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Insensitivity of materials to the exchange of deformation paths

Part 1. Insensitivity semigroups
J. RYCHLEWSKI (WARSZAWA)

THE MAIN object of theory of materials (theory of constitutive equations) is to direct and to
arrange the mechanical macroexperiment. In this paper a definition of the insensitivity semi-
group of a material is given. It is a set of such all mappings of deformation paths, which do not
influence the final value of stress. The algorithm for deriving the general constitutive operator
insensitive with respect to prescribed semigroup is given.

Podstawowym celem teorii materialéw (teorii réwnan konstytutywnych) jest ukierunkowywa-
nie i porzadkowanie makroeksperymentu mechanicznego. W pracy podano definicie péigrupy
niewrazliwo$ci materialu. Jest to zbiér tych wszystkich przeksztalcen drog odksztalecnia, ktbre
nie wplywaja na koncowa warto$¢ naprezenia. Podano algorytm znajdowania postaci ogélnej
operatora konstytutywnego niezmienniczego wzgledem z gory danej potgrupy.

OCHOBHO# 1LIeIbI0 TEOPDHM MATEPHAJIOB (TEOPHH ONpeNeAIOLIMX YpPABHEHHMI) ABIACTCA Ha-
MpaBJIHBAHHE M YNOPAJOYHBAHUE MEXaHHYECKOro MakpoonsiTa. B pabore maHo onpepmeneHue
TIOJTYTPYTILI HEYYBCTBHTEJIBHOCTH MaTepHana. DTO MHOMKECTBO BCeX TeX mpeobpasoBaHmil
myTei echOpPMHPOBAHHMA, KOTOphIE HE BJIMAIOT Ha KOHEUHOE 3HAueHHe HanpsweHui. llan
anropHdM MOCTPOSHUA ONPEAE/IAIOIHX ONEPaTOPOB HMHBAPHAHTHBIX OTHOCHTENIHO 3aJaHHOH
O TYTPYTIIIBI.
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1. Introduction

THE NOTION of a material is a fundamental concept in the theory of continuum. In mech-
anics of continuous bodies, by a material we mean an operator called a constitutive
operator, which assings a stress state to motion of a body. The theory of materials deals
with properties and classification of such operators based on mechanical macroexperiments
and general principles of physics. In recent decades, this theory has been developing
intensively: we need mention but a few of numerous papers, ILYusHIN [1, 2], NoLL [3, 4],
RivLIN and ERIKSEN (5], and SEDOV [6)].

A demand for the theory of materials arises from a turbulent increase of various
substances in contemporary technology as well as from the constantly increasing require-
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ments concerning the more and more exact description of deformation and flow
processes.

A fundamental aim of the theory of materials is the ordering and guiding a mechanic-
al macroexperiment. This aim is attained by individualization of typical classes of materials
and typical classes of processes. In the present paper, we wish to consider some further
unexplored possibilities in this direction, relying on a more exact analysis of the invariance
of constitutive operators.

In Part I of this paper a fundamental definition for the entire work, of an insen-
sitivity semigroup of material is given.

That semigroup consists of all those mappings of deformation paths which preserve
unchanged the final value of stresses. An algorithm is presented for deriving a general
form of a constitutive operator, invariant with respect to a semigroup, given a priori.

One of the most important particular cases — namely that introduced by Noll, called
isotropy groups of materials — is quoted herein.

Part II will propose a precise definition of a concept commonly used in mechanics
and known as material viscosity.

2. Definition of an insensitivity semigroup of material

To focus our attention, we confine all considerations to purely mechanical theory of
simple materials, which constitutes the nuckleus of the theory of materials and possesses
most applications. We shall, herein, use a description based on a fixed reference config-
uration. All ideas of the present paper can be carried over to theories not purely me-
chanical, to non-simple materials, and even to non-local materials or to materials with
microstructure. They can also be stated on the basis of a description without any reference
configuration

Thus the starting point is a constitutive equation (cf. |7], Sec. 28):

@10 T(X, t) = §[F(X, 1—s)].

Here T(X, t) is the stress tensor evaluated at the particle X at the instant ¢, F(X, t—s)
is the deformation gradient from a fixed local configuration K into a local configuration
at the instant 7—s, at the particle X under consideration, s = 0 is the time measured
backwards from the instant f € (—c0, +00). We assume that the stress unit £, and the
time unit f, have been chosen, and we agree to understand by T, ¢, s dimsnsionless
quantities referred to them. Then we omit the explicit appearence of the symbol X for
a fixed particle. We are also assuming, up to § 18, that the time 7 is fixed and, as a rule,
we omit its appearence in all formulas.

