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On the accuracy of approximations of the Huber yield condition

M. ZYCZKOWSKI (KRAKOW)

It is well known that the differences between the Huber-Mises-Hencky and the Tresca-Guest
yield conditions do not exceed 13.4% when referred to the HMH condition. However, if we
consider the processes as a whole, the final differences depend on the flow rule assumed and may
be much larger. The approximation of the HMH by the TG yield condition is here considered
in the general case in two variants: combined with the Prandtl-Reuss rule of similarity of de-
viators, and with the associated flow rule. It is found that the latter case gives larger errors
and in practice the associated flow rule should be considered as a next step in approximation.

Powszechnie wiadomo, Ze réznice pomigdzy warunkami plastycznoéci Hubera-Misesa-
Hencky'ego i Treski-Guesta nie przekraczaja 13,49, gdy odnosimy je do warunku HMH,
Jednakze przy rozpatrywaniu proceséw jako calosci, koficowe réznice zaleza od przyjetego
prawa plynigcia plastycznego i moga by¢ znacznie wwkszze W pracy rozpatrywano ogblny
przypadek aproksymacji warunku HMH warunkiem TG w dwoch wariantach: przy polaczeniu
go z prawem Prandtla-Reussa podobienstwa dewiatoréw oraz przy zastosowaniu stowarzy-
szonego prawa plynigcia. W ostatnim przypadku wystepuja z reguly wigksze bledy i stosowanie
stowarzyszonego prawa plyniecia nalezy tu traktowaé jako dokonanie nastepnego kroku przy-
blizenia.

HsBecTHO, 9TO pasHMIEI MEXUTY YCTIOBHAMH IiacTHaHocTH I'ybepa-Museca-T'enxn u Tpecku-
Tecra He npepsiuaior 13,4%,, Korga orHeceM HX K yotosuio 'MIT. OgHaxo npH paccMOTpEeHHHE
MPOLIECCOB KaK IEJIoro KOHeYHEBie pPa3HMUBLI 3aBHCAT OT NPHHATOIO 3aKOHA INIACTHYECKOIO
TeUyeHHA H MOTYT ObITh 3HauHMTeIEHO Gonbimumu. B pabGore paccmMorper obImii ciryyaii armpok-
camamun yenoBua 'MIT ycnoerem TI' B nByx BapHaHTax: NMPH COCQHHEHMHM €ro C 3aKOHOM
IIpangras-Peiicca nmogobus AeBHAaTOPOB M IPHM NPHMEHEHHH acCOLMMPOBAHHOIO 3aHOHA Te-
yeHuA. B mocnemHem cilyuae BBICTYNAKOT, KaK NMPaBHIIO, Gosbllle OMMOKH H NPHMEHEHHE acco-
LHHPOBAaHHOTO 3aKOHA TEUEHHA ClIeAYeT 3[eCh TPAKTOBATh KAK CeayIolHi mwar npubmnKeHns.

1. Statement of the problem

MANY reasons are known for combining the yield condition with the associated flow
rule, expressing the normality of the plastic strain rate vector to the yield surface in the
stress space. They have been discussed by R. Misgs [9], D. C. DRUCKER [2], D. R. BLAND
[1] and others. Several experiments confirm such a conception although certain deviations
for various materials and various processes have also been observed.

An entirely different situation occurs if an approximate yield condition is used instead
of the exact one. Then the choice of a suitable flow rule should be considered from the
point of view of the approximation errors. Such a situation appears, for example, if we
replace for a perfectly plastic body-the non-linear Huber-Mises-Hencky (HMH) yield
condition, experimentally better confirmed — by a linearized one; the Tresca-Guest
(TG) yield condition is here the most typical, but certain other proposals are offered, too
(maximal deviatoric stress condition, R. Scamipt [13], D. D. IviLev [6], R. M. HAy-
THORNTHWAITE [3]).

J. A. KONIG [7] considered the problem of approximation of the HMH yield condi-
tion by the TG yield condition combined with the classical Prandtl-Reuss equations and
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with the associated flow rule. He analyzed the deflections of plastic plates and shells and
found smaller errors in the first variant of approximation. The present paper will discuss
the problem of such an approximation in a much more general way — namely whether
the process is arbitrarily prescribed in principal strains, or whether it is prescribed in
a mixed manner, some strains and some stresses (the latter case is typical for plates and
shells, where the distributions of ¢,, &;, and o5 = 0 are usually considered as given).
The errors for various directions of the strain rate vector & will be compared and mean
square errors will be evaluated. Some examples will also be given.

