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Energy method of analysis of dynamic stability of a cylindrical 
shell subjected to torsion 

J. LEYKO and S. SPRYSZYNSKI (L6DZ) 

IN THIS paper is presented an approximate energy method of analysis in a non-linear approach 
as regards dynamic stability of a thin elastic cylindrical shell subjected to torsion. The particular 
case in which the torque applied increases proportionally to the time is considered in detaiL 
Also given are the results of numerical calculations. 

W pracy przedstawiono przybliionll metodcc energetycznll analizy statecznoSc:i dynamicznej -
w uj~iu nielinioWYm - cienko5ciennej sprcczystej powloki walcowej, poddanej skr~iu. Roz
willZaJlo szczeg6lowo przypadek, gdy moment skr~ajllCY powlokcc wzrasta proporcjonalnie do 
czasu. Przedstawiono wyniki przyklad6w JiczboWYch, dotyezAlcych tego ostatniego przypadku. 

B pa6oTe npe.z:(CTaBJieH npH6JIIDt<eHHhlli, :mepreTWieCI<HH MeTO,Z:( a.HaJIHaa ,Z:(HHaMHtleCKOH ycroii
tlHBOCTH - B HeJIHHeHHOH TpaKTOBKe - TOHI<OCTeHHOH ynpyroii nHJIHH,Z:(pW~:eCKOH OOOJIOtU<H 
DO,Z:(BeprHYTOH CKpyqHBa.HHlO. PemeH tlaCTHbiH CJiyqaH, KOr,Z:(a MOMeHT CKpyqHB810I.I.Ulli o6o
JIOtli<Y aoapacraeT nponopnHoHaJILHo apeMeHH. IIpe.z:(CTaBJieHbi peayJILTaThi tlHCJIOBbiX npH
Mepoa Haauo~cH 3TOro noCJie,Z:(Hero CJiyqaH. 

1. Introduction 

WE SHALL consider the dynamic stability of a thin elastic isotropic shell subjected to the 
action of rapidly growing torque applied at the ends of the shell (Fig. I). The analysis 

.. I 

FIG. I. 

of the stability will be carried out on the ground of non-linear shallow shell theory, and 
small initial displacements of the middle surface of the shell from the ideal cylindrical 
surface will be taken into account. In such a case, when the longitudinal and the tangen-
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14 J. LEYKO AND S. SPRYSmNSKI 

tial components of inertial forces are disregarded, we obtain two non-linear partial dif
ferential equations for the deflection of the middle surface and sectional forces function 

1 a2t/J a2w 
(1.1) DV2V'2(w-w0) = L(w, tP)+R ax2 -eh~· 

1 2 2 1 1 a2(w-wo) 
(1.2) Eh V V t/J = - T [L(w, w)-L(wo, Wo)]- R ax2 

In these equations the following notations are used: 
w(x, y, t) total normal deflection measured from ideal cylindrical surface, 

w0 (x, y) initial normal deflection, 
x, y coordinates defining the position of the point in the middle surface, as shown 

in Fig. 1, 
t time, 

qJ(x, y, t) sectional forces function, 
R radius of ideal cylindrical surface, 
h thickness of the shell, 
e density, 

Eh3 

D = ------ - flexural rigidity of the shell, 
12(1-v2) 

E Young modulus, 
v Poisson's ratio, 

a2 a2 
V2 = -2 + -2 - Laplace operator. ax ay 

The symbol L(,) means a non-linear operator defined as follows: 

a2w a2t/J a2w a2t/J a2w a2t/J 
(1.3) L(w, t/J) = ax2 ay2 + ay2 ax2 - 2 ax ay axay . 

The sectional forces in the middle surface of the shell and the sectional moments are 
expressed by the following formulae: 

(1.4) 
a24J a24J a2t~J 

N:x = G:xh = ay2 ' Ny = Gyh = ax2 ' N:xy = T:xyh = - axay ' 

(1.5) M = -D[a
2
(w-wo) a

2
(w-w0)] M = -D[a

2
(w-w0) a

2
(w-w0)] 

:X ax2 +v ay2 ' y 8y2 +v ax2 ' 

M = D(1- ) a
2
(w-wo) 

:xy , axay . 