Denote by 7 a set of tensors of the second-order, and by #° < 4 a subset of tensors
whose determinant is positive. By R we mean the set of all non-negative real numbers,
R = [0, ). The set of non-singular tensor curves, parametrized by means of the
dimensionless time s running over R, we denote by &,

2.2) & = {f: R » #/|Domf = R}.
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Curves from «f are called deformation processes or deformation paths. In accordance
with the convention assumed, we write:

T=TX,1), f(s)=FX,t-s).

Thus, for a fixed time ¢, we consider a constitutive operator as the operator §x: o — 7,
and we write:

(23) T = g«l/].
The constitutive operator depends on the reference configuration according to the formula
(24 Fexlf] = 8x[/P],

where P € 4" denotes local deformation from a local configuration K into the local config-
uration PK, (cf. [7]). We know, moreover, that for every orthogonal tensor curve Q € &f —
i.e., one that satisfies the condition Q”(s)Q(s) = 1 for each s € R — the following formula
2.5) 3x[Qf] = Q(0) F[f1Q7(0)

holds true (principle of material objectivity, [7]). In the foregoing formulae, /P, Q f denoted
the product of tensors for each s € R.

In studying mechanics, insufficient attention is paid as a rule to defining a domain
of operators with sufficient rigor, particularly the case with constitutive operators.
In every concrete case, any information concerning the domain Dom g < & — i.e., the
set of permissible deformation paths —is essential information about the material
under consideration. In what follows, and particularly in Part II, assumptions on the
domain of an operator will play an essential role. For the time being, let us cite the
following important properties:

(i) for every f € & and every number § € R,
(2.6) feDom@x = f; e Dom@x,

where f3(s) = f(§ +5), seR;
(ii) for every f e & and every P € A,

2.7 feDom@g = fPeDomfx,
(iii) for every f € & and every orthogonal curve Q € 7,
(2.8) feDom@x = QfeDom@xk.

Property (i) follows from the manner in which we introduced §x: o — 7, since formula
(2.1) holds for each t e (—oco0, +00); property (ii) is implicitly assumed in (2.4), and
property (iii) in (2.5).

Conditions (2.4), (2.5) are, it seems, the only conditions which must, in purely mechanic-
al theory, satisfy a priori, every constitutive operator. If we postulate further properties
of the operator, then we are led to individualization of classes of simple materials. Studies
concerning continuity of §g by taking into account (2.5) and a suitable choice of
topology in the set of deformation paths, lead, for instance, to materials with fading
memory ([8,9, 10, 11], and others). Considering the invariance of §x with respect to
exchanges of local reference configuration, NoLL [4, 7] achieved a fundamental clas-
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sification of simple materials. The present paper is devoted to a broader conception of
invariance of constitutive operators.
Consider all the following physical situations:

(2.9) S#g and  Flf] = Bklg].

We shall say that a material does not feel any difference between twe distinct deformation
paths. Let us introduce an equivalence relation @ < Dom g x DomJk, defined by:

(2.10) feg <= Blf] = Blsgl.
This equivalence relation decomposes a domain of an operator into a set of cosets
Dom Jx/@, which are level sets for g, [12].

In elaborating and presenting this work, we were guided by the following conviction:
assumptions about level sets of a constitutive operator constitute the primitive and most
Jfundamental information concerning @ material. The individualization of distinct classes
of materials should begin with a description of level sets —i.e., sets of such, differing
from each other, deformation paths which lead to the same final value of stresses.

Information about level sets is usually hidden in the information about invariance
of an operator with respect to certain operations. For instance, formula (2.5) states that,
if there exists an orthogonal curve Q € & such that Q(0) = 1 and f = Qg, then f, g belong
to the same level set. This is a universal property of all constitutive operators; of course,
we shall be interested in more special properties. With a view to discovering the nature
of level sets in experiments, we proceed, in general, as follows. Choose a process f, say
a one-dimensional tension test with constant velocity, or a class of processes 2, say cyclic
tests. Further, we define a class /A of operations of exchange processes — for instance,
accelaration or retardation, the change of frequency and amplitude of cycles, super-
position of prestrain, change of principal directions of deformations, and so forth. Taking
a process f and an operation y, we arrive at a new process; denote it by the symbol fay.
We compare the response of the material on f as well as on fay.

