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Concentric supersonic thermal sources in a perfect gas

S. KALISKI and E. WEODARCZYK (WARSZAWA)

THE PrROBLEM of a small spherical body of perfect gas subject to the action of a concentric super-
sonic thermal wave is solved. The solution obtained is valid until the thermal wave has reached
the neighbourhood of the centre of the gas ball, in which the thermal wave is caught up by
the shock wave. The results of the present paper, together with the solution of the problem
of a subsonic thermal wave now in preparation, furnish, in addition to direct technical applica-
tion, a point of departure for the obtainment of averaged equations of laser heating and com-
pression of plasma, taking into consideration thermal and shock wave fronts and the recovery
of the fusion energy.

W pracy podano rozwiazanie dynamiki kulki gazu doskonalego, poddanego dzialaniu koncen-
trycznej naduderzeniowej fali termicznej. Rozwiazanie skonstruowano do momentu osiagnig-
cia przez fale termiczna otoczenia centrum kulki, w ktérym nastgpuje wyprzedzenie fali
termicznej przez uderzeniowa. Wyniki pracy niniejszej, facznie z przygotowywanym rozwiaza-
niem dla poduderzeniowej fali termicznej, poza ich bezpo$rednia aplikacja techniczna stanowié
beda punkt wyjscia dla konstrukeji u§rednionych réwnan laserowego nagrzewania i kompresn
plazmy przy uwzglednieniu frontéw fal termicznych i uderzeniowych oraz odzysku energii
syntezy.

B paGore faercs peleHWe AHHAMMKH IIADHKA WICAIBHOTO rasa MOABEPIHYTOro ACHCTBHIO
KOHIIEHTPHYECKO# , CBepXyIapHOii TeNJIOBOM BOMHLI. Pellerne NOCTPOeHO 1A MOMEHTA JOCTH-
YKEHHUA TENJIOBOK BOJHOM OKPECTHOCTH 1IEHTPA LIapHKa, B KOTOPOIf HACTYNaeT BhIXOA TEIIOBOMH
BOJIHBI Nepef YAAapHYI0 BoJHY. Peaynerarkl Hactosuiedl pabGoThl, COBMECTHO C NPHIOTOBJIH-
BaeMbIM DeEIIeHHEM IUIA JOYAapHOH TeIIOBOH BOJIHBI, KPOME MX HEMOCPEACTBEHHOTO TEXHH~
YECKOT0 NpHMEHEHHA GyAyT COCTAaBNATE MCXOOHYIO TOYKY [AJIA MOCTPOEHHMA YCPEAHEHHBIX
YPaBHEHHI! 1a3epPHOTO HAIPEBA M CHKATHA IUIA3MbI NIPH y4yeTe (GPOHTOB TEIUIOBBIX M YOapHBIX
BOJIH, 2 TAK)XKe BhIXOJAa 9HEPrHM CHHTE3a.

1. Introduction

REFERENCE [1, 2, 3, 4] were devoted to the problem of plane super sub and transonic
waves produced in a perfect gas, by a thermal wave moving at constant speed. In addition
to the possibility of direct application, these works furnished a simplified model consti-
tuting a point of departure for the establishment of averaged equations of laser heating
of plasma taking into account the infleunce of thermal and shock wave fronts and the
recovered fusion energy [5, 6].

The analogous problem for concentric spherical waves is still more important for
practice. For elastic waves, a number of solutions were obtained in [7, 8].

Some averaged descriptions for problems of laser heating and concentric compression
of plasma were studied in Refs. [9 10, 11, 12]. In these averaged descriptions electron-type
heat conduction [13] waves and hydrodynamic expansion waves [14, 15, 16] are considered
separately. A joint analysis of plane thermal and shock waves was performed on the
grounds of the averaged description in Refs. [5, 6].
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To realize an analogous averaged description for a concentric spherical wave we must
first construct, similarly to Refs. [2, 3, 4], solutions for a concentric spherical wave in
perfect gas — that is, a concentric super and subsonic thermal wave.

