a. We may observe that for such a set of constants the discriminant of 
the Eq. (5.9) 

(6.10) 

has only two real roots. Let us assume additionally that the system (2.1) has four singular 
points Pi {i = 1, 2, 3, 4). The character of these points was determined in 3 and the charac­
ter of the surface W1 (B, r, T) = A in the neighbourhood of singular points Pi was analysed 
in 4. Taking into account a one to one correspondence of the singular points of the surface 
W1 (B, r, T) = A, and the singular points of the curve QA (see Theorem 2), the above 
assumption guarantees the existence of the points fi; (i = 1, 2, 3, 4) in the plane (B, r) 
(they are orthogonal projections of the points Pi on the surface (B, r)). The points Pi are 
singular points of the system (6.6) and it is known (see [3]) that all the integral curves 
leave P 1 , two integral curves leave and two curves enter P2 and P3 , and all the integral 
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curves enter P 4 . From the character of the point Pi results the behaviour of the curves 
QA in their neighbourhood. The character of the curves Q can also be deduced from the 
character of the surface W1 (B, r, T) = A. 

We shall begin the analysis of the surface W1 (B, r, T) = A for very small parameter 
A (A changes from - oo to + oo ). According to Theorem 3, the curves QA, being the 
boundary of the projection of the surfaces, have to pass in the neighbourhood of the 
curve :f(. This concerns only the domain r ~ t.5 > 0. The further behaviour of QA ex­
plains Theorem 4, and the fact that every straight line r = r 0 intersects QA at two 
points at most. Therefore, the curve QA, for sufficiently small A, consists of a single 
branch as shown in Fig. 4. In Figs. 5, 6, 8 and 9 replace Pi by ~(i = 1, 2, 3, 4). 

The domain bounded by the B axis and the curve QA forms an orthogonal projection 
of the surface W1 (B, r, T) = A on the plane (B, r). To every point in the shaded part 

FIG. 4. 

of the domain, defined by the condition K(B, r) > 0, there correspond two points on the 
surface W1 (B, r, T) = A. With increase of the constant A, the shaded domain D A = (B, r): 

A 

:0 < K(B, r) < ec;;fy-1, r > 0} grows (if A'> A"~DA.,;:) DA.,) and the topological 
character of the curve QA changes for the first time when A exceeds the value W1 (P1 ) = 

u 

~A 

8 

FIG. 5. 
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= S(P1). Taking into account the charakter of the point P 1 or the character of the point 
P1 , we state that for W1 (P1) < A < W1 (P2) the curve QA consists of two branches Q~ 
and Q~1, the second of which is closed. The form of the curve is presented in Fig. 5. 

Now, D A forms the union of two domains D~ and Dlj (see Fig. 5). The further increase 
of A is accompanied by an increase in D~ and D~1 and when A reaches the value W1 (P2 ), 

the branches Q~ and Qlj have one common point in the domain r > r *. Indeed, if the 
singularities in P 2 did not correspond to the common boundary of Q~ and Q~1 , then that 
would have to be realized at a further stage of increase of A and in the domain r > r*, 
because the domains DA and r < r* have to be disjoint. In the opposite case, QA could 
intersect the straight line r = r* at there points at least which is impossible. It is known, 
therefore, that in the domain r > r* there exist only two singular points; thus when A 
reaches the value W1 (P 2), then Q~ must be in contact with Qlj (see Fig. 6). 

T 

FIG. 6. 

FIG. 7. 
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T 

FIG. 8. 

After exceeding the value of S(P2) = W1 (P 2 ) = A 2 by A, the qualitative picture of 
the curve QA will be equivalent to the initial picture (corresponding to small A) for every 
W(P2) < A < W(P3 ) (see Fig. 7). 

T 

B 

FIG. 9. 

For A = W1 (P3 ) = A 3 the curve QA must have the singularity at the point P3 • This 
point is situated in the domain r < r*. From the character of the singular point P3 it 
results that P3 is a saddle point. Hence the curve QA must form a loop in the domain r < r * 
(see Fig. 8). 