To precise this idea, we introduce the following set of mappings:

(2.11) I'={y: o - o|Domy = o}.

A composition of mappings v, d € I' is a mapping yodel. Of course, (o d)oe =
= yo(do¢). Thus I' is a semigroup [13]. The result of the operation y €I’ on fe &
we agreed to denote by fay € o, f=(y o d) = (fay)+é.

As a matter of fact, we are always dealing with subclasses of deformation paths. Firstly,
the domain of the constitutive operator is always a subset of &/. In fact, the structure
itself of §x can restrict the domain of its action — for instance, in the case of a viscous
Newtonian fluid one may accept only continuous and differentiable deformation paths.
However, even when the formal domain of the operator §x is the entire set &/ —as is
the case for elastic materials — in reality it is reasonable to consider it on a certain class
of deformation paths only. This class can be defined a priori by conditions of the type
which restrict the magnitude of deformations, the magnitude of stretching, and so on,
or, a posteriori by conditions of the type restricting the mean pressure (positive pressure
in fluid), the stress deviator modulus (Huber-Mises yield condition), their combinations
(models of soil media), and so forth. Secondly, in numerous situations we are interested
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only in a certain class of deformation paths — for instance, plane flow. Finally, we make
experiments on subclasses 2 < o only.

Let 2 c o and Zxy = {fe H|f = g+y for a certain g € Z}. In addition to I, we
introduce
(2.12) I'g={yel| 2xy c 2}.

It is obvious that this is a subsemigroup in I

We can now introduce the main object of this work.

DEFINITION 1. An insensitivity semigroup of a material relative to the reference
configuration K, a class of deformation paths 9 < Dom@x and a subsemigroup of the
exchange of deformation paths A < I'emgyg is a semigroup:

(2.13) K, 2,4) = {yeA|Fx[/*y] = k[f] (foreveryfe 2}
Then the condition I'gs = I'pom gy is satisfied by Z a semigroup
(2.14) Q9 = 2K, 2,1s)

is called an insensitivity semigroup of a material relative to the configuration K and the
class 9. A semigroup

(2.15) Qx = Qx, Dom §

is called a specific insensitivity semigroup of a material relative to the configuration K.
The name introduced is correct, since for every y, § e 2(K, 2, A) we have yod e
eQK, 2, A).
Every statement about insensitivity semigroups is a certain implicit statement con-
cerning level sets. Notice that for every f € Dom §x

(216) f!k.Q(K,f, PD“"‘EK) < Dom 3]{

is a level set represented by the deformation path f. In fact, the semigroup I'pom x> DY
definition, is transitive on Dom §x — i.e., for every f, g € Dom Jk there exists ¥ € I'pom gy
such that g = fx*y; if ¢ runs over 2(K, f, I'bom x)» then fxy runs over the whole level set
containing f.

In what follows, we shall be interested mainly in insensitivity semigroups of the type
£, 5. Every such semigroup contains identity on 9. The condition which defines Qk, &
can be stated somewhat differently. Denote by M the set of all constitutive operators
with a common domain Dom k. Every mapping ¥ € I'bom g generates a new mapping

(2.17) Fx - Fxoy,

where, of course, (ko y)[f] = Fx[f*y]. Thus a condition in (2.13) for 2 g can be
stated in the form;

(2.18) Froy =%k on 9.

We see that the operator g is to be a fixed point in M with respect to the semigroup
Qk, . In other words: Jx is to be invariant with respect to y € 2, g.

The function £ is defined on the triple Cartesian product of the family of sub-
semigroups of the semigroup I, of the family of all subsets of the domain of the operator
DomJx, and of the set of all local configurations. We may study properties of £2 from the
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view-point of algebraic structure of those sets. We confine our attention to one theorem

only.
Let P be a non-singular tensor which transforms a local configuration K into a local
configuration PK. Let us introduce the following notation:

PAP~! = {6 e I'| there exists a y € A, such that f*é = [(fP)xy]P~* for every f € o/},
PP-! = {g € | there exists a f € Z, such that g = fP~'}.