The differential Eq. (1.1) was obtained from the conditions of dynamic equilibrium of 
an element cut from the shell, and the Eq. (1.2) from the condition of compatibility for 
the components of strain of the middle surface 

(1.6) 
Ex= ~: + ~ [( ~: r- (a;:•)} e, = :-W7o + ~ [(~~r -(a;·rJ. 

au av aw aw awo awo 
y xy = ay + ax + ax ay - -ax --ay . 

In these formulae, u is the longitudinal and v the circumferential component of displacement 
of the middle surface. 
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ENERGY METHOD OF ANALYSIS OF DYNAMIC STABILITY OF A CYLINDRICAL SHELL SUBJECT TO TORSION 15 

2. The method of solution 

In order to obtain an approximate solution of the title problem, we take for normal 
deflection w of the shell, a function fulfilling the kinematic boundary conditions, and 
having the form of the series 

(2.1) 

in which W 1(x, y), W2 (x, y), ... are functions fulfilling the condition 

Wi(x, y) = Wi(x, y+2nR), i = 1, 2, ... 

and / 1 (t),f2 (t}, ... are unknown functions of the time t. These functions will be taken 
as generalized coordinates for which Lagrangean equations of motion will be established. 

To obtain these equations, we must express the elastic energy of the shell in terms 
of generalized coordinates, the kinetic energy in terms of generalized velocities, and we 
must find the generalized forces corresponding to the generalized coordinates. 

Introducing the expression (2.1) for w(x, y, t) into the right side of the Eq. (1.2) and 
treating the function w0 (x, y) as given, we obtain the linear differential equation for the 
sectional forces function (/>. The solution of this equation must fulfil static boundary 
conditions, and can be represented as follows: 

(2.2) (/> = iP-sxyX)', 

where Sxy is the mean value of tangential sectional force, and 

(2.3) (j) = tPo +J/Pl +f2,P2 + ... +fitPu +J~($22 + ... +ftf2tPl2 + ... 
In this last equation tP0, tP1 , ... are functions of x and y. 

According to (1.4) we have pow 

(2.4) 

The mean tangential sectional force sx,y is determined from the formula 

M 
(2.5} Sxy = 2nR2 

in which M is the torque applied. 
It is easy to note that, in this case, for an arbitrary x the following conditions must 

be fulfilled : 

(2.6) 

2nR -

J 
()2(/J 
~dy=O. 

0 y 

The elastic energy of the cylindrical shell of length I and radius R can be represented 
in following form [1]: 

l2nR 

1 J . V= 
2
Eh J [(\7 2 (/>) 2 -(l+v)L((]J,([>)]dxdy+ 

0 0 
l2nR 

D r . + 2-. J {[V' 2 (w-w0)]2- (1-v)L(w-wo, w-w0)} dxdy. 
0 0 
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16 J. LEYKO AND S. SPRYSZYNSKI 

The first integral on the right side represents the elastic energy due to stretching of the 
middle surface, and the second - the energy of the bending. Substituting for t1> the ex
pression (2.2) and taking into account the condition (2.6), we obtain 

I 2nR I 2nR 

(2.7) V= 2~h J J [(v 2~)2 -(1+P)L(~.~)]dxdy+ ~ J J {[V2{w-w0 )]
2 

0 0 0 0 

- (1-P)L(w-w0 , w-w0)}dxdy +2 -1~" siyn:RL. 

In order to find the generalized force Qi corresponding to the generalized coordinate 
fi we give to this coordinate a virtual increment flj; and we find the work done by the 
torque. Denoting by MJ the corresponding virtual angle of twist of the shell, we have 

(2.8) Qi llfi = M fl(J. 

