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Abstract
4

In the paper the method of constructing the equations “for
characteristic functionael and the moments developed in ref. £71

2 suvendd 1o the case of comolex Hilbert soace  valued
stochastic processes.

1. Introduction
In paper [71 the equations for the characteristic functional

of the soclution of the stochastic evolution equation was derived.
Therefrom the complete set of the moment equations was obtained
and the appropriate uniqueness and existence theorem was proved.
These results were the extension of the ideas formulated in [2]
and [3], wheére an example of some parabolic partial differential
equation was analysed.

However, sometimes in applicztions it is irremissible to

consider complex space valued stochastic equations. Restricting
our field of interes's to the problems of stochastic wave
propagation, the exampls 3£ such an  equation could be the
stochastic Schrgange: egitation or the parabolic eguations

obtained from the approximation of stochastic Helmholtz equation
[61,[91,[101. In such cases the theory develcoped in [7] can not

be applied directly 5 the analysis of Lhe However,

redefining the naracteristic functional and modifying the

evolutionary description of the system, it is possible to follow
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reasonings of the paper (7] and construct the adequate equations.

In this paper we present the extension of the results obtained
in [7] to the case of a complex Hilbert space valued evolutions.
¥e define the stochastic evolution equation in such a case along
with the characteristic functional of its solution (Section 23>.
Then we introduce the complex space version of lemmas and theorem
proposed previously in [7] for real spaces and concerning the
equation for the characteristic fuﬁctional (Sect.ion 3>. This
equation is the foundation of the construction of the complete
set of moment equations for the solution to the stochastic
evolution (Section 4>. Finally (Section 5>, as an illustration of
the introduced theory, we consider the example of a parabolic
equation studied previously in [10] and in present paper
reformulated in the abstract evolutionary form.
2. Formulation ;
: Let (Q,F,%) be a complete probabilistic spacé. Let (X, C.,.)x)
be a complex and (Y, C.,.22 a real separablé Hilbert space.

Consider the following stochastic multiplicative evolution

equation:
dl = AU dt + [BUJ 4dwcCtD o a0, T} - .,
C€2.15
Uco, o -II0 P a.s. - er r,
where:

U=Ut, o , tel0,T] , © € Q , is an X-valued stochastic
process,

A : DCA>) —— R is a linear operator acting from the
densé domain 9CA> < X into X  and being the infinitesimal
generator of the strongly continuodis semigroup of bounded

operators K(t> , te [(0,T] ,

KCt> : R —— R, tel0,T1 ,

2.2> N KCE> Il < M e® | N, x = const.
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B : R ——— LCY,A is a bounded bilinear operator , such

that for UeX , Vet

2.3 HEBUIVE < C g, v, 3 C = const.
and
¥V is a Y-valued VWiener process with  covariance

operator Q d(see [41).
The relevant - boundary conditions arising in = particular’
physical preblems are included in the definition of ©CA).

Remark

The considerations of Lﬁis paper can be éasily adopted to the
case, when in equation (2.1) we have an operator linear with
respect to the stochastic disturbance (as an additional term or

instead of the one with the bilinear operator).

The opérator Q is nuclear, positive definite and

self—-adjoint, so it can be expanded into the series (seeldl):

@© .
2.4> Q=73 a e o.e

k=1
where a, and e, for R=xr.2,3, ... , are respectively,
eigenvalues and orthonormal eigenvecters of Q {e > is

kil 2.
the Schauder basis in Y 2>; it 1is known that. ak>0 for

k=r,2,... and Zak<w . Owing to formula (2.4)> the Wiener process
¥ has the representation in the form of series:
@

2.5 Wcto = 5 Vuk ekﬁkct)
k=1

»

where ﬁkCt) for ker,=2,... ,» are preal iﬂdependenh ¥Wiener
processes with the unit intensities.

Substitution of expression (2.5> into eq. <(2.1> leads to the
st.ochastic differential equation with the stochastic differential
of a real Hilbert space valued Viener process being transformed

to the series of real stochastic differentials:



e

@
di = AU dt + 3 13: {BUje, dp3,C(t>

k=1
2.6>

Ucoo = UO

Equation (2.6> is meant in Stratonovich interpretation; we
consider its mild solution, that is the solution of the following
integral equation (see [11):

@ : X

2.7 Jced = K(t)Uo + 5 10; f KCt-s)[BU]ekdﬁsz)
k=1 (=]

Remark

In the case when for the description of a physical phenomenon
we need a complex space valued Viener process, the above model
can be also applied. For this purpose one should ' decompose the
process into its real and imaginary parts and then. redefine the
operator B in such a way that it is acting on .a real product
Hilbert space in which the real and imaginéry _components take

values.