2. The HMH yield condition and the Prandtl-Reuss (associated) flow rule as the exact
description of the process

In order to obtain simple results using the TG yield condition in the following sections,
we confine ourselves in the paper as a whole to processes with fixed and known principal
directions. Assume the process to be prescribed in the strain space —i.e., the functions
g, = &(t), &, = &,(t) and &3 = &5(t) are given; then the stresses may be evaluated. The
problem will here be analyzed locally: for the given strain rate vector, the stress rates will
be calculated and compared.

The functions &,, &;, and &; are not independent in the case of an incompressible
body; thus we discuss (in Sec. 2 through 5) elastically compressible bodies, but the errors
of approximation will be independent of the Poisson’s ratio » and the incompressibility
may be analyzed by the limiting process.

In the equations of the similarity of the stress deviator s;; and the plastic strain rate
deviator éf; (the Prandtl-Reuss equations),

@.1) f4_4_9
5y S2 53

together with the differentiated HMH yield condition

(2.2) Sl‘;‘l +523'2+33.;'3 . 0’

we regard the total strains, their rates and the stresses as known, and seek the stress rates
&U' Substitute

. i 5 | 3 3 1
(2.3) e =& =¢— E["l""(ﬂ'z +03))], s = -3'(20'1—0'2”“53%

and similar relations for é2, é£, s,, and 53, and solve the system of three equations obtained,
linear with respect to &,, &,, and ;. After some simple but lengthy transformations
(and making use of the original HMH yield condition), we obtain:
_O.'L = 2&1‘—:‘:2_&3"'2"(&1 +4é2+4é3) l - 2

= 6(1+%) (1-2%) + S vyad (20

+(0y,—0,)* &, +(0y —03)% ],

(2.4)

where o, denotes the yield point in simple tension. The formulas for o, and &; may be
here obtained by cyclic interchange of the suffixes.
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The formulas derived express stress rates in terms of three strain rates and of three
stresses. To reduce this large number of independent variables, we confine ourselves to
¢, > 0, > 0, and introduce at first the Lode parameter for stresses:

20,—0,—0
2.5) po="21"23  _1<p<l
Ul“‘ga

Thus we may write:

@6) P

- 14
B (6,=03), 0;—03= 2”" (0, —03);

the HMH yield condition takes the form:
2

0 —03 = ———
@7 1m0 = o,

and instead of (2. 4) we obtain:

& 2
c*; g = (61+Ez+£3)— &+ 3:;, [81 s+l 3 S8y +E— 283)]
2.8) —&“———2” Gotbtit2i e o pa 1B o +é)]
AR =R e S T B i
% S RS Le(-2e+ bt 85)|,
G T—op L T ra s &+ 3+ &—é3+ 1T é&TE;

G being the Kirchhoff modulus. All the three formulas are given here, since g, is unsym-
metrical with respect to the suffixes and the symmetry of notation is lost.

Further reduction of the number of variables may be obtained by the introduction
of spherical coordinates in the space of strain rates. We introduce three parameters &, g,
and ¥, such that
(2.9 & = esindsing, &, = écos?, &; = ésindcosg.
These parameters are introduced in such a way as to distinguish &,, corresponding to the
intermediate stress u, Finally, (2.8) will be rewritten in the form:

&1 =
Gi i 2 ———(sindsinp +sinfcos p +cos#) —cos P
+ i sinsin —cost?+£—(sinﬂsin +cos?—2sindcosp)
6'2 - 2y - = "
(2.10) = e e, (sindsingp +sindcosp +cos#) +2cos P
+ %[—sinﬁsinqu+sin0coscp+ %(sinﬂsinq:—Zcosﬁ +sim9cosg:)],
o3 1 o s ;
G = —lj(smﬁsmcp+smz?cosqa+cosﬁ)—cose9

+

[cosﬂ smﬂ'cosga+ ” (—2sin@sing +cosd +sin ﬁcos«p)]

The formulas (2. 10) w1ll be treated as exact, and the approximation errors will be evaluated
with respect to them.

