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On discrete dislocations in micropolar elasticity
W. NOWACKI (WARSZAWA)

Two-DIMENSIONAL problems of dislocations in elastic micropolar media are considered. In the
case of a plane state of strain, the compatibility equations may be divided into two mutually
independent systems of equations. The first system is connected with the vectors of displacement
u = (u;, 42, 0) and rotation ¢ = (0, 0, ¢3), the second with vectors u = (0,0, u;) and @ =
= (@1, P2, 0). The equations of compatibility for the both cases are written in terms of stresses.
The cases of edge, screw and wedge dislocations are considered in detail.

Rozpatrzono dwuwymiarowe zagadnienia dyslokacji w mikropolarnym oérodku sprezystym.
Dla zagadnienia plaskiego stanu odksztalcenia moina rozdzieli¢ réwnania zgodnosci na
dwa niezalezne od siebie uklady réwnan. Pierwszy z nich zwiazany jest z wektorem prze-
mieszczenia u = (u;, u2,0) i obrotu ¢ = (0, 0,;), drugi z wektorami u= (0,0, u3)
i = (@1, 92,0). Podano réwnania zgodnosci dla obu zagadniefi w naprezeniach, Szczegblo-
wo rozpatrzono przypadek dyslokacji krawedziowej, klinowej i Srubowej.

PaccMoTpeHBI IBYMEPHEIE 3aia4H AHCIOKAUAH B MHKPOIIONAPHOH ynpyro# cpene. JIna sanaun
IIOCKOTO AechOPMAIHOHHOIO COCTOAHMA YPaBHEHHMA COBMECTHOCTH MOYKHO pasfelMTh Ha [Be
He3aBHCALIMe APYT OT NpYyra cHcTeMbl ypaBHeHwii. [leppas M3 HuUX CBA32HA ¢ BEKTOPOM Iepe-
memteHusA 0 = (uy, 42, 0) u Bpauienus ¢ = (0, 0, p3), Bropaa c Bektopamu u = (0, 0, uy)
U @ = (@1, P2, 0). YpaBHeHnsa coBMecTHOCTH i ODOMX 3a4a4 [AlOTCA B HANpAKEHHAX.
ITogpobHo paccMorpeH ciyuait KpaeBolf, KJIMHOBOH H BHMHTOBON JMCIOKaIMid.

1. Introduction

In THE PRESENT author’s paper [1] the state of stress occurring in a micropolar medium
containing distortions 3, x5 is discussed. Initial strains of that type may occur in metals
deformed beyond the yield limit — such as plastic strains. In this paper, we shall deal
with the state of stress produced by discrete dislocations. The action of edge, screw and
wedge dislocations will also be discussed.

Returning to distortions let us assume that the total strains provoked by distortions,
vl %01, may be expressed by the formulae

(L.1) }’}; = ?_ﬁ‘}'?ﬁ, Z}; = x}’;+x.u-

Here y;;, »;; are elastic strains. The stresses produced by distortions are [1]
aji = (u+0) W=y +(@—o) -y + A6k — i),
i = (v +&) Cefi— 1)) + (v — €) (el — %) + B (i — %) -

Here o, B, y, & 4, u are material constants. In the considerations which follow, the
definition of total strains will be needed,

(1.2)

vh=ul—egol, x5 =9l (1.3)

Here u are components of the displacement vector, and ¢f — of the rotation vector.
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On substituting into the equilibrium equations
(1.4) an; =0, epaptpu,;=0
the constitutive relations (1.2) and using the definitions (1.3), a set of six equations for
rotations and displacements is obtained from which the functions #] and @] may be
determined:

(u+ )Vl +(A+p—o)uf ji+2eenr ; = of )
[(y +e)V:—dalo] +(B+y— &) 9] ji+2aeuul ; = epofi+uf ;.
The following notations are introduced here:
ofi = (u+a)yfi+(u— o)yl + A0, yix,
ui = P+ &)+ (y— &) xij+ oy %

Once the functions u], ¢ are known. we may proceed to determine yJ;, »; from the
Egs. (1.3), and the force stresses ¢;; and couple stresses u;; from the constitutive relations
(1.2).

This is the first method of determining the strains produced in finite or infinite bodies
by distortions [1].