With further increase of A, the curve QA is again divided into two branches Q~ and 
Q~1 (see Fig. 9). 
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As A increases, the branch Q;l will include a smaller and smaller region and at the 
moment when A reaches the value W1 (P 4 ), the curve QA will be reduced to a point, 
~. With further increase of A, the curve Q ... will be characterized by the branch Q.!t and 
its topological character will not be changed. 

Note that the above considerations were made assuming that all the four singular 
points Pi do exist. From the discussion concerning the curves Q ... , it is easily seen that 
the singular point P 2 exists if the singular point P 1 exists, and the point P 4 exists if the 
point P 3 exists. Thus there remain two cases to analyse: 

(i) there exist only P 1 and P 2 , 

(ii) there exist only P 3 and P 4 • 

In the first case, changes in the topological character of the curves Q ... will occur, as 
was shown above, up to the moment when A exceeds the value A 2 • These changes are pre­
sented in Figs. 5, 6 and 7. For A > A 2 , the topological character of the curves Q ... will be 
preserved. 

In the second case, the first change of topological character of the curves QA will occur 
for A = A 3 (see Fig. 8). For A 3 < A < A4 , (W1 (Pi) = Ai), the change of the curves 
Q ... will agree with that shown in Fig. 9. For A = A4 , the branch QA will be reduced to 
a point~ and for A > A4 , the curve QA will consist of only one branch and its topological 
character will not change. The existence of fast shock wave corresponds only to the first 
case, the existence of slow shock wave only to the second. 

For sets of constants M, c1 , c2 , c3 , c4 such that the Eq. (6.10) has four real roots, the 
curve .Yt' consists of three branches, one of which is closed ;and is situated in the region 
-r > T* (see Fig. 2b). From Theorems 3 and 5, and from obvious properties of the Eq. 
(6.10), it results that every curve Q ... , corresponding to a sufficiently small parameter 
A, consists of two branches Q~ and Q~1 situated in the neighbourhood of the curve%. 
The branch Q~1, forms a close curve and is situated in the region T > T* (see Fig. 10). 

T 

FIG. 10. 

We shall prove that, in the situation now under consideration, existence of the point 
P 1 is not possible and existence of the point P 2 is necessary. Indeed, if the point P 1 

exists, then for A = A 1 the curve QA would consist of the two branches Q~ and Q~ 
and the point P 1 • For A, slightly greater than A 1 , three branches of the curve Q ... ought 
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to form. Two of them could be closed and they would be situated in the region r > r * 
(this results from the character of the point P1 ). Because of the continuity of the function 
K(B, r), all the branches would have to be connected with each other to form a single 
curve. For reasons already indicated, the connection would have to occur in the region 
r > r * , but this is linked with the necessity of existence of at least three singular points 
in the region r > r*, and this is impossible. Note that the branches Q~ and Q~1 for A in­
creasing must join with each other (as a result of continuity of K(B, r)) in the region 
r > r *' and this proves the existence of P 2 • 

Thus, if the parameter A reaches the value A 2 , the branches Q~ and QY join with each 
other and for A > A2 the image of the curves QA will be in accordance with that presented 
in Fig. 7. In the next stage of increasing of A, a closed branch QY may occur in the case 
in which the point P 3 exists (see Fig. 8). The next change of topological character will be 
connected with degeneration of Q:f into a point P4 for A = A4 • For A > A 4 , the curve 
QA consists of a single branch. It is possible that for the set of constants M, c1 , c2 , c3 , c4 , 

which is now under consideration the points P 3 and P 4 do not exist. Then, after the 
branches Q~ and Q1 join with each other for A = A 2 , no other changes in the topological 
character of QA occur. 

It remains to analyse the case corresponding to such a set of constants M, c1 , c2 , c3 , c4 

for which the Eq. (6.10) has no real roots. The curve .Ye corresponding to that case is 
shown in Fig. 2c. For sufficiently small A, the curve QA consists of two branches, one 
of which forms a closed branch (see Fig. 11). 

T 

FIG. 11. 