THEOREM 1
(2.19) QFPK, 2P ,PAP™Y) = PQ(K, 2, )P},
in particular,
(2.19) Oxp = PP,
(2.20) Aycd, = Q2K,2,4) c2K,2,.1,),
(2.21) D, c2, = 2K,9,,4) > 2K, 2,,.1).

Proof. The first formula follows from the identity

(222) Fex[/P'] = ] = Fxlf*¥] = Fex [(f*»)P~'] = Fex [((fP))sy)P 1],

for every fe 2 and every y € (K, 2, A). The second formula is a particular case of
the first one, since due to (2.7)

(Dom F)P~! = Dom Fx, PIoomsP ' = I'bom -

The third and fourth formulae are obvious. Q.E.D.
If all operations of the semigroup A commute with the right-hand side tensor con-
traction, and if 2 is stable with respect to P — i.e., when

(2.23) (AP = (fP)xy, IP7' =9

— then the insensitivity semigroup relative to /1 is independent of the reference configu-
ration

(2.197) QPK, 2, 1) = 2K, 2, 1).

The specific insensitivity semigroup £k is always nonempty. What is more, it is even too
rich, since it contains previously mentioned operations of the left-hand side contraction
with orthogonal curves Q € &/, which give no information about a material. That can be
avoided in the way described in paragraph 4. There arise two questions:

1. Do there exist materials with the trivial insensitivity specific semigroup (i.e., composed
of operations of multiplication by Q € &, Q(0) = 1)?

2. Do there exist materials with the maximal specific insensitivity semigroup (i.e.,
QK = I Dom %K)?

THEOREM 2. If there exists a configuration K such that Qx = I'bom B then p = I'bompy,
Jor every configuration L. This takes place iff (if and only if).

(2.24) T=al, a=alX)
for all K and all fe Dom §k.
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P roof. The first statement follows from (2.19) and (2.7). Necessity (2.24) is proved
as follows. If 2k = I'bomgy, then the domain Dom@x is the single level set, since

I'pom gy acts inside it transitively. Thus Fk[f] = G = const. From the principle of ma-

terial objectivity (2.5), we obtain G = RGR” for every orthogonal tensor R, and this
means that G = al. Q.E.D.

A hypothetic, completely insensitive material (2.24) would be a fluid which would
not transfer shear stresses, and could exist only for strictly defined (at a particle X') pressure
value. This material is valued by specialists dealing with closed crack, they prefer to fill
up these cracks with this material rather than real fluids or gases.

Remark 1. On programming experiments and analysing their results, very often
not the operator x itself is of interest to us but rather different operators generated by
it — for instance,

(2.25) tr §k, dev Fx, etc.

Here, tr denotes the operation of taking the trace, and dev stands for the operation of
taking the deviator of a symmetric tensor.
For anisotropic materials, we may be interested in operations of the type

(2.26) K[f] = ¢@[f], Ly, ..., L),

where ¢ is the orthogonal invariant of the arguments indicated, and L,, ..., L, is a system
of tensors that define the group of material symmetry [14]. For instance, for transversally
isotropic material L, = a ® a, where a is the versor of the symmetry axis, and we
may be interested in stress in the direction a

(2.27) a §x([f]a.

As an example of a more complicated operator may serve stress work done along the
deformation path f. It is a functional W on Dom{x defined by

[}
(2.28) wifl = | «{@lf)DG@)}dr,
-00
where f.(s) = f(v+5), T € (—c0, 1], and D(7) is the stretching tensor at the instant T,
corresponding to the path f; in accordance with a known formula.

For all such operators the concept of an insensitivity semigroup — defined by the
exchange of Gk, in definition 1, into the operator under consideration — is resonable
and useful. For operators (2.25), and, in general, for every operator of the type ao Jx,
where g is an arbitrary function defined on the set of symmetric tensors, we shall have

(2.29) Q.K,2,4) > 2K, 9, A)

— le., performing an additional operation on the operator §k, we do not diminish
the insensitivity semigroup. The first of the operators (2.25) provides numerous examples
of situations in which £, will be essentially a wider semigroup than £.

Remark 2. The concept of the insensitivity semigroup, for greater clarity stated
above for a purely mechanical theory of simple materials, is particularly significant for
the theory of not purely mechanical, and for materials which are not-simple. Since then,
we deal with constitutive operators of several variables

(230) T= ih([fl! ---!fN];
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where f; are: deformation gradient, temperature and its gradient, other mechanical fields
and their gradients, internal parameters describing a structure, etc. Thus there arises
a possibility of an exchange operation of the type

(2.31) Winornshil) = Uil isines s -oosellininnen il

A description of insensitivity to exchanges of this type is the correct manner in which
to state what are called temperature-deformation analogies, and others.