This problem will be dealt with in the present and the subsequent paper. The present
paper will be devoted to the problem of concentric supersonic spherical thermal wave,
for which we shall determine the pressure, velocity and density in function of r, ¢ and the
point at which the thermal wave is caught up by the shock wave (in the neighbourhood
of the centre of the gas ball).

In the subsequent paper, an analogous problem will be considered for a subsonic
thermal wave. Similarly to Refs. [2, 3, 4], the two works, in addition to having direct appli-
cations, provide a point of departure for the establishment of a theory of averaged laser
compression of plasma taking into consideration the influence of thermal and shock
wave fronts.

In Sec. 2, we shall formulate the fundamental equations of the problem. In Sec. 3, we
shall discuss a procedure for numerical solution of the equations, and Sec. 4 will be de-
voted to the numerical analysis of the solution.

In Sec. 5, a particular closed-form solution on the line # = ro/c will be obtained as
a means of control of the numerical solution and a theoretical contribution to the methods
for obtaining such solutions. In the concluding remarks we summarize the results.

2. The fundamental equations

Let us analyse the concentric motion of a perfect gas contained within a sphere the
initial radius of which is r,. In this body of gas a thermal wave front moves concentrically at

FiG. 1.

a constant supersonic speed c, the intensity T, being also constant (Fig. 1). This gas ball
is located in vacuum.

We shall confine ourselves to the analysis of the parameters of state of the gas connected
with the incident thermal wave and the action of the free surface of the gas. Problems of
reflection of wave fronts from the centre will not be dealt with, since they require con-
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sideration of the problem of catching up of the thermal wave by the shock wave which
takes place close to the centre.

This problem will be dealt with in a separate paper devoted to the problem of subsonic
velocity of a thermal wave. Our analysis will be made in Lagrangian coordinates r, .

The problem referred to is formulated in an unambiguous manner by the equations

@21 Q0¥ = ~(5§3)zp.,,

2.2) 1+u =( 4 )23—‘1
To\r+ul e’

(2.3) p = RTo0 = pa*?, a** = RT,,

from which we find, after some manipulations, the following quasi-linear equation

a*? u—ru,

- e el =
2.4) e (1+u,,)? Upr+20 r(r+u)(14+u,) 0

In the set of coordinates assumed, the local velocity of perturbation is

r

r+u 2 P
goa*

@s) atw) =15 =

The Eq. (2.4) can be replaced by the equivalent set of equations along the characteris-
tics

(2.6) B L 2k
p r+u

for dr = a(u,)dt and

_U_,dt

dp
— ¥ *
@27 dv =a = +2a e

for dr = —a(u,)d:.
The relations (2.6) and (2.7) take, on integrating, the finite form

v
= —pg¥% % = =
v a*Inp 2¢Jfr+ud: for dr = adt,
(2.8)

]

* * a = —adt.
v=a*lnp+2a fr+ud! for dr adt

To complete the set of Egs. (2.8) use must be made of the relations of kinematic and
dynamic continuity at the thermal wave front

(2.9) 0o¢ = @(c=v), @oc¥; = p;—Po,

where c is the velocity of the thermal wave front. This completes the formulation of the
problem.
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3. Numerical solution of the equations

The following dimensionless quantities will be introduced in the interests of simplicity:

*
R=_r‘s T=a!| Uz_ut V= * ?
ro o ro a
G.1)
i - - o
e 9001:2’ A a*’ C a* n

Fic. 2.

The solution will be found by means of the method of characteristics [17]. The characteristic
pattern is as shown in Fig. 2. The recurrence equations for particular values of the para-
meters of the problem will, in particular regions, take the form

Region I

1

i T S L SRR
M g Ay 1a

[Re 11— Ry +Akier T i1, T 1l
1
3.2) Ry, = ‘2_[Rk.l'+t +R, _ 1+ Akisr (Tip— Tipa 1) = Akm 1 (T — T 1,01,

l(Tm.x— Ti_10)

1 e TET
Vii = 7{Vt,l+1 + V.t-1.l'+'lnPi-H'l-lnP"""'+2[(R+U)x_1.