5%
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The range of validity of the formulas derived is limited by the equations of the neutral
process. This process may be determined by the differentiated yield condition (2.2) in
which §,, §,, and §, are calculated from Hooke’s law:

(2.11) 51(&1—&m) +52(82—Em) +53(83— &) = 0.
The terms with the mean strain rate é, vanish. Introducing the Lode parameter u, and
substituting

@12) s = -3_6’“‘ @-0), sm=E@-0), s=- 32‘“ (0,—03),
we obtain:

(2.13) B—p)e+2u &,—(B+p)é; =0,

or, in spherical coordinates (2.9):

(2.14) tgd 2o

" B+pa)cosg—(B—p,)sing |
The regions bounded by (2.14) will be shown later, together with the bounds following
from the TG yield condition.

3. The first variant of approximation: the TG yield condition with the similarity of deviators
as the flow rule

Consider now the combination of the Tresca-Guest yield condition and the Prandtl-
Reuss equations. Under the assumption of ¢, > o, > 05, we write the yield condition
in the form:

@G.1) 0,—05 = 0,

and combine it with (2.1). Substitution of (2.3) and differentiation of (3.1) with respect
to the time leads to the system of three equations linear in ¢, ;, and &;. Its solution
may be written as follows:

4 g S od B 2 . = 2a. —

e- % = 1_12,, (& +€z+€3)_52+—%—(8|—£3) [1—4-(0‘U U’)],
(3.2 : s , . )o

G W o 2 [ e

G 1-2 (8, + &+ £3)+2¢, 3 (&, 33)[] = = ]

Introducing the Lode parameter u,, (2.5), and the spherical coordinates in the strain
rate space, (2.9), we rewrite (3.2) in the form:

{.:—3 = —g,% = ﬁ(sim?sintp—sinﬂcosqp+cosﬁ)—cosz9+?sim?(sinq:-cosq;),
G3
0'2 21“1’

Wy oo i : ;
G: = m(smﬁsmqp +sindcos@ +cosd) +2cosd— = sin#(sinp—cos ).

The range of validity of these formulas is limited by the equations of the neutral
process, which here take the form:
3.4 g, —&3 = 0.
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or
. 7 5
(3.5) sing—cosp =0, ¢= T and ¢= 7"

J
4
is independent of # and of u . We regard it as an approximation of the region bounded
by (2.14); they coincide for u, = 0, but for other values of y, the differences may be
significant, Fig. 1.

Figure 1 contains also the lines describing simple processes: simple loading (pro-
portional increase of the components of the strain deviator) and simple unloading. For

For active processes (3.3) (loading), we have &, —£; > 0, hence — < ¢ < wg-:s. This region
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simple processes, the Lode parameters are equal (at least according to the Prandtl-Reuss
equations):

(3.6) Po = = Pl = —F—1—;
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hence, introducing the spherical coordinates (2.9),
_ 2
(I +u,)sing+(1—u Ycosep
It is seen from Fig. 1 that the simple processes are active (loading) or passive (unloading)
in the same regions according to the two yield conditions used.

3.7 tgd

4. The second variant of approximation; the TG yield condition with the associated flow rule

Combine now the approximate yield condition (3.1) with the associated flow rule.
The normality of the vector of plastic flow gives:

@.1) = -, =0.

These equations with substituted (2.3) and together with differentiated (3.1) determine
the stress rates:

a a 1 o oo :

G g ST et h i,
4.2) :

o, X e e %

F = T:‘z';(é'; +82+83)+282.

These equations are simpler than (3.2), but the errors with respect to (2.8) will as
a rule be larger. Introducing (2.5) and (2.9), we rewrite (4.2) in the form:

% = % = —1—_!—2—1’— (sin?sing +sindcosg +cos#) —cos P,
4.3) ;

o, .. ;

T = —l-_—g(smﬂmmp+sm:9cosw +cos#)+2cos .

The range of validity of (4.3) is & < ¢ < - as derived in Sec. 3.

5. Analysis of the approximation errors

Denote the differences between (3.3) and the exact formulas (2.10) by 4;;, and between
(4.3) and (2.10) by 4;,, j = 1, 2, 3. Several terms are equal and vanish in the differences;
we obtain for the similarity of deviators:

Jo 3 T be (sindsi =4
Ay = { 3_+p—3[Sinﬂsm¢—cosﬂ+ 3 Gindsing +cosd 25'"19(:05@)]
+ —;— Sinﬂ(sintp——COS‘P)}F‘n

(5.1) sy = {— ﬁ[ —sindsing +sindcosp+ f%'— (sindsing—2cos? + simﬁ‘cos:p):l

= —i— sind(sin@ — cos qu)} Ha s
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Asg = =— 3—_i_:%j-licc::sa?—sim?ccnsep + —’t;,—' (—2sin?sin ¢ +cos#+sin§cosw)]