3. Representation theorem

Investigation of the insensitivity semigroup of a given constitutive operator is, in
general, not too difficult, and sometimes even trivial. For instance, for an elastic material
the insensitivity semigroup comprises all the exchanges of deformation paths which do
not influence the final value of deformation —ie., 2k > {y € I'domgy |(/*)(0) = f(0)

for every fe Dom@g}. Of course, this property may serve as a definition of the elastic
material (in the Cauchy sense). For isotropic, elastic material. referred to an unaltered
configuration, it suffices to assume a weaker property Uy, (0) = Ug(0), where U, is the
stretch tensor corresponding to f. For a Newtonian incompressible viscous fluid, it
suffices to take Dy, (#) = Dg(f). For more complicated known operators — for instance,
those in the theory of “visco-elasticity” and “visco-plasticity” — the situation is, in
general, much more involved.

The aim of the theory of materials consists, however, not so much in analysis of existing
constitutive equations as in elaborating a methodology to enable us to derive constitutive
equations based on a “technologicdl card” of the constitutive operator — a list of its fun-
damental properties found in a mechanical macroexperiment. From this point of view.
the following question possesses a fundamental meaning:

What conditions, in the form of a constitutive operator, do inclusion of a subsemi-
group of mappings of the domain of an operator imposed, in advance, on its insensitivity
semigroup? We shall give an answer to this question for the most important case, viz.,
for the semigroup 2% 5.

As frequently happens, it is simpler to pass to a more general language. Take, therefore,
the operator

(3.1) 2:2-5T, Domg=2.

We assume nothing special either about the operator £ or the sets 2, T; they should,
however, posses sufficiently rich structure in order that the subsequent considerations
may not become trivial (€ # const, 2 contains more than a single element, and so on).
Denote

(3.2) I={y:2 - 2 Domy = ?}
and introduce the insensitivity semigroup of the operator
(3.3) Q={yell|goy = g}.

We give to the question asked above greater precision as follows: determine all operators
£ that satisfy the condition 2 > A — i.e., the following condition

(3.4) foy=0 forevery yed,
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where A is a subsemigroup in Il given in advance. This means that we are concerned
with “general solutions” of some functional equations. We present an algorithm of finding
such solutions based on the notions of /-orbit and /-separator. Similar, but weaker,
algorithms have been used, explicitly or implicitly, in all problems of this kind (cf. [15,
16, 17)). An essential difficulty, in the present case, is implied by the fact that we are
considering invariance with respect to a poor algebraic structure — semigroup.

Begin with a still more general situation. Let be given an equivalence relation E <
< 2P x 2. Consider the condition:

(3.5 2la] = 2[p] if aEb
for all @, b € 2. Let us introduce the canonical mapping
(3.6) 0: 2 2JE

which assigns to every element a € # E-coset (an equivalence class with respect to E),
to which it belongs, a € 6(a).

Condition (3.5) simply means that each E-coset is contained in some level set of
the operator £ —i.e., the partition into level sets is not finer than the partition into
E-cosets. From this observation follows, at once, a “solution” of the functional equation

3.5):
operator £ satisfies the condition (3.5) iff there exists an operator §: 2/E -T such that
3.7 £ =Go0.

Let us notice that E-cosets coincide with level sets —i.e., E = C if & is an injection.

It is not easy, in general, to pass to the operator & since this passage requires a con-
struction of some calculating apparatus on cosets. If one can find a suitable auxiliary set
# such that E-cosets may be identified with elements of .# — i.e., if there exists a bijection

(3.8) t: PJE - M

— then, by introducing u = to 0 and operator T = & ot~', we write “solution” (3.7)
of the Eq. (3.5) in an equivalent form:

(3.9) 2=ZFou.

Finally, when neither (3.7) nor (3.9) is suitable, we proceed as follows.
We introduce an arbitrary mapping ¢ € Il which satisfies the following conditions:

ax? = bs? iff daEb,
'!90 ’l? = 39.