The angle of twist of the shell is given by the formula [1], 
I 2nR 

(J = - _1_[J J (-1 c2
tl> + ow ow - OWo OWo ) dx d ] 

2nR2 Gh oxoy ox oy ox oy y . 
0 0 

Taking into account (1.8) and (1,12). we obtain: 
I 2nR 

() = - _I_[J r ( ow ow- OWo ow~) dxdy- -~nRL s ] . 
2nR2 

·' ox oy ox oy Gh xy 
0 0 

Hence 

fJ(J = 
I 2nR 

1 o [f f (ow ow ow0 ow0 ) 2n:RL ] 
- 2n:R2 ofi 0 0 OX oy - ---ax ---ay dxdy- --cJil Sxy llfi 

1 a [J' 2nJR ow ow J 
= - 2nR2 ofi ox ay dx dy llfi. 

0 0 

Substituting this value of fJ(J into the Eq. (2.8) and taking into account that, according 
to (2.5), M= 2nR2sx1 , we obtain: 

a [J' 2nfR aw aw J Ql = sx1(t) a~: Txadxdy . 
'Ji 0 0 y 

(2.9) 

In the case under consideration. sx1 (t) is a given function of the time t. 
The kinetic energy of the shell is given by the formula 

I 2nR 
2 

he J~ j"' ( aw) 1 . . . . T=2 7ft dxdy =2(auff+a22f~+ ... +2au!1!2+···> 
0 0 

(2.10) 

in which 
I 2nR 

(2.11) Ojk = aki = he J f Wi Wk dxdy. 
0 0 

We conclude that the generalized coordinates are not explicitly contained in the ex
pression of kinetic energy T. 
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ENERGY METHOD OF ANALYSIS OF DYNAMIC STABILITY OF A CYLINDRICAL SHELL SUBJECT TO TORSION 17 

In the case of a "closed" cylindrical shell considered, the components of displacements 
of the middle surface must be periodical functions of coordinate y. It follows from this 
that for arbitrary x the tangential component v must fulfil the condition 

which may be written in the form: 
2nR 

f ov 
-aydy = 0. 

Taking into account the formulae (1.6h, (2.4) and using the generalized Hooke's law, 
we obtain 

(2.12) 
mR mR[ - - 2 2 J f !!!_ dy = J _1 (o

2

f/> -v o
2

f/>) _ __!_ (ow) + __!_ (owo) + _w-wo dxdy = O. 
oy Eh ox2 oy2 2 oy 2 oy R 

0 0 

From this equation which must be fulfilled for arbitrary x follows the relation between 
the coordinate /1 , !2 , .... 
(2.13) 

Because the coordinates / 1 , [ 2 , .. • are not independent we must use Lagrangian equations 
with multiplier A.. In the case under consideration oT/ ofi = 0, and these equations have 
the form: 

(2.14) 

These differential equations together with the Eq. (2.13) are sufficient to determine the 
coordinates / 1 , [ 2 , • •• and the multiplier A.. 

3. An application of the proposed method 

We take the expression for the deflection of the shell in the form 

(3.1) f 
. nx . n(y-kx) 

1 
. 2 nx 

to= 1 sm-
1
-sm __ R __ _ +J2sm -

1
-, 

where n is the number of waves in the circumferential direction and k is a constant. The 
corresponding form of buckling has n circumferential waves which spiral along the cy
linder. The expression (3.1) was used by several authors for non-linear analysis of static 
stability of cylindrical shells subjected to torsion [2, 3]. 

The expression for the initial deflection w0 will be taken in analogous form to (3.1), 

(3.2) r . nx . n(y-kx) lc . 2 nx 
Wo =Jot stn -

1
- sm R + o2sm -

1
-, 

where /o1 and / 02 are constant coefficients. 
The expression (3.1) fulfils the kinematical boundary conditions for simply supported 

edges. For x = 0 and x = I, w-w0 = 0, and o(w-w0 )fox is not identically equal to 
zero. 