Note, however, that with a further increase of A, a closed branch of the curve QA cannot 
be formed, according to Theorem 4, in the region r > r*; this excludes the possibility 
of existence of the point P 1 and hence the existence of the point P 2 • Also in the region 
r < r * the branch Q1 cannot be separated into two parts because this would be con­
nected with the necessity of existence of at least three singular points in the region r < r*. 
Hence the point P 3 cannot exist. But with increase of A, the curve QA will bound a smaller 
and smaller region, up to the moment when for A = A4 = S(P 4 ) it will be degenerated 
into a point P 4 • Thus in the situation described, only one singular point exists, so that 
there are no shock waves here. 
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8. Proof of the existence of fast and slow shock wave structures 

· The results of the discussion in 7 enables us to reconstruct the shape of the surface 
W1 (B, r, T) =A. It is known, however, that the region GA = G u DA, where G = 

= {(B,r):K(B,r)~O,r>O}, is the projection of the surface W 1(B,r,T)=A on 
the plane (B, r). This region is bounded by the curve QA and the straight line r = 0. 
Since G n D = 4> (4> -empty set), then. according to Corollary 4, to every point (B, r) e G 
there corresponds one and only one point on the surface W1 (B, r, T) = A. But accord­
ing to Corollary 6, every point (B, r) E D 4. is an orthogonal projection of two and 
only two points situated on the surface W1 tB, r, T) = A. Straight lines parallel to T, 
passing through points of the curve QA are tangent to the surface W1 (B, r, T) = A, and 
every point (B, r) situated on QA is an orthogonal projection of a single point of the sur­
face W1 (B, r, T) =A. 

A more careful analysis of the surface W1 (B, r, T) = A enables us to state that pro­
jections of the points (B, r, T) of the surface W1 (B, r, T) = A for T ---+ o+ tend to the 
points of the curve %, or to the points of the straight line r = 0. 

Assuming that si(i = 1, 2, 3, 4) are positive functions of class C 1 of the variables 
(B, r, T), we shall prove the existence of the fast and slow shock waves structure. 

Existence of the fast shock waves structure is equivalent to existence of the integral 
curves of the system (2.1) connecting the singular point P 1 with the singular point P 2 • 

A pair of such points belonging to the region 0 = { ( B, r, T): r > 0, T > 0}, as shown 
in 7, can exist only if the constants M, c1 , c2 , c3 , c4 are so chosen that the Eq. (6.10) 
has two real roots only. To such a set of constants corresponds a curve % consisting 
of two branches (see Fig. 2a). Let us analyse changes of the surface W1 (B, r, T) = A 
for - oo < A < oo. Let us begin from a very small A. Then, according to Theorems 
3 and 5, the points of the curve QA have to be situated near the curve f or near B axis, 
and they belong obviously to the region D. The curves QA, for very small A, consist of 
one branch (see Fig. 4). On the basis of the interpretation of the region G A bounded 
by the curve QA and the straight line r = 0, we can state that the surface W1 (B, r, T) = 
= A is, for small A, topologica1Jy equivalent to a plane. This situation cannot be changed 
with increase of A up to the value A1 = W(P 1 ). When this value is reached at an iso­
lated point, P 1 is ad joint to the curve QA. Hence the surface W1 (B, r, T) = A 1 con­
sists of two disjoint parts- the part topologically equivalent to a plane, and the point 
P 1 being disjoint with the first part. For A 1 < A < A 2 , the surface W1 (B, r, T) = A 
consists of two parts, having no common points, since its projection consists of two dis­
joint regions (see Fig. 5). The part of the surface corresponding to the branch Q~1 (see 
Fig. 5) forms a closed surface, the point P 1 being its internal point. (This results from 
7 as well as from properties of the singular point P 1). As the parameter A increases, 
the parts of the surface W1 (B, r, T) = A referred to approach- each other. They will be in 
contact when the parameter A reaches the value A 2 (this results from the behaviour of 
the curves QA and from a one to one correspondence between the points of the curve 
QA and the points of the surface W1 (B, r, T) = A.). 