+ % sind(sinp—cos tp)} Has

and for the associated flow rule:

HAig= — —3-12; sindsing— cost+ Lo (sme?smnp +cosé— 251m9cosrp)]p,,
(5.2) 4;,=— %}- —sindsing +51m§‘c05ep+ (sme?smcp 2cos? +smt9cosqo):|y,,
A3 = — 3-3;33 cos?— S|m5‘cos<p+ ? (—2sin#sing +cosz?+smt9cos<p)]y,

The formulas for 4,, and 4, may be obtained from the formulas for 4, and 4,, by the
interchange of sing and cosg with simultaneous change of the sign of x,; thus in what
follows we analyze 4, and 4, only.

The analysis will be carried out in the regions in which the processes are active accord-
ing to the two yield conditions used, Fig. 1. Within the regions estimated as active by
one and as passive by the other yield condition, the whole approximation is doubiful
in both variants.

In order to determine the regions of larger |4;,| and of larger [4;,], we equate the
absolute values of these errors, separately for j = 1 and for j = 2. The equations 4;; =
= d;, give ¢ = % and ¢ = %:z, i.e., the lines coinciding with the boundary of the region
considered. Thus the separation lines sought for will be obtained from the equations
Aj, = —A4;,. For 4, we have:

12—4u,
5.3 = =
-3 89, (9 +4p,— p3)sing +(3—8u, +pi)cosp ’
and for 4,
5.4 tgd, = = .
(3 8% = 3—2u,— pd)sing— 3+ 2u,— u2)cosg
The separation lines are presented in Fig. 2 for 4, (4, = 1 and g, = —1), and in

Fig. 3 for 4,. It is seen that the law of similarity of deviators is slightly better if 4, is
taken into account, and is much better if we discuss 4,. In Fig. 4, the relation (5.4) is
presented as a function joining three variables: ¢, # and u .

To obtain more synthetic results, we calculate and compare the mean square deviations

for (5.1) and (5.2). These deviations 4; will be defined as follows:

n 5m (4
. 1
(5.5) 4; = —\ sinddd \ Ai(p, Pdyp ;

af4
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in the interest of simplicity, the integration is here taken over the surface of the half-sphere
—Z— <@< %u, corresponding to the regions of active processes as described
by the TG yield condition. The following general formula for the definite integral appear-
ing in (5.5) may be derived:

0<¥<m,

n S5xj4
(5.6) 317‘—5 sinddd S (A,sindsinp+A4,cos ¥+ A;sindcosp)’dp = %(Af + A%+ A43).
o n/4

As a matter of fact, the integrals appearing in (5.5) are of the type (5.6): the constants
A; may be found comparing (5.5) with (5.1) and (5.2). Hence for the subsequent mean

square errors we obtain:

i (3_#6) I.ru‘a“/-f 1 2V§,ﬂ3
5.? 4_’1“ . ey A e B e et o1
e 3V3 Y3+ T 333w
(5.8) Byg = dsq = m

33

Figure 5 presents the ratios 4;,/4;, as the functions of x . These ratios are, as a rule,
much less than unity, showing clearly that the low rule expressing the similarity of deviators

Ads/Ba
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FiG. 5.

is, on the average, more exact. Even within the small intervals, where the calculated ratios
4;5/4;4 are larger than unity (shown by the thick lines in Fig. 5), the associated flow rule
can not be regarded as more exact: for example, this occurs for 4, in the vicinity of u, =
= —1, but Fig. 2b shows that the area of integration in which 4, is larger than 4,,
should be much smaller than the approximately assumed half-sphere (in the lowest part
of Fig. 2b the processes are passive according to the HMH yield condition and the ap-
proximation is practically inadmissible).
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6. Differential equations for the Lode parameter u,

Another synthetic comparison of the accuracy of the approximations discussed may be
achieved by means of the derivation of the differential equations for u . The formulas
obtained for ¢; make it possible to determine the rate of x4 . The differentiation of (2.5)
gives:
2&2—&1—&3‘ . (20;—0,—03) (6, —03)

6.1 1y =

@D # 0, —0; (0, —03)*

Substituting here (2.8), we obtain for the HMH yield condition:
1.0, — ce B

(6.2) B2t = V3 (ue =) i =),

where u; denotes the Lode parameter for the strain rates. Similar differential equations
based on the TG yield condition are:
With the Prandtl-Reuss flow rule, (3.2) substituted:

i 0 o
63) E = 2= )G~ k),
and with the associated flow rule, (4.2) substituted;
(6.9) B = (e —iy).