¥When real-valued processes are considered, for stochastic
Stratonovich integral it is known the Furutsu-Novikov formula
which, roughly ;;eaking, makes possible to separate the mean
values of functionals of Gaussian processes. The essential point
of the seperation procedure depends on the differentiating the
functional with respect to the process being its argument.. In the
case of the integral performed in equation <2.7> it is also
possible to apply an infinite dimensional counterpart of such a
. formula. Derivation of it is based on Daletskii-Paramonova theory
(see [51). E
The functional differentiation in generalized Furutsu—-Novikov
formula needs defining the space of measures in which appropriate
Gaussian measure (corresponding to the ¥iener process in (€2.72>

is contained.
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Let 3 be the Hilbert space of 2%-valued measures generated

by sequences of real functions Py k=y =2 ... , such that:
© | T
2.8 O a, f pk(t) dt < o

1 o

An element of the space has the form:

C.0 = c.2
v (vp‘ P

A KIEIES

L
where

v

Vg CA> =] a p2Ct> dt  for Ae 0C0,T> , kmI,2z,
A
and the inner product in %N is generated by (2.8).
The stochastic integral in <€2.7> can now be regarded as
Daletskii — Paramonova integral (see [5]1) with respect to the

Gaussian element from 3N of the form:
2.9 8 = (<, ﬁ‘,f" B, ey

Let gCt,s,B> , t,s € [0,T], be an X-valued functional on the
element BeN . The Frechet differential of g on the element ven

has the form:

(T2 .

®
€2.100> &’Ct,s,Bley = 2

I 6g(t s,B8>
(T)
o

1

The expression (2.10> represents differentiation of g with
respect. to "deterministic variations of the paths of real white
noise processes” corresponding to Wiener processes /3 .

Consider the stochastic integral of the form:

t

@
€2.11)> S va; f 6,Ct,s,B> dB, (s>,
= o

k=1

- where gk€¢,s,B) for ker,z,... ,t,s € [0,T] takes its values in X

and BeN is defined in (2.9)>. If we assume that 8, > RET, 2o 5
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are differentiable and moreover

6gk(t s,8)

€2.12> 21—' I {|| Y

"}ds(m,
b ¢
then the mean value of integral (2.11) satisfies the ralationship
being the infinite dimensional counterpart of Furutsu-Novikov
formula: X

t

€2.13> }:{ § Ve ng(t s, B)dﬁsz)} § CN J {

o o

&g, Ct,s, BO.
s
63, (s> }

All the formulae written up to now are formally the same as in
the case of real Hilbert space X (see [71>. Difference in
notation between real and complex cases starts from definitions

of the characteristic functional and moments.

Cheracteristic functioral.

LetRU(t), tel0,T1, be an XR-valued stochastic process. Let UCtD
denotes the comﬁlex con jugate of the process UCtJ) and A, 1* be
two arbitrazry elements of R, The (spatial> characteristic

functional of UCt) is defined as:
€2.14> Fre, A, A"7 = E{exp[i @CtI,2),+i (U?TS.A')X]} , te [0,T]

The functional defined in such a way gives complete probabilistic
characterization of the complex space valued process UCt> at
arbitrary fixed time ¢. 1In particular, it allows to obtain

moments of any order of the process UCt) (at the same t).

Moments.

Let us define:

def
”1 =y
€2.15>
def
U, = T,

where the bar, as always in this paper, denotes the complex
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con jugation. Let the moment of 1@-th order of the stochastic

process UCt) be defined as:
€2.16) r Ctd = z{u Ctoel, Ctdo ... ol cn} R
Rk, . kS K 5 K

fnp hi=z,2, isr, @, «s.ybl ,  1mr,a,

¥e identify the moments for which the numbers of symbols “1" in
the multiindexes are equal, that is, there are l+1 essentially
different moments of l-th order; for the sake of simplicity in

notation let us write them down as:

€2.17> Pl_p'pCt) - E{Pkit)suhgt)e Ve ekat)} "
where

hl = r for i=mr,2,...,l-p ,

hi = 2 for isl-p+r,...,l ,

if p=mr,2,...,1-1 ,
€2.18)> or
ka = 1 for i=r,2,...,l1 if p=o

hi = 2 for i=r,2,...,l1 if p=l.
Moments (2.17) can be easily obtained from the functional

(2.14)> by differentiation:

€2.19> | ML, St = SLFLE,AN"T
4 - SA"TPsLP A=0
A"=0
(the derivatives are in Frechet sense).