2 Arch . Mech. Stos. nr 1/74 
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18 J. LEYKO AND S. SPRYSZYNSKI 

Introducing (3.1) and (3.2) into the right side of the Eq. (1.2) and integrating this 
equation, we find the function iJ: 

- Eh{JZ [ 1 2n(y-kx) 1 2nx] 2 2 (3.3) f/J = 32 (1 +k2) 2 cos R + {}4 cos - 1- (f.-lot) 

Eh{}2 [ 1 n(y-b1 x) 1 n(y-a3x) 
+ 2-- (1 +bD2 cos R + (1 +a~)2 cos R -

1 n(y-a1 x) 1 n(y-b3 x)J 
- (1 +aD2 cos R - (1 +b~)2 cos R (ftl2-lotlo2) 

Ehf2 2 [ a~ n(y-a1 x) bt n(y-nb1 x)J 
+ 2n2R {} (1 +aD2 cos R - (1 +bD2 cos R ({.-lot) 

[ 
Ehf2 2nx J - 6n2R cos - 1- if2-lo2), 

where 

(3.4) {} = nR k {} n/ , a. = + , b3 = k-3{}. 

The function iP obtained fulfils the conditions (2.6). We conclude that the static boundary 
conditions are here fulfilled in an integral manner. 

Introducing the expressions (3.1), (3.2), (3.3) into the formula (2.7) and performing 
the integration, we find the elastic energy of the shell: 

(3.5) V = !'~Rlh { ~~· [(I +~')' + ~. J (ff-/oD + 'i. [(I +~W + (I +lbt)' 

+ (I :a'i)' + (I +~'i)'](f.f,-/odoz)'- 2~,[ (I ~!i)2 
+ (I ~;f)' J (f;j,- fo doz)(f, - fo ,) - 2;;, :. m-/t,)(f,-foz) + ~.-[(I :~w 

+ (I !1w J (f, - fo ,)' + ~' (f,-J.,)' + 12(;~ •') ~: I (I +at>' + (I + hf)'](f, 

) 2 16h
2 

n
4 

( ) 2 } 1 +v 2 RI 
-lot + 12(1 -v2) f4 /2 -lo2 +2 Eh- Sxyn · 

From the Eq. (2.9) we obtain the generalized forces, 

(3.6) Qt = -nkn2 ~ltsx,(t), Q2 = 0. 

Using the Eq. (2.10), we obtain the following expression for kinetic energy: 

(3.7) he ( 1 · 3 . ) T= T 2lf+ 4 1~ nRI. 

Substituting (3.1), (3.2), (3.3) into the Eq. (2.12), we obtain, after integration, the relation 
between the coordinates 11 and 12 : 

(3.8) Flft,l2) = n2l'f.-4RI2-n2lot+4Rio2 = 0. 
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ENERGY METHOD OF ANALYSIS OF DYNAMIC STABn.rrY OF A CYLINDRICAL SHELL SUBJECT TO TORSION 19 

In the case under consideration, we can write two Lagrangean equations of the type (2.14). 
Taking into account the expressions (3.5}-(3.8), we obtain: 

d
2
}; n

4 
E [ 1 1 J n

4 
E [ 1 1 

dt2• - + 16 ef4 (1 +k2)2 + fJ4 (ff-fot)J. + 2 ef4 (1 +ai)l + (ii--iJD2 

When sx1(t) is given, the differential Eqs. (3.9) together with the relation (3.8) are 
sufficient to determine the unknown functions of time f 1 (t) and f 2 (t). These equations 
may also be used to obtain solution of the static stability problem. In this case 

Sxy = s = const 
and 

d
2
ft = d

2
f2 = 0. 

dt 2 dt 2 

Assuming that there is no initial deflection of the middle surface of the shell, and putting 
in (3.8) lot = fo2 = 0, we have: 

(3.10) 

Taking this into account and eliminating the multiplier ). from the Eqs. (3.9), we obtain 
the following relation between s and / 1 : 

_ ~ J[ a1 b1 J n
4 

( h )
2 

2 2 2 2 } 
s - 4n2k l (I +at)l + (I +bD2 + 12(1-v2) R [(1 +a.) +(I +b.)] 

n 2 Eh a~ bf fJ2 n 2n2 h 2 ( )2} 
- 4kf2l -o +ani+ (1 +bf}2-- 8(1 +k2) 2 - 6(1-v2) T 1• 

3n
4 
Ehn

2 
[ 1 1 1 1 J 4 

+ 64 k/4 (I +at)2 + (1 +bD2 + (1 +a~)2 + -(1 +b~)2 f •· 

2* 
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20 J. LEYKO AND S. SPRYSZYNSKI 