The similarity of (6.2) and (6.3) is evident. For u; = const, the solutions in both cases
are u, = u; = const (simple loading). On the other hand this solution does not in general
satisfy (6.4) — the differences with respect to (6.2) are here essential.

7. Example of a process prescribed in a mixed manner

An interesting comparison and discussion will be connected with a plate subject to
prescribed deformations &, = ¢,(¢) and &, = &,(¢) in its plane. Since in such a thin plate
o3 = 05(t) = 0, the whole process may be regarded as prescribed in a mixed manner.
Assume the incompressibility of material and proportional increase of the strains:

a, a,
(7.1) gy G, gy ma(x)-‘;i, es = —(L+m)a() 2,
where a(r) stands for a certain monotonically increasing function of time, and m taken

; 1 i g
from the interval —5 < m < 1 denotes a constant. This interval of m corresponds to

In the elastic range, the stresses are equal to

4 1 4
o, = 35(31 +'2_32) = '5‘1%(1 +%),

(12
4 1 4 1
Gy = —3‘5(52‘4‘53:) = 'j'dao(m'i"i),
and it may be seen that o, > ¢, > a5 = 0.

Assume at first the HMH yield condition treated here as exact. Substituting (7.2)
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into this condition, we determine first the boundary value of «, separating the elastic and
the plastic range:
V3

2(1+m+m?)’
and the corresponding stresses are equal to
2+m 2m+1
= --—.—'—__ 0’0, 0‘2 = J——-—-__-_——'" _—___.-0.0
V3(l+m +m? ¥ 3(1+m+m?)
The Prandtl-Reuss equations take the form:

(13) @=a=

(7.4) o

&, —&3y = Aoy + 2 g

1783 = A0, T 5520y,

5 235
éz—ég = 262+E&2,

and are satisfied by constant values of the stresses (7.4). This stabilization of stresses will
be treated as the exact solution.

Consider now the first variant of the Tresca-Guest approximation — combined with
the flow rule (7.5). The yield condition gives here simply ¢, = ¢,, and the boundary
value of «, separating the elastic and the plastic range, equals:

w 3
(7'6) a=0= -2—(m.
The corresponding stresses are:
2m+1
(1.7) g, = 0Og, 0, = —m+2—ao.

The Eqs. (7.5) are satisfied by constant values of the stresses (7.7); thus during the whole
process the numerical differences with respect to (7.4) do not exceed 13.4%; (the largest
error corresponds to m = 0).

The second variant of approximation combines TG yield condition with the associated
flow rule, which gives here:
(7.8) & =0.

Hence the change of &, is purely elastic:
(7.9) LI B L S
since ¢, = 0; this equation determines ¢, — namely, after integration:

7.10 P auch il
( ) %2 m+2 2

This formula is valid in a certain interval of time only, as long as 0 < o; < 5. The
further part of the process depends on the value of the constant m. If —1/2 <m <0,
then o, decreases to zero and reaches this value for « = —1/(2m). This point corresponds
to the corner of the TG yield hexagon and the flow rule (7.8) is at this point no longer
valid: the stresses simply remain constant, ¢, = g, 0, = 03 = 0. If 0 < m < 1, then
0, increases to oy, reaches this value at « = 1/(2m), and then remains constant. Finally,
if m = 0, then o, = ¢,/2 = const.

2 1 _
i go+m(a—u)o, = (i +ma)o'0.
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The processes discussed are illustrated in Fig. 6, showing the motion in the plane
&, &, of the limit curves separating the regions of active and passive processes. In the first
two cases, the curves move in the direction of the radius determining the loading path
in this plane. In the third case — TG yield condition with the associated flow rule —
the curve moves initially in the direction of &; and then in the second period in the direc-

r &
0 = g 3
arcigm
FiG. 6.

tion of the radius. A certain analogy may here be observed with the concepts of kinematical
strain-hardening: the cases (a) and (b) (similarity of deviators) correspond to the ZIEGLER
hardening rule [14], whereas the case (c) corresponds to the Melan-Ishlinsky-Prager
hardening rule, [8, 5, 12] (similar motion is observed there in the stress space, and in
our case the strain space is considered).