Let us call every such mapping E-separator. The existence of E-separator is, like the
existence of the set .#, based on the axiom of choice. In accordance with it, there exists
a set of representatives for E-cosets, & — #. Let A be an arbitrary E-coset. Taking
e:P?|E - & defined by the formula e(A) = A n &, we obtain E-separator # = eof.
Every set of representatives & designates its own E-separator #, and inversely. Now, if
the formula (3.7) holds, then 2 = @06 = 20 3. Inversely, if £ = 20 then 8 = So0,
where € = £ oe. Our result can be stated int he equivalent form:

(3.10)



128 J. RYCHLEWSKI

Operator @ satisfies the condition (3.5) iff every E-separator & belongs to its insensitivity
semigroup — i.e., when

@3.11) g=280d.

Let us pass to the situation described by condition (3.4), where the information con-
cerning level sets of the operator is hidden in its invariance with respect to some semigroup
A < I1I. We reduce it to the situation (3.5) by introducing a suitable equivalence relation.
We now give a definition which is essential in all the subsequent results stated as theorems
I-VIII of Part II

First, let us take the following relation in 2 x 2:

(3.12) Es= {(a,b)e Px 2| thereexistsa y ell, such that a = bsy}.

(3.13) Es= {(a,b)e #x P| thereexists a y €ll, such that asy = b}.

il

Since, by hypothesis, the semigroup <1 possesses an identity element on %, then both
relations are reflexive. It is also obvious that both relations are transitive, but neither
of them is symmetric in a general case.

We introduce the relation

e - —
(314) EA = EA (v EA.
This is a tolerancy(') — i.e., a reflexive and symmetric relation. In a general case, ‘E"A

is not transitive. Let us introduce the minimal reflexive, symmetric and transitive relation

containing EA. That will be what is called, the transitive closure of a tolerancy [19],
3 — —
(3.15) Es=EsvEivu .. .VvEju ...

This relation we shall call A-equivalence. In other words, we are assuming the following
definition:

DEFINITION 2. Elements a,b e P are equivalent with respect lo the semigroup with
identity A <11, or briefly, A-equivalent, if

(3.16) aE 4b.

Instead of aE,b, we shall write, in what follows, a/b.
An explicit form of the definition reads: aAb; this means, according to (3.15), that
for the pair (a,b) there exists a finite sequence c,, ...,cy € 2P, called A-comnecting
sequence, such that

(3.17) ¢, =a, cy=20b,
(3.18) forevery i=1,..,N—=1, the pair (ci, cis1) 15

() This concept was introduced by Zeeman [18]. Powers of tolerancy are defined as follows:

: — —
EZ = {(a, b)Ithere exists a ¢ € 2, such that aE ,c and cEab}, ...
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A-connected — i.e., there exists y € /A such that
Ci = Cip1%Y O Ci%) = Ciyq.
Cosets with respect to E; —i.e., elements of #/E, — are called A-orbits(*). Every
E s-separator is called A-separator. By using definition 2 and the foregoing statements,
we obtain the following “solution” of the problem posed at the outset.
THEOREM 3. A given subsemigroup A < Il is a part of the insensitivity semigroup £
of the operator 8: P - T —i.e.,

(3.19) Llasy] = 8ld]

Jor every ae P, y € A, iff there exists a set # and a mapping u:P — M with the property
(3.20) wl@ = u®) iff adb,

and an operator % : M — T such that

(3.21) 8=Tou

Another formulation: A = Q iff every A-separator & belongs to 2 — i.e.,

(3.22) £=2Q0od.

Proof. The only statement that requires to be proved is the equivalence: 4 = £,
iff for every a, b, e &

(3.23) gla] = g[B] if adb.

Suppose A < 0. The condition aAb means, according to (3.15), that there exits a
/A-connecting sequence ¢, ..., cy € 2. It now follows from (3.17), (3.18), (3.19) that

(3.24) Lla] = gle,] = gles] = ... = Llen] = £[B].

Inversely, suppose that the implication (3.23) holds. Then for arbitrary ae & and y € 4
we have ad(a*y); hence follows (3.19) —i.e., A = Q. Thus, we have reduced the con-
dition of invariance with respect to A, (3.4), to the condition of constancy (3.5) on cosets
of a certain equivalence relation. Therefore we may apply formulae (3.9), (3.11). Q.E.D.

“Solutions” (3.21), (3.22) will be called, in what follows, the representation formulae.
They provide, as always in such situations, a manner of procedure only. In every concrete
situation, the heart of the matter and the essence of the difficulty, for given 2, 2, 4,
consists in the construction of the pair (#, u), or A-separator 9.