On the other hand, the stresses due to distortions may also be determined by the

method developed by Beltrami in classical elasticity.
Namely, comparison of the Eqgs. (1.3), (1.1) yields:

(1.5)

(1.6)

ul;— €k = YR+vi,
@iy = %+

(1.7

Elimination of u] , ¢] from these equations leads to a system of nonhomogeneous equations
for the elastic strains y;;, %5 [2, 3],

EmYip— %+ (5.-; Mk = Ojj,

(1.8)

where

Ejp %1ip = s.u s

Wi = —Empaatr—O0yxg, 0= —x]sEjn-
The above equations may be expressed in terms of stresses in view of the relations:
v = W' +a)o;+ @ — o) o+ A 0u,

(1.9)
%ji = (V' + &)+ — &) iy +B 0 -
Here
r__ 1 ¥ 1 v l r_ l
2u _2;1’ 2a =33 2y _2_}" 2¢e =35
PO S
2u(32+2p)° 2y(3f+2y)

Inserting (1.9) into (1.8) and using the equations of equilibrium, we arrive at an equation
in stresses which is analogous to that by Beltrami-Michell.

Let us adopt this manner of solution in further considerations confined, however,
to the plane strain state of the body. Assume all the causes and effects to be independent
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of the variable x5. In this particular case, the set of compatibility equations (1.8) splits
into two sets of equations. In the first one, the following strain matrices appear

Y11 V12 0 0 0 x5,
(1.10) Y= %2 V22 0f, x=]0 0 x5
0 0 0 0 00

The equations of compatibility take the form
0121 = 029V11— %13 = Uay,
(1.11) 019Y22—02Y12— %23 = 33,

0y %33—03%13 = 033,

where
a3, = —0,¥31+9,701 +x1s,
(1.12) a3 = =893 +02732 +%35,
033 = —0, %33 +,%%3.

The second system of compatibility equations, independent of (1.11), has the form

0293y +2%22 = Ay, —0yY32+%; = daa,
(1.13) 03Y32— %2y = Qyz, —01Y31—%52 = Uy,
91Y23— 02913 +%;; +%2 = 033,
where
Ay = “'32721—"22, Oy = 31)’22—74?1,
(1.14) @2 = ~ 0,93, +%3;, Uy = 0,3, +%12,
X33 = — 0, Y93+ 02y~ %31 —*32.
2. The first problem of plane strain

Let us consider the set of compatibility Eqgs. (1.11). Strains appearing in those equations
are expressed in terms of stresses by means of the constitutive relations (1.9). First of
all, the set of Eqgs. (1.11) is transformed to the form:

By11 +01y22—0,02(¥12+721) = 44,
(2.1) 8, 95(¥4 _?22)4‘3%?12_3{'?21 +8 %3+ 02225 = A,

0 %23—0,%,3 = A3,
where

Ay =033+0,03,— 0303, Ay = —08,03,—0303;, A3 =0,;.

Expressing the strains in terms of stresses, we obtain

030y, +diay, — Vi(oy1+022)—38,0:(0,2+02,) = 2u4,,

2(A+u)
) X 4
22)  (#-8D) (@n+a)+ L Vi@, -a)+ ;,—f; (81 13+ 02 1423)
+231 32(‘1“ _0'22) ™ 4#"43’
O 23— 08,3 = (P +8)A4;.
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The state of stress is expressed by the following matrices:

oy, 012 0 j 0 0 Fla]
(2.3) =03 02 0 |, u=)0 0 .
0 0 033 B3 paz 0
Three of the stress components may be written in terms of the remaining ones. These
are
A —& y—&

(2.4) 033 = —m‘ (011 +033), 3z = ;:-f—e B3, M3 = e

Hi3-
Six unknown values of stress components appear in the Eqs .(2.2). The equations of
compatibility (2.2) are then supplemented by the equation of equilibrium
0,0, +0,0,;, =0, 0,0,,+d,0,, =0,
(2.5} 1V11 2V21 1Y¥12 2V22
O1pya+0223+0,2—03;, =0,

and thus the number of equations equals the number of unknowns.
(a) Let us consider the particular case 4, # 0, 4, # 0, A; = 0. The stresses are
expressed in terms of the Airy-Mindlin function

Ty = a%F_alazp, 03 = 3{'F+3133¥1,
(2.6) 0y = ‘-31 32F—3§9}, T34 —31 32F+3f¥’,
ps =¥, py3=0,¥.