Other graphical interpretations of the case (c) (TG yield condition with the associated
flow rule) are shown in Figs. 7 and 8. Figure 7 divides the strain plane ¢, &, into the regions
in which the stresses are constant (for simple loading processes), and the regions of varying
stresses (the vectors show then the direction of do). Figure 8 shows the trajectories of
motion (in the stress plane) of the points representing the processes which are simple
in the strain plane. These trajectories are broken lines, running to the corners. A certain
instability in the Lapunov sense may here be observed: small change of the initial condi-
tion (of the value m, for example in the vicinity of m = 0) may result in a very large change
of the trajectory. The lines, corresponding to instability, are marked by dashed lines.
So the associated flow rule eliminates the instability in Drucker’s sense, but may cause
instability of the trajectory in Lapunov’s sense.
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Compare now the numerical results of (7.10) with the result (7.4), treated as exact.
The largest error occurs for m ~ 0, positive or negative. For very small positive m and

for sufficiently large « we obtain o, = o, instead of o3 = g,/)/3 ; thus the error is 73%
from above. For very small negative m and for sufficiently large « we obtain o, =

=} o

0;=0 61=6y
Gz =Gp 05=0%
—
G=-0p
=0 ~
2]
nt
[0-0]
G1=0p
01=~Co Gp=0
gz ==0p

o0
0™ ~0p

FiG. 7. Fic. 8.

instead of a, = aro/ |/ 3— thus the error may be called 100% from below. Hence the
errors are here much larger then in the first variant of approximation (TG yield condition
with the similarity of deviators).

8. Example of the stress distribution in the cross-section of a surface structure

Consider now the purely plastic state in the cross-section of an incompressible plate
or shell. Assuming the Love-Kirchhoff hypothesis of straight normals we may write, in
principal directions:

8.1) & =%,2+A;, & =x24+4,,

where #; denote the increments of the curvatures (or the rates of the curvatures according
to the theory of plastic flow), 4; — the elongations or the rates of elongations of the
middle surface. The law of similarity of deviators and the assumption ¢; = 0 make it
possible to determine the stress distribution — namely,

I

1
oy ‘E [(2%, +25)z+ (24, + 4,)],

8.2)
o, = }; [(2x;+2,)z+ (24, +A)].

Substitution of (8.2) into the HMH yield condition (A.A. ILYusHIN [4]) determines
finally the unknown function g:

83 9= "l? [(eF +2¢, 25 +23) 2% + (2% Ay +2%3 Ay + 2 Ay +2, Ay) 2+ A+ 24,4+ Ag) ua
0

The formulas (8.2) with (8.3) substituted will be considered as exact.
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The first variant of approximation by the TG yield condition combines it with (8.2).

For example, in the case g, 2 g, = o3 = 0, we have

(8.4

a; = Og,

a;

_ @xy+x)z+Q2A,+4y)

In the neighbouring case o, = 0, 2 03 =

(8.5)

(2% %) 2+ (24, +4,)

= Cx %)z + QA +4,) OO

0, the stresses amount to:

N = By +2)z2+ @A+ 4,) 0O

2=00.

The boundary value of the variable z, separating the regions of validity of (8.4) and (8.5),
may be evaluated by equating o, and o,:

(8.6)

Z =2

11_2-2

%y — %y

Similarly, we may determine the stress distributions corresponding to other sides of the
TG yield hexagon. They are either linear or hyperbolic. Further details are given in [15].

=

=N

E a
] =
& & %@
z z i!‘ zY Fd |

Q@

b G
=
~ . 5 R
Gy I Gz
FiG. 9.

The second variant of approximation — TG yield condition with the associated flow
rule — suggested by S. M. FEYNBERG and D. C. DRUCKER, was developed by E. T. ONAT
and W. PRAGER [10, 11]. It is much simpler, since all the stress distributions are
linear, piecewise constant. In fact, the requirement of orthogonality of the strains or
strain rates to the subsequent sides of the yield hexagon is — as a rule —in contradiction
with (8.1), thus the states of stresses are represented by the corners of the hexagon only.
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Figure 9 shows an example of the strain (or strain rate) distribution and of the cor-
responding stress distributions: (a) according to HMH, (b) TG with the Prandtl-Reuss
rule of similarity of deviators, (c) TG with the associated flow rule. The last diagrams
are much simpler, but also less exact.

9. Conclusions

The approximation of the HMH yield condition with the (associated) Prandtl-Reuss
flow rule by the TG yield condition is, in general, much more exact if we retain the classical
Prandtl-Reuss equations than if we make use of the flow rule associated with the TG
yield condition. The latter procedure, which is usually simpler, should be considered
as a further, less exact step of approximation.
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