The parameters a 1 , a3 , b1 and b3 are expressed in terms of k and {} = nR/nl by the for
mulae (3.6). For thin shells of medium length k and {}are small quantities, and the squares 
of aH a 3 , b1 and b3 can be disregarded in comparison with unity [3]. Taking this into 
account and introducing the following notations: 

(3.11) * _ sR 
s - Eh2 ' 

hR 
d =p:-· 

where s* is the nondimensional tangential sectional force, we obtain the equation describing 
the postbuckling behaviour of the shell 

(3.12) n
4d2 

1 J n
2d[ 15 

12(1 - v2) fJk2 - 4k 2k
2 
+ 8 {}

2 

- 6(1n:_·,) :: J (~ r + ~6 "::: (~ r 
This equation corresponds to the equations obtained by T. GALKIEWICZ in his non-linear 
analysis of the static stability of a cylindrical orthotropic shell subjected to torsion [3]. 

Putting into the Eq. (3.12)/1 = 0, we obtain the solution for the linear problem: 

* - 1 [{}2k3 kfJ4 {}6 n4 d2 1 J 
(3.13) So-2n2d2 +6 +k+ 12(1-v2)kfJ2 · 

The minimal value of s~ is equal to the upper non dimensional critical sectional force; 
hence 

(3.14) 

The value k0 of the parameter k, which makes s~ minimuin must fulfil the condition: 

( os~) - _1_ [ {J2k2 {}4- '!.6 - n4d2 -- _1_] = 0 
ok k=ko- 2n2d2 3 0 +6 k~ 12(1-v2) k5fJ2 ' 

from which we obtain: 

(3.15) k =-,/ .... I 4 _0.4 n4d
2 

_0.2-
o . Jl 3 ·u + 36 (1-v2) 0.4 - u· . 

After introducing k0 into the expression (3.13), the numbers of waves n = nRfD/ which 
makes s~ minimum can be established and s:r can be determined. 

Let us return now to the solution of the dynamical problem. We shall consider the 
case in which the torque applied is proportional to the time. In this case, we have: 

(3.16) Sxy = hbt, 

where b is the velocity at which the mean tangential stress is increasing. 
As regards the initial deflection of the middle surface of the shell, we make the assump

tion that it is similar to that which occurs in the case of static stability loss. Therefore 
the constant/01 and/02 in the expression (3.2) must fulfil and equation analogous to the 
Eq. (3.10). Hence 

(3.17) n2 2 

fo2 = 4Rfot · 
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In the expression (3.1) for deflection w there enter two parameters: nand k. The number 
of waves n is treated in our approximate solution of the dynamic problem as independent 
of time, and as regards the constant k we make the assumption that it has the same value 
as in the case of static buckling, and is expressed by the formula (3.15). Using the Eqs. (3.8) 
and (3.17) we can eliminate from the differential Eqs. (3.9) the constant/02 ~ the multiplier 
A. and the function f 2 (t). Treating a 1 , a 3 , b1 and b3 as small quantities, the squares of 
which can be disregarded in comparison with unity, and introducing the nondimensional 
time defined as follows 

(3.18) * hb Sxy t =-t= --
Scr Scr 

and using the notations 

C(t) = £•~l, Co = ~~~ , 
(3.19) 

we obtain the following non-linear differential equation: 

(3.20) -~-2 C + }_174 [c2 -~f_ + C (-d'-)
2
] + 2 q~_ r,2ko(C -- Co) 

dt* 2 8 dt* 2 dt* ex 

n
4

t5
2 

[ 47]
4 

] 2 2 n
2

t5 2 2 2 3 2 3 + 16ex 1+ 3(1-v2) (C -Co)C- ~-(n b+ko7} )(4C -3C C0-C0) 

+ ~ n4 t527]4( C3 - C~) C2 - 2 s! ko7}2 t* C = 0 
Sex ex 

in which k0 is given by the formula (3.15), s:r is the nondimensional upper critical sectional 
force and ~ is the value of s~ for k = k 0 , where s~ is defined by the formula (3.13). Hence 
we have 