4. Exact insensitivity semigroups

An attempt to get rid of “dispensable” operations of a rotating deformation path in
the past is quite troublesome and, therefore, it was not performed before the introduction
of the definition of an insensitivity semigroup.

(*) A corresponding construction for groups of mappings is well known [28]. When A is a group,
the[lEA =§A =‘_B’A =E4.

9 Arch. Mech. Stos. nr 1/74
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Denote the set of those operations by @,
(41) @ = {pel'| there exists an orthogonal curve Q € &, Q(0) =1,
such that fxp = Qf for every f e o/}.

This is a groupin the semigroup I". In agreement with the principle of material objectivity (2.5)
4.2) Q@ c %,

for every material and every reference configuration.
Let us decompose every deformation path finto rotation R, and stretch Uy, /' = R,Uy.
Take the operation # € I" defined by

4.3) (fx7) (s) = RAO)Ug(s) »

where o = s «7 is the set of deformation paths with constant rotation. It is obvious,
that: (i) fxx = gxn iffl fQg (i.e., f = Qg for some Q(s), Q(0) = 1); (i) womw = w—i.e.,
it is (@-separator. According to the representation theorem (3.22), (4.2) is equivalent to

4.9 Ok = Br o,
where Dom §x = Dom Fx n .

In this way we have used that part of the information contained in the principle of
material objectivity which concerns level sets of the constitutive operator(®).

It follows from the formula obtained, that in general, we might restrict our consider-
ations of invariance to the cutoff operator &, and to study the exchanges from I';
only — i.e., exchanges of deformation paths with constant rotation into paths with constant
rotation.

DEFINITION 3. By a precise insensitivity semigroup of a material we mean every semi-
group QK, 2, A) if 9 = Dom §x = . By an exact insensitivity semigroup of a material
we mean one which is isomorphic with a certain precise insensitivity semigroup of that
material.

Precise insensitivity semigroups are inconvenient in use. Numerous useful operations —
for instance, the operations of multiplication of deformation path by a constant non-
orthogonal tensor — do not enter into those semigroups since they lead out from .

A study of the exactness of insensitivity semigroups requires, in the general case, quite
complicated algebraic constructions. None of the natural equivalence relations in I,
connected with the projection = — for instance, the following relations E,, E,, E;, E4:

1. ¥E, d iff there exists a p e @, such that y = dop,

2. yE, d iff there exists a p e @, such that y = go 4,

3. yE38 iff yor = dom,

4, yE46 iff MoYyo =To 60?‘6,

— are not two-sided stable relations [13], and none of them make it possible to construct
a natural factor semigroup, dual to the partition of o into Q-orbits.

(*) That principle contains, of course, additional information which does not concern level sets:
kRO Us(s)] = Re(O)Fx [Ur(s)IRT (0)
which, for the present, will not be needed.
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5. Configuration insensitivity (Noll’s isotropy group)

A specially important type of insensitivity of material was under another name and
in somewhat different context, introduced and studied by Norr [4, 20]. His idea was to
study equivalence relations in a set of local reference configurations of a material, intro-
duced in the following way: local configurations K, K are equivalent if §g = ¥x and
0% = 0k.One can say that K and K are indistinguishable in a mechanical macroexperiment,
since only stresses T, deformations f, and density p are the quantities measured in such
experiments. Since K=PK for P = KK-!, then the central notion of Noll’s theory is
an isotropy group of a material gx relative to the local configuration K, introduced by the
formula:

(5.1) gx = {PeA| Fex = §x and gpk = ox} = {Pe¥| ek = Tk},

where % is a group of unimodular tensors.

Let us consider this fundamental idea from our point of view. According to formula
(2.4), the exchange of configurations K — PK is equivalent to the exchange f — fP, where
detP = 1 —i.e., equivalent to the superposition of prestrain P, which does not change
the density (of shear prestrain) on any deformation path f.

Let us introduce a mapping of the group % into the semigroup of all exchanges of
deformation paths I,

(5.2) 1% -T, fxx(P)=fP.