The characteristic functional ¢(2.14> and the moments (2.17>
are taken on the values of stochastic process UCt> at arbitrarily
fixed time t. However, using the governing equation (2.1> it is
possible Ld derive equations which describe the evolution in time
of the characteristic functional and the moments of any érder. In
the following sections we present formulae being the complex
space counterparts of the results obtained in [7] for a real
Hilbert space valued stochastic processes along with the

appropriate lemmas needed for their proof.
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3..Equation for the characteristic functional.

The derivation of the equations for the characteristic
functional and the moments in the complex space case requires the
analysis of two stochastic equations: the equation (2.1) for the
process UCt> and the additional cne for its complex conjugate
wo:

(3.1>

a0 = AV 4t + CBUI dwce> ., +eC0,T1
UC0, oo -Uo P a.s. , er R .

The counterparts of all the lemmas needed in proofs of the
theorems in the real state space are nov extended as they concern
two equations mentioned above. We quote them without proofs:’
because the reasonings are quite simmilar to those in [T1).

The first lemma allows us to calculate the Frechet derivatives
of the solution processes irremissible to use Furutsu-Novikov

formula (2.13> effectively.

Lemma 1
Let UcCt,B>, UCt,BJ be the solutions of equations (2.1> and
(3.1) respectively, once Frechet differentiable with respect to

B and let

gce., 0., [puct.Brje,, LB [ Bt for
&3,Cs 503,Cs)
k=r,2,... be continuous in t and bounded for ¢=0 . Then
e By g
€3.2> 63, C»
m = 0 for s>t
53, (s>
and ?
SUCt.B2 w HCt-sIVE] KCE-sO[BUCS,BX]e,  +
53, (80 : \

{ 3

@
+ ﬁrj'xa-J p-&Ucr. 8 ap, ¢t
E T [ 26,Ca0 ]e B.<T
s



€3.3 v
iL;iLE; = HCt=-s27d K(t—s?]BU(s,ﬁ?]e +
&3, (s I: k

t

@©

o ST, B

+ ‘§11ak J | (Pl [ B EE:?ZS_ ]eL dp, cv2
= s

for 0< s <t

»

where HCt> is the Heaviside function:

0 t<0

I
H(t> = = +=0
1, t>0

The following lemmas are of technical nature; they constitute

essential steps of the proof of the main theorem.

Lemma 2

let 2 : [0, T] —/ R be an arbitrary smooth function and

As S(A),h.e ©CA>. Then the characteristic functional of the

solution of the equation (2.1) satisfies:

T

iE{ Iy(e)(vct,e),fq*x)x e

o

iCUCE B, _+iCOTELB,A™
= xde} +

iCUCE, B, A 1 CTTE T

"dt} =

T
+ iE{ chn(zm, AN e
o

.0
- ‘ T
- -
= ITCU[M_ A')\]d! + chep[éru,l,x 1 E'A'Jde.
SA x . <
o

o

where A" and A are the operators adjoint to 4 and d in

Y4
R.
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Lemma 3

Under the assumptions of Lemma 1 the following equality holds

true:
3 iCUCE, B2, N, +iCRT, B3,
€3.5> =2 e -
&3,
2 & iCUCE, B, N+ RT, BT,
= = 16: [[ B e ]ek, A ] +
2 S\ X
-
S iCUCE, B2, 2D +iCTTE,B3,A™D
I » ’ x ’ ’ x -
+ Z 16: [[ B _Z:' e : ]ek. A )x

for ker, z,..