These expressions satisfy the equations equilibrium (2.5) and the last of the Egs. (2.2).
The remaining equations of (2.2) are reduced to simple differential equations

202 p _ (A +p)
2.7 ViV3F = WA"
(8) V- = —(p+e)d;, 2= ZFIUTD)

4ua

Let us consider the action of a discrete edge dislocation characterized by the Burgers
vector b = (4,0, 0). Assuming the x,-axis for the dislocation line, and passing from
distortions to dislocations [4-6], we obtain
2.9) Y1 = —by [ 8(x—x)dS,(x).

5

The remaining magnitudes y ; nad ») vanish. It is assumed that S, constitutes part of
the x, x;-plane for negative values of x, . The normal to S, directed towards the negative
direction of x, (dS, = —dx;dx;). Hence

0 ®

(2.10) ¥31 = by f 0(x, —x1)dx; 6(x;) f 8(x3—x3)dx3 = by H(—x,)d(x,),

and
(2.11) @33 = — 9293 = by 6(x,)8(xy), Ay = —8303,, Ay =0;%;.

Here H(—z) denotes the Heaviside function.
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The solution of the Egs. (2.7), (2.8) is found by means of the double integral Fourier
transform

B il 4u(A+p)
@)  Fe-ga e ff Eiey %1% B="75 b

b + 1
@iy w--H01) ” ( 3 s§+55)e-lwfxd£,.

E+8+

The above integrals, being improper, do not exist in the usual sense; nor can we assing
to them the Cauchy principal values. We may, however, separate out of the them what
are called the “finite parts” [7, 8], which consequently yields the results:

—lxud
ff ;2+Ez d§, df; = —(C+Inr),
_w_ -ka
(214) f Sk d{-‘l d§2 _ Ko (Ll) ’
—w +§z+
f é-z +$2)z d§1 d$3 = -'"-(C"!']Ilf),

r=(xt+x3)"?,

Here, K,(z) denotes the modified Bessel function of the third kind (McDonald) and C is
the Euler constant.
Thus we may write

(2.15) F= - % @x,lnr+%,),
.16) W %[3‘; ~Eig (FT)]
The stresses are calculated from the Egs. (2.6)
e = +2ﬁ_,ﬁ)—alazsv,
s 23?1!,1—») - Z?xz) e
@.17) 01 25‘(‘%_7)(%"2%)‘2‘) a2y,

uby _{‘L_lexg
2n(1—»)\ r? ré

01 =

)+a§91,

s =Y, pp=0¥ rv=5
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In passing from the Cosserat to Hooke’s body, ¥ has to be assumed to vanish, ¥ = 0.
The known values of stresses in Hookean bodies due to an edge dislocation are obtained
as follows:

g3y =0y, and g3 = py3 =0.

(b) Let us consider the case in which 4; = 055, and 4, = 4, = 0. Representation
of stresses by the potentials F, ¥ does not in such a case yield any result: the equations
of equilibrium would be satisfied, but the compatibility condition (2.2); could not in
this manner be fulfilled.

By consecutive elimination of stresses, from the Egs. (2.2), (2.5), we obtain

Vipys = —(p+€)0:45, Vipss = (y+)d,4,,
VivVio, = KazAa; vaiﬂ'zz = Kot 4,,

4u(A+u)
A+2u

(2.18)
ViVio,, = —Kd 0,45, o0y, =0y, K=

Consider a discrete wedge dislocation [2]
(2.19) Ay =033, 033 = Q6(x,)d(x;), 2 =const, o3 = a3 =0.
The following functions are solutions of the Eqs. (2.18):

(y+92 3 (y+e)Q x
By === (!1)— __Zn:—r_:’
+8)-Q 3 (y+e82 x
M2z = ?2“ Ul) = 7 r; s
(2.20) G=0 __K___a= () - i Fi
: 2= 0=~ W=

K & K x2
o1 = 5 g 09 = (lnr+ )

K o K x?
Oys = 5= F () = n(lnr+};).

The above solutions were obtained earlier by K. H. ANTONY by a different method [2].