- (R-!-LU)“... 1 (Tey— Tias 1):" i
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1 Vv
[3.2] Py = CKP=-2~[V1.|+1 —Vicra—InPy,_, +lﬂPk~1.l]—[(m)Lr (Txa—=Ti_1a)

cont.

v |
i (m)k.lﬂ (Te.~ THH)]I j

V; V,
Ll £ 10 T T

Ui =Ug i + 2

U 2
A_ J= (l + ‘R')l'IPLl .

The initial values of the parameters will be found from the thermal wave front. In agree-
ment with [2] we have, bearing in mind (3.1):

c? /’ 4 ) @c
P. = ..-_.(1 ——'.' 1 = E;, s
(3.3)
V. h_.f__c(-_l_._l) Ur=0
¢ = - = » = c=0.

By applying the indicial notation in agreement with the scheme of Fig. 2, we have

C2 _..__4_
Pk_; = —2-—'(] '—V l r C_’i-)’

P
(3.4) Vix = ——é.'—ka Ux=0, Awix= Py
Ton=1"g,  Rey=1-(k=1D,

where / is the computation step.

Region II

In this region, the gas is expanded. A set of characteristic lines pass through the point
1.1 (which means that the solution is not unique). In order to make the problem unique,
we assume initial values of the parameters 4,,, = P, ;. where the index / denotes successive
natural numbers.

Within Region II the computation is carried out according to the scheme (3.2) except
for the points 2,1, for which we have

1

TP S . AL,
2, Aysr A1 (R, =Ry + 42,41 Tausi A1 Th )
1
Rz,: = E[Rz.l-i-! +R|.I+A2.!+| (T;,;-— Tz.l+1)_A:.f(T2.r_ Tl,f}]a
(3.5)
4
Vaa = Vais _2(:-R_-'|'_U)z_f+1(T2ll_Tz.f.t-]}, Pri=Py
Vo +V.
Uz = Uziig 2 Z‘L“—I (T3~ Tl,l+-l)~

A routine was prepared for the above equations for an EMC and the computation was
carried out. In agreement with Ref. [17] the second approximation was used, giving accu-
racy of order O(4?). The results are discussed in the next section.



30 S. KaLiski AND E. WLODARCZYK

4. Computation results and analysis

As indicated in the foregoing section, numerical computation was carried out by means
of an EMC. The results and the data are represented in Figs. 3, 4, 5 and 6.
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Figures 3 and 4 show the variation of the dimensionless quantities © and g(p~p) in
given sections ¢ = const of the phase plane. Figures 5 and 6 show analogous diagrams
for r = const and various #.

In addition to the numerical results (which are verified additionally in Sec. 5) we can
draw from these figures the following conclusions.

1. The values of ¢ and v at the thermal wave front remain constant similarly to the
case of the plane wave [2].

2. Directly behind the thermal wave front we have isothermal compression of the gas
the rate of which increases as the wave front approaches the centre.

3. When the thermal wave front approaches the centre, the density distribution ap-
proaches a constant distribution along r except the zone of rarefaction which is separated
by an unloading wave. The action of the free surface is in our case (in which vacuum is
assumed outside the gas ball) very rapid.

4. The velocity distribution shows similar features.

5. When the centre is approached, the increase in density and velocity behind the ther-
mal front is considerable (about 100%).

6. If the shock wave front approaches and exceeds the speed of the thermal wave
front (in numerical computations it is manifested by intersection between the characteris-
tics and the thermal wave front), the variability of v and ¢ becomes of a different type,
singularities occurring in a sufficiently small neighbourhood of the centre.

7. Zones of durable constant parameters occur in the neighbourhood of ry/2.

8. The above results lead to very promising conclusions concerning the averaging
method in connection with the remark made in p. 3 and 7.

5. A particular closed-form solution for 7 = r,/c

It will be shown that an (analytic) closed-form solution can be found for the line ¢ =
= ro/c. This will enable verification of the numerical analysis and, in addition, a method
will be obtained for constructing such solutions.

We shall start out from the equations of the problem expressed in Eulerian coordinates

£ e
e+evter'+—ev =0,
5.0
o(®+2v')+A4g’ =0,

where p = Ap, A = RT, = a*?, the dot and the prime denoting differentiation with
respect to time and r, respectively.