Iff is obvious, that % is isomorphic to its image (%) (in fact, (P, P;) = x(P,) o 2(P-);
x(P,) = x(P,) iff P, = P,). The formula (5.1) may be written in the equivalent form:

(5.3) x(gx) = {P e | Fxoz(P) = Fk}.
In other words,
(5.4) 2(gx) = 2(K, Dom gx, x(%)),

— i.e., Noll’s isotropy group of a material is (isomorphic to) a special type of insensitivity
semigroup. The group yx(gg) can be called a configuration insensitivity group of a material
relative to K. Then the name of the “isotropy group” of a material relative to K will be
suitable for the orthogonal part of y(gx).

A comprehensive description of groups gx has been developed in the papers, [4, 20,
21, 22, 23]. Those results constitute an important part of the description of insensitivity
semigroups of a material. Note that Noll’s theorem: gpg = PgxP~! is but a particular
case of (2.19).

For illustration of the representation theorem (3.21), we give a slightly modified proof
of the basic Noll’s theorem concerning simple fluids.

A simple fluid is, by definition, a simple material for which reference configurations
with the same density are indistinguishable experimentally. In others words, a simple
fluid is defined by the equality:

(5.5) Q(K, Dom §x, (%)) = x(¥).

g*
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It is obvious that two deformations paths f, g are y(%)-equivalent iff
(5.6) SEOUO)* = g() O], detf(0) = detg(0).
Hence y(%)-orbits in Dom §x may be identified with the pairs F{{)(s) = f(s)[/(0)]"",
o(t)/ex = detf(0). Applying the representation formula (3.21), we obtain:
(&) T = Ix[F{)(s), o(?)/exk].
Applying the polar decomposition F§}(s) = R{(s)U{(s), R{(0) = 1 and the formula
(2.5), we obtain Noll’s theorem: A simple material is a simple fluid iff
(5-8) T = Tx[UF (), o(t)/exl,
where the operator is isotropic with respect to its tensor argument.
We shall consider arbitrary configuration insensitivity groups Q(K, 2, x(%)).

If fesf —ie., fis a deformation path with constant rotation, and P € % is not an
orthogonal tensor — then, in general, /P will not be a path with constant rotation. We
introduce, therefore, a mapping

(5.9 p:I'sT;, ply)=yom

(cf. equivalence relation E; in § 4). Now y(P) o 7: o — .
LeMMA . The groups y(¥), x(%) o m are isomorphic.
Proof. First we show that

(5.10) XP)om =mo y(P)on

for every P € %, (i.e., the relations E; and E, from § 4 coincide with each other on y(%)).
In fact, let us write (5.2) in the equivalent form:

(5.11) (fP)en = [(fen)Plen

for every f € o/. This means that for every f € & we shall have

(5.12) Urp = Ugpenpp,  Ryp(0) = Rpenyp(0).

Since Uj., = Uy, then

(5.13) Ufe = [fPI"[fP] = PTfTfP = PTUP = PTU%,P = Ufreryp
and

(5.14) R.2(0) = f(OU72(0) = (f+m)(0) Uifsryp(0) = Resune(0).

By now, the theorem is obvious since, firstly,
(515) plx(®@,) o x(P2)] = 2(Py) 0 x(P2) o 7 = x(Py) o 7o x(P2) o 7w = p[x(P1)] e p[x(P2));
thus p is a homomorphic embedding y(#) in I'. Secondly, if p[y(P,)] = p[x(P2)] —ie.,

(5.16) (fP)* = (fP,)xn for every f

— then, letting f = 1 = const, we have P, = P,. Q.E.D.
THEOREM 4. Every configuration insensitivity group Q2(K, 2, x(¥)) is an exact one,

for
(5.17) Q(K, 2, y(%)on = Q(K, Dsn, y(U) o 7).
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Proof. It follows from the foregoing Lemma that the image 2(K, 2, x(%)) o 7 of the
group 2(K, 2, x(%)) under the mapping p is a group. We now show that it is a precise
group of configuration insensitivity written out on the right-hand side of the equality
(5.9).

Let x(P) € 2(K, 2, x(%)). Then for every f € 9,

(5.18) Fx[(fsm)x(1(P) o )] = Fxl(fem)s1(P)] = Fxlfon] = Fx[fon]

—ie., y(P)oneQ(K, Den, (%)~ x). Inversely, if this inclusion is fulfilled then for
every fe @

(5.19)  Fxlfsx®)] = Flfex®)xa] = Fx[f+(1(P) o )] = Fxlfe(mo x(P) o )]
= Fxlfen] = Fl/).

ie.,
x(P) e .Q(K, 2, y(%)). Q.E.D.
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