3. The second problem of plane strain

Let us return to the system of Eqgs. (1.13) for the second problem of plane state of
strain. By eliminating some of the strain components, we obtain five independent com-
patibility conditions,

T%22 +03%,, =0, 82(%,2+%2,) = A,,

03%y3— 07 %31+, 05(%1, —%23) = Ay,

(3.1) 01(¥32+723)— 02(¥13 +731) = 43,
%y —%12—02Y32— 01 Y31 = Aa,

Xy1+%22—02Y13+0, Y23 = A4s,
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where
Ay = 0oy, +0305, 49, 95(ay2 +234),

(3.2) Ay = 8,0,(a— ;) + 8302, —3f 5,
Ay = 033— 0y =0, Ay=0;—0;, As= t3;.

Let us observe that in the expressions (3.2) the components of disclination density
6,; do not appear. Using the constitutive relations (1.9) we may express the compatibility
conditions (3.1) in terms of stresses. In this manner we obtain

Ot par+33py, — 2(}%3") V(s +p22) = 0192 (012 +p21) = 294,
(@3=31) (2 + )+ L Vi (2= 121) =20, 8 paa =) = s,
(3.3) 91(023+032)— 9,(03; +0,3) = 2ud;,

+ +a
By T2+ ‘Za—ﬁ (0203, —0,032) = (y+B) ((2A5_ “ua A ),

£

+o
f21—Py2— 2ua l (01031 +0,03,) = 2e4,.
Observe that the Eq. (3.3), may also be written in the form

v+
o

Hyy 2+ P (0,0,3—0;0,3) = (y+5) (ZAH‘ ,u;a Aa)-

Eight unknown stresses gy, 422, M12, 21, 013, O35, 023, 03, appear in the system
of five Egs. (3.3). Supplementing the system (3.3) by three equations of equilibrium
Oy py +0zp3,+033—03, =0,
(3.4) dy g2+ 02432 +03,— 03 =0,
010,340,053 =0,

we have at our disposal a number of equations sufficient for the determination of stresses.
The system is connected with the vectors u = (0, 0, u5), @ = (¢,, ¢, 0) and with the
matrices

0 0 oy, iy M2 O
(3.5) c=|0 0 O3], B=|H2 f22 O
03; 03; 0 0 0 s

The stress u3, is found from the formula

(3.6) M3z = f(}’ﬁ-—ﬂ) (a1 1 +#22).

Let us consider the case of a screw dislocation b = (0, 0, b;). Assuming the x;-axis
for the dislocation line, and the x, x;-plane (x, < 0) for the plane of discontinuity, we
arrive at the conclusion that only y3; # 0,

(3.7 y3s = —bs [ 8(x—x)dS;(x) = byH(—x,)8(x)

s
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Now, we have 4, = A, = A, = 0, and
(3.8) Ay = As = 033 = — 3,933 = b3 8(x,)d(x,).

Further elimination of stresses from Eqs. (3.3), (3.4) yields (with 4, = 4, = 4, = 0,
A; = As # 0) the following differential equations

3.9) H(pyy +p22) = —(y+P)A4s
(3.10) D(py2—p2y) = 0:
here
H=9V3-1, D=I[Vi-1, 3? =M, e . r+e) (p+o) )
4a 4ua

The force-stresses o;; are determined from the equations

(3.1 I) vaalﬂ = —azN.Ag, HV T3 = 3 NA_!,,
HV303, = —d,MAs, HVioy, = d, MAs,

where

= (a+ﬂ)H+a, M = (‘J_Q)H_a, As = b; 5(x1)'é(x2).
Application of the exponential Fourier transform leads to the following relations

b L4 b
O3 = ‘2“"1‘32(}111 +ab), 03 = > 3'2(!“lr "‘ﬂz)s
(3.12) 5 ) 5
033 = __25:_ Oy (uly —aly), 03, = — —3—3 1(uly +°dz).

where

I, = —(C+lnr), I, =Ko (%)

Let us observe that in a Hookean solid, with « = 0, the classical, known results are
obtained. Force-stresses are then symmetric.

Elimination of stresses from the sets of Egs. (3.3), (3.4) yields, by means of Egs. (3.9),
(3.10) and (3.11), the following differential equations for couple-stresses:

HVip,, = —(?3§+—§‘V§) As,
HVipys = HV py = —2y9,8,A4s, As = by d(x,)d(x2).

which, in turn, yield the results
b ¥ .
B = —ﬁ [;ﬁ? I,—2ydi(I, — fz)]-

(3.14) e %[ﬁ? L—zyaiuz—-f;)].

v
b »
My = H2y = — _}’_13 d,(I,—1,).
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