* - ( * - _1_ [{J2k3 6k {)4 !!:____ n4 t52 _1_] 
(3.21) qo- So)k=ko- 2n2t52 o+ o + ko + 12(1-v2) ko{)2 

1 [ 3 6n
2 

t5 n4 b2 
1 7]

4 J 
= 2t57]2 ko + --:rj2 ko + 7}4ko + 12(1-v2) k; . 

Solving the differential Eq. (3.19), we find the nondimensional generalized coordinate 
C = f.! h as the function of time, and we can perform the analysis of the dynamic buckling 
of the shell. 

4. Results of numerical calculations 

The differential Eq. (3.20) was solved numerically by the Runge-Kutta method 
with the following initial conditions for t* = 0: 

C = Co, C = 0. 
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22 J. LEYKO AND S. SPRYSZYNSKI 

Some results of these calculations concerning brass cylindrical shells for which: 

E = 0.981 · 105 MN/m2
, e = 8.5 · 10- 3 kgfm3

, Rfl = 1/4 and R/h = lOO 

will now be presented. 
The variation of nondimensional deflection C of the shell with nondimensional time t* 

is represented in Fig. 2, for the case in which the mean tangential stress is increasing at 
velocity b = 0.4905 MN/m2 s, and the parameter Co = f 0 tfh characterising the initial 
deflection is equal to 0.01. The curves shown in the figure by the full lines are obtained 
for three different values of the number of waves n in the circumference of the initial 
deflection surface of the shell (n = 5; 6 and 7). We note that the most rapid growth 

r--- b-04909·105 t-t---t-t--+--+--+---t---1t--+--t"+-t--+---l 

f- {HN/m~s} I \ 

r--- ~a01 f 
n-5 J --

I 
15t--+-+---l--r-+-+~~r-~n-+~--f-~+-H---I-~ 

fl=6 1\ 
L= 1.1-

I rt 

l 

/ ~A I \ \I \ i 

f ~~~ ~~\~JI_~.I.~~v----1! 
I 1 - -- -- 'll I 
\\ - -~,~~ 

5 t--+---+--'<-+--+--+···--- - -t--1+-+-t-·-+---t-t-1-+--+--+---+--! 
\ /'/ I I 

\ I' V 
\ 1// L 

;V V 
.. / 

Q6 1 1.5 t;f 

tb] 
FIG. 2. 

of the deflection in time occurs for n = 6. This number of waves corresponds also 
to the static upper critical torque for the shell considered here. 

It follows from the relation (3.18) that the mean tangential sectional force s~JI(t), and 
thereby the torque applied, is proportional to the nondimensional time t*. Hence the 
curves in Fig. 2 represent also the relation between the dynamic deflection of the shell 
and the torque applied. The curve shown in the figure by the dotted line corresponds to 
the solution of the static problem for n = 6. This solution was obtained from the Eq. 
(3.20) in which in this case all terms with derivatives of C with respect to t* were disregarded. 
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The load corresponding to the first inflexion point of the deflection-time diagram is 
defined usually as the dynamic critical load [1], because it occurs at the moment when the 
snap-trough action of the shell attains its greatest velocity. This inflection point of the 
curve obtained for n = 6 is denoted in Fig. I by A, and it follows from this figure, that 
in the case considered, the dynamic critical load is about fifty per cent higher than the upper 
static critical load. 

In Fig. 3 are presented the results of the solution concerning the case in which the 
mean tangential stress is increasing at velocity b = 0.981 MN/m2s (i.e., at double the 
previous velocity). 

In this case, the dynamic critical load (for n = 6) is about seventy five per cent higher 
than the upper static critical load. Also analyzed was the infleunce of the magnitude of 
initial deflection of the shell on its dynamic stability. The results of the solutions obtained 
for three different values of the parameter Co are given in Fig. 4. The curves shown in full 
lines correspond to the solution of the dynamic problem, and the curves shown in the 
dotted lines - to the solution of the static problem. 

A more detailed analysis of the numerical results obtained and some experimental 
data will be presented in a separate paper. 
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