Lemma 4
Let the assumptions of Lemmas 1 and 2 be satisfied and let the

sequences of functions

P 1CUCE, 82,00 +i (KT, B3,A™>,

€,(s,B8> = ~[ B e ] e, for
S\ 2
Razr 2, ... , and
3.6 :
& 1CUCE, B, +CRT, B3,
8,(s,B> = [ B —g e X ] e, for
)
k=r,2,... ,fulfill condition <¢2.12>. Then:
4 ,
@ : 1CUCE, B2, 00, +iIRT, B3,A™>
z{]}cu S 7 ([uce,Bo]e, 2] e Xap, > +
k=1 3
o ]
T <5 -
ey 1CUCE, B0, +CTT,BI A,
+ che) s v ([FeEE Jeu-2") = dp, Ctom
o k=1
T

gak ([2& ([2Ee222]e 0] Joun ) +
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3.7
¢ S ([a5 ([FE200 ]0a) Jon ) -
¢ Fe ([oge ([# 20200 0] Jon), -

+ kglak ( [F . [ [FE2L " A"1 STt A Te, .\']x Jewr"), 3 et

The above lemmas lead to the main theorem diéplaying the form
of differential equation C(in Frechet derivatives? satisfied by
characteristic functional (2.14> of the solution of equation
€2.1>. »

Theorem 1
Let the solution u of the equation 2.1> fulfill the
assumptions proposed in Lemmas 1-4 - and let its characteristic
functional FL[t¢,\7 possess the first order temporal derivative
continuous on the interval [(0,T} . Then FI[t AJ satisfies the

following differential equation:

- -
e L AT - ['SF[*vh-’* 1, A').] + [‘5_.__.7..._._}'“»"7‘ R Z'A'] +
’ X &, X

ot SA A
s ez (P e A ]

. Eak ([2% ([7 2429 e 07 Jon ), +
3.8>

o ([P ([2222T Je ] o), -

+
x
"M 8

1



@
S R s e R
N a” &\ SR FR e
where A€, h'eﬂ(l),along with the common initial and

normalization conditions:

. % ) -
1CU NI +iCT A"

3.9 FEO A A"1 = e
<3.10> Frt,0,01 = 1
Remark

In paﬁer [8] the method of constructing the characteristic
funétional of the solution to some particular stochaspic
differential equation is presented. Following the reasoning of
present. paper, that is considering the additional equation for
the conjugate process, it is also possible to perform such a
construction for complex space valued equationst

Equation <(3.8) can - be the used for derivation of the
equations for the moments of the solution of our stochastic

evolution equation (2.1).

4. The complete sel of momeni equations

To obtain the equations for the moments of the solution of
eq.(2.1) let us assume that its characteristic functional is
represented in the form of series (A‘ daf A 12 daf l'):

@® 8

PN 8
€4.1> B I mlt 5y P \CtIehy ®... 8%, ,
=1 pZo pICl=po! T17° 7L 1 1

(the dot denotes the inner product of tensors), where the indexes
BN R

.7 , satisfy the condition given in €2.18)>. After
substituting series 4.1> into the equation for -the
characteristic functional and comparing the coefficients. of the
like powers of A and A" in the left and right hand sides, one

arrives at the following moment equations:
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ik

R
&
€4.2> =r Ct> =S A ' Ctd +
SRR ‘_2 i kR
j =1
i ™ L kJ . k: . p
S > 2 a, [i BJ G B‘ rhl..kft) ]ek} jek A
k=4i- i, j=1
with the initial conditions:
<4 3) p ’Fk ‘Ak<°) = Uk(O)a ol eUkCO) !
. 1 L i 15
where i=1r,2,..., and the new% operators are defined for the simple
tensors of the form:
4.4 F =7, @ @...0F
kikz...kL h: kz kR,
as
kj kj
€4.5> . AJ kakz"'klz 7R1®yk2®...®A ?kjall'®yht =
5 j %
4.62 [Bj Pkthz"'kljek = 7h‘®7h23"‘&[L 7k;]ek®...®?hi y

3
\

hjur,z. Jj=r,z,... , and, analogously toc <(2.15)>:

A1 = A , Bt = B s

A* = 3, B? = F .