In the neighbourhood of the point ¢t ~ r,, the coefficient 2/r in the Egs. (5.1) can be
replaced by

2

:2) R

=~

Then, a solution of the set of equations (5.1) may be sought in the form

(5.3) 0 =og(ct+r—ro) = 0(2), v =ov(ct+r—ry) = v(2).
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Our equations become

(c+v)(ln.9)+€.!+%v =0,

(5.9) .
(c+v)9+A4(lnp) = 0,

the dot denoting now differentiation with respect to the argument. On eliminating l:ig
from (5.4), we find:

(5.5) ‘—:’;{(c +o)2—A] = 2Ag

or, on integrating and determining the integration constant from the condition
(5.6) v=9, for z- g,

the equation

a*? [ ¢? 2¢ ur—1 a**  z
where
v
(5.8) u= v—o.

From (5.4) and the condition of g = g, for # = 1, we find p:

v [ ¢ 1
(5.9) 0= E'fe_‘;‘_[au_wfin_"z)].

The condition (5.6) expresses the fact that the shock wave catches up with the thermal
wave before reaching the centre; therefore it has been written for the close neighbourhood
of the centre. In this sense, the relation (5.2) is approximate. Thus, by analogy to the
similarity theory [15] our solution preserves its sense for r or order &, that is, for

(5.10) r<2e.
Let us denote
(5.11) ¢ = na*.

Then, on the basis of the analogous solution for the thermal wave front (Ref. [2]), we
have

4
5.12 o .. i
A2 a* 2[1 ]/1 n? |

In this connection, the expression for g takes the form
2 4 2wt —1

-y [ - — ’T]

(5.13) 0 =oe ) 15 L
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and we obtain the following equation for u:

n? 4 w—1 n? 4\’

2 z
- "2—__1 In —E_‘ = 0.

By finding u from (5.14), we obtain g from (5.13) and hence p. This solution enables veri-
fication of the numerical solution, and indicates a method which is of use in problems of
spherical and cylindrical waves.

Let us verify the solutions. We assume

(5.15) = 3.
Then we can find for ¢ = r,/10 a solution according to (5.10) for x = r/r, < 0.2.
The Eq. (5.14) now takes the form

u—1 1
(5.16) lnu+0.287(u—1)+ = = In2.0.

Hence u = 1.14, which accurately coincides (after changing the variable x into V) with
the result expressed in Fig. 3. For x = 0.1 we have ¥ = 1, in agreement with the initial
condition (5.6). For &€ = r,/5 (which means a rough approximation, & being considerable)
and x = 0.5 (more strictly the boundary lies at 0.4). We find » = 1.18 instead of the
value of 1.16 obtained previously by the numerical solution (conversely ¢ = ry/4; x = 0.5
or &€ = ro/5; x = 0.4. u = 1.145). It is seen that the difference between the present solution
and the numerical solution above is insignificant.

If we plot v and g in function of x, they will be of the same type as the diagrams in
Figs. 3 to 6.

6. Final remarks

Summing up the results of the present paper, the problem may be considered to have
been solved numerically. A fragment of it has been solved in an analytic manner, which
enables certain conclusions of a qualitative nature to be drawn on the type of the distri-
bution of above all, p and o, and also the expansion of gas away from the surface and
the point at which the thermal wave caught up by the shock wave (close to the centre).
It can also be easily shown that in limiting cases (omitted in the present paper) our
solutions become the corresponding solutions for the plane wave [2]. They have definite
properties, the same as the solution for the linear elastic problem.

In addition to the direct technical application, the solutions obtained will (similarly
to the results of Refs. [2, 3, 4] for the plane wave) constitute a point of departure for the
construction of averaged equations of concentric laser heating and compression of plasma,
taking into consideration the influence of thermal and shock wave fronts (Refs. [5, 6] for
the plane problem).

To this end, it is necessary to obtain analogous solutions for subsonic concentric
thermal waves which, by the different method of solution will be dealt with in a separate
publication in view.
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