The analysis of the character of the singular points carried out in 4 shows that 
all the integral curves leave the point P 1 • It is clear that for A sufficiently small, 
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but greater than A 1 , the intersection of the integral curves leaving the point P 1 with the 
surface W1 (B, r, T) = A forms the closed part of the surface W1 (B, r, T) = A. With 
A increasing, the situation will be similar [W1 increases along the integral curves of system 
(2.1)] up to the moment when A reaches the value A 2 • Then, the two parts of the sur­
face W 1 (B, r, T) = A will come into contact. Hence only one integral curve leaving the 
point P 1 must enter the point P 2 • The other curve, of the integral curves considered 
as entering P 2 , enters P 2 with the opposite sense, therefore it came out of the region 
bounded by closed surfaces. This proves the uniqueness of the fast shock wave structure. 

The problem of existence of the slow shock wave structure for r; = 0 is equivalent 
to the problem of existence of an integral curve of system (2.1) joining the singular point 
P 3 with the singular point P 4 . The pair of points P 3 , P 4 belonging to the region 
0 = { (B, r, T): r > 0, T > 0} can exist in two cases only (see 7). The first case is 
connected with a set of constants M, c1 , c2 , c3 , c4 for which the Eq. (6.10) has four real 
roots, the second for which the Eq. (6.10) has two real roots. Qualitalively different ima­
ges of the curve% and, as a consequence, different regions G, correspond to those cases 
(see 2a and 2b). That cases a certain difference between the shapes of the surface 
W1 (B, r, T) = A corresponding to the above cases. As was shown in 7, the qualitative 
image of the curves QA for A > A 2 is in both cases the same. The regions G u D A cor­
responding to those cases are also qualitatively the same. 

Since along the integral curves of system (2.1) W 1 (B, r, 1) increases, then every inte­
gral curve coming out of the point P 3 and coming into the point P 4 must be situated in 
the region { (B, r, T): A 3 ~ W 1 (B, r, T) ~ A4 }. In connection with the above remarks, 
we shall carry out analysis of the cross-section of the two-dimensional manifold formed 
by the integral curves coming out of the point P 3 and the surface W 1 (B, r, T) = A 

for A3 < A < A4 . For A = A 3 , this manifold degenerates into a point. Since the point 
P 3 is an elementary singular point to which there correspond two positive eigenvalues 
and one negative eigenvalue, then, according to Hadamard-Peron's lemma, the manifold 
formed of the integral curves leaving the point P3 is in the neighbourhood of this point 
diffeomorfic to a plane. By Corollary 1, the surface W 1 (B, r, T) = A 3 is in the neigh­
bourhood of the point P3 topologically equivalent to a cone, and each of the surfaces 
W1 (B, r, T) = A3 + ~ (~ > 0- small) is in the neighbourhood of P 3 topologically equiva­
lent to a hyperboloid of one sheet (see Fig. 1). The surface formed of the integral curves 

FIG. 12. 
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leaving the point P 3 cannot go into the interior of the cone W1 (B, r, T) = A 3 because 
the relation W1 (B, r, T) < A3 holds there. This surface, being locally diffeomorphic 
to a plane, must intersect the surface W1 (B, r, T) = A3 + c5 ( c5- sufficiently small) along 
the closed curve !l' A (see Fig. 12). Let us observe that, W1 (B, r, T) = A remaining on 
the surface, we cannot continuously transform the curve !l' A into a point. Projection 
of the curve !l' A into the plane (B, r) must form a closed curve !l' A, having common 
points with the branches Q~ and Q~ (see Fig. 9). With increase of A, the curve !l' A cannot 
be split at a finite point of the region 0 = { (B, r, T): T > 0, r > 0} (that would con­
tradict the continuity). Since the branch Q~ does not tend to infinity, and to every point 
situated on this branch there corresponds a finite point situated on the surface, then 7i A 

has to possess for all A3 < A < A4 a common point with the branch Q~1 • But the branch 
Q~, with increase of A, bounds a smaller region and for A = A4 is degenerated to a point 
P4 • Hence it results that the curve !l' A for A = A4 passes through the point P4 and, in 
consequence, !l' A for A = A.;. has to pass through P 4 • This means that at least one integral 
curve leaving the point P 3 and entering P 4 exists. Thus the existence of the structure of 
slow shock waves is proved. 
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