It is observed that the equations (4.2) are separated for each
{ and arbitrary fixed set of indexes h‘,kz, . ,kL. This is the
typical property of the linear equations with parametric or
external white noise excitations. 4

The remark concerning symmetrization of the moments in the
case of equation (4.2) remains valid but it conceéns the couples:
the complex operator and the appropriate function. The eguations
written in the form (4.2) , even if the condition (2.18> 1is not

satisfied, are correct provided the correspondence between

indexes k. in the operators and in the moments holds.
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It can be shown that the equations <4.2) for l=r1,2,...,
possess unique solutions. The proof is similiar to that in (7]
for the real Hilbert space valued equations. This fact preserves
also the uniqueness of the analytical solution (that is of the
form €4.1)) of the functional equation (3.8>. The existence needs
some more restrictive assumptions on operator B; they could be

explicitely precised for particular examples.

5. Illustrative example
As a simple illustrative example consider the equation
" obtained from the parabolic approximation of Helmholtz equation

(see [101>:

aUCr, )

5.1> 2R —————— + A UCT, 0D + E2eCr, @dUCr, 0> = 0,
: ax o

Uco, o> = U,

where r=Cx,y,z2, which can be written down in the abstract

evolutionary form (2.1)>:
5.2 dU = AU dx + [BU1 adwW(x> ,

where now spatial variable x corresponds to time ¢t in (2.1>, and

the operators are defined as:

A=t 4 = e [ Qii + éii ],
i 2k agz
5.3 o
ik
B = =
2

The spaces X and Y are chosen in this model as:

R

L%CR?, 0,
(5.4>

Y

L3R, R.

¥We assume that random field &Cx,y,2? is Gaussian with a =zero

mean and &—correlated in x:



(5.8> E{»e(x.y.z)e(x’,y’,z’) }-a QCy~-y’ , z=2" 26Cx=x"D.

The field £ is with respect to y,z sufficiently smooth, such
that product &l takes its values in XR. The eigenvalues and
eigenvectors of operator Q requested in expansion (2.4> are now

the solutions of the integral equation:
<5.6> I J oy-y’,2z-2’2 e, (y’, 2’3 dy’ dz’ = o e (y,2z).

The covariance operator is.the integral one with the kernel
QCy-y’,2z~z’) and process ¥ in equation ¢5.2) is defined as

: x
5. 7> VCxD = I eCx’,y,2> dx’.
o

The conjugate operators needed in the equations for the

functional and the moments are:

: L (2, &
II—ﬁ:A&-“Z—;-—[Ey—Z‘P—'],

o

<5.8>

The equation for the characteristic functional (3.8> in this
‘particular case of partial differential equation ¢5.1> is the
differential equation with Volterra variational derivatives and

has the form:

o 4 i & .
R A = I Idr1 ((8s ——— PrxAA"T XTFT -
ox 2k,

ENCr D
S L] -
5.9 A R A S F AR C D ] =
[N Crl)
1 kZ

- = -f_ I I dr, I I dr;vQ(r‘4r;) x
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5
x { S e [ Py wemmme—en FEx,l,A.J ] -
SxCr 0 x>
goTi [ erts . FLx, A, A 2 ]
- r e » Ay iy
1 sacr D t L Cr
Acr, > o [ T Frx,A.A"3 ] *
- r ——— s A,
17 & c;-!)"' 17 sicr)d
T S R - =
#ACE ) e [A €r}) —g——— Fix,A,A"7
SA Cr‘) SA Cr;)

where ri=(y oz r;n(y’,z‘) e R 2
ACE 2, AVCr, ) « R = L*CF, @2

and the initial conditions (3.92, (3.10> are:

Joks

FLO, A A T = exp { i f [ U Cy.2> XY, 20 dy dz +

+1i J (TS A Cy,2> dy dz },

F[(x,0,0] =1

The equaticns for the moments of any order are

g
5.10> 5; Fkl'_kl(x,yi,zi,.A.,yl,zL) =
; . k41, g2 52
L ST [ _ ._21 Cy, L ERat 52 5 b
1=1 2k0 ayl azu 2! L

and



sz..kl(oTyi’zt"""yl'zl) = U:1Cy1,2t?x xU‘:L(yL,zL).

As.it is known from the general considerations for equations
€4.2>, the equations (5.10> have unique solutions.

The equations for the characteristic functional and the
moments of lover order of the form (5.9) and (5.10) coincide witﬁ
the analogous equations obtained in (101 with the use of
classical Furutsu— Novikov formula in spite of the fact that
stochastic integrals used in [10} and in present paper are
defined in some other way. The reason of this is the specifie
form of operator B in equation ¢(5.1) <B does not act on the

spatial variables of the Wiener process).
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