ACTA HYDROBIOL.	15	4	$427-436$	KRAKOW 1973

LUC.IA KRZECZKOWSKA-WOEOSZYN

Plankton nowych stawów przesadkowych gospodarstwa Golysz
 The plankton of new transfer-ponds at the Golysz Farm

Mémoire présenté le 5 mars 1973 dans la séance de la Commission Biologique
de l'Académie Polonaise des Sciences, Cracovie

Abstract

The present work is a continuation of earlier investigations on the plankton of the first and second transfer-ponds in the first year after their construction. It discusses the development of plankton with the application of another type of fertilization. The observed changes in the phyto- and zooplankton indicate a structure more consistent with that occurring in water bodies utilized for a longer time. The analyses of the fertilization did not reveal any influence on the numbers of plankton. Among other factors, some role was probably played by its composition, chiefly among the algae.

The investigations included four first transfer-ponds (Nos 1-4) and four second ones (Nos 5-8) at the Experimental Farm of the Polish Academy of Sciences at Gołysz (district Cieszyn). The composition and the quantitative relations of plankton and its development in the annual cycles from the first three years after the construction of the first transfer-ponds (1958-1960) and from the first two years for the second ones (1959-1960) were published earlier (Krzeczkowska-W ołoszyn 1966). In this work the description of the territory and ponds, data on their fertilization and exploitation and on higher plants occurring in them were given, and also the available literature concerning the problem was discussed.

The present investigations were based on the material collected in 1961, from 10th June to 2nd July from the first transfer-ponds and from 7 th July to 6 th August from the second ones. The different type of fertilization introduced in that year is presented in Table I.

Tabola I. Typ zastosowanych nawozór
Table 1 . Type of the applied fortilleers

Stawy Ponde		$\begin{aligned} & \mathrm{N}_{I} \\ & \mathrm{~N}_{0} \end{aligned}$	Namozenie Pertilization	
Przesadk 1 Transfer- -ponds	I	1	```Supertomesyna - Thomes phosphate Saletra amonowa - Ammonium nitrate (% 3 damkaoh - in 3 doses)```	$\begin{aligned} & 0.45 \mathrm{q} \\ & 0.40 \mathrm{q} \end{aligned}$
		2	nie namoziony - unfertilized	
		3	Supertomasyna - Thomas phosphate Saletra amonowa - Ammonium nitrate ($\boldsymbol{\sigma}^{3}$ dawkach - in 3 doses)	$\begin{aligned} & 0.45 q \\ & 0.30 \mathrm{q} \end{aligned}$
Przesadk 1 Transfer- -ponds	II	4	nie namozony - unfertilized	
		$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$	Superfosfat - auperphosphate 1q Saletra amonowa - Ammonium nitrate (Jednorazowo - in one dobe)	19
		8	nie nemozony - unfertilized	

Characteristics of phytoplankton

In the first transfer-ponds the smallest amount of phytoplankton was found in ponds 1 and 4, more than twice as much in pond 2 , and the greatest amount (more than seven times as much as in the first two ponds) in pond 4 (fig. 1).

In ponds 1 and 3 Euglenophyta and Chlorophyta were most numerous, in pond 1 the former and in pond 3 the latter group of algae prevailing (fig. 2). In pond 1 the dominating genus Trachelomonas (chiefly Tr . volvocina) formed over 50 per cent of specimens of algae, while among various Chlorophyta the most common was Eudorina elegans. In pond 3 species of the genera Ankistrodesmus and Scenedesmus were more numerous than the above-mentioned ones (about 60 per cent). In ponds 2 and 4 Chrysophyta and Chlorophyta dominated, the chrysophytes being especially numerous in pond 2 (fig. 3). Immediately after the filling of pond 2 Dinobryon divergens occurred in masses, being almost the only component of phytoplankton at this time. In the period of filling it constituted about 80 per cent of all algae. After some days Eudorina elegans already prevailed, and later on some species of Trachelomonas and diatoms (Table II). In pond 4 the chrysophytes Dinobryon divergens and Synura uvella, or the diatoms, chiefly Synedra acus, dominated. Among Chlorophyta species of the genus Ankistrodesmus and Eudorina elegans were most often recorded.

In the second transfer-ponds the most abundant development and similar numbers of algae were observed in ponds 5 and 7 ; in pond 8 their number was almost 40 per cent, and in pond 6 about 5 times lower. In ponds 5, 7, and 8 Chrysophyceae prevailed, similar numbers of

$\begin{aligned} & \text { markon } \\ & \text { Taxon } \end{aligned}$	πr preesadil No of tranafer -poed	Takson T'azon	Nr protasadki No of tranler -pond
Coelosphacrium Nagelianum Unger	8	Crucigonia minima Brunnth.	12367
Gloocoapsa limnetica (Lemm.) Hollorbaoh	3467	- rootangular1s (A. Braun) Gay	1235678
G.leocapsa sp.		- tetrapedia (Kyrchn.) Weit ot liast	12367
Gomphosphaorla sp.	\&	Diotyosphasriual pulsizellum Vood	5678
Lyugbya sp.	${ }_{5}$	Dimorphococcus lunatus A. Braun	
$u_{\text {erdsmopedia sp. }}$	57	Blakatathrix lacustris Korsohik.	345
oscillatoria	7	000ystis gigas Archer	${ }^{6}$
Euglena sp. div.	123478	Pediastrum Boryanum (Tury.) Menegh.	12345678
Phacus longicauda (Ehr.) Duj.	6	- duplex Heyen	12345678
- plouronectes (Mull.) Daj.	5	- tetras (Ehr.) Ralfs	12345678
- tortus (Lerm.) Skv.	$3 \quad 7$	Sconedermua acuminatus (Lag.) Chod.	123467
Phacus sp.	$1 \begin{array}{lll}1 & 3 & 7\end{array}$	- arcuatus Lemm.	13467
Trachelomonas amata Stein	1235	- ecornts (Ralfa) Chod.	234578
- hisplda (Party) Stein en Defl.	24678	- quadricauda Chod.	12345678
- volrocina Ehr.	12345678	Scanedesmus sp. div.	12345678
Trachelomonas sp.	36	Schroederia Judayl g. M. Smith	3
Ceratium hirundinella Duf.	2345678	- sotigera Schroed. Lomm.	23
Perlainium my.	12345678	Selenastrum Bibralanum Reinsch.	$3 \quad 57$
Dinobryoil bavaricum Imhof	1 6	Sphaerooystis Sohrooteri Chod.	245
- divergeas Inhor	12345678	Tetratdron oaudatum C. Hansg.	12
- sertularia Enr.	5	- trigonum (NAg.) Hansg.	13
Mallomonas sp.	68	- mininuar (A. Braur) Hancg.	25
Synura uvella Ehr.	245678	Tetrastrua stauroceniaoforme (Schroed) Lemm.	5
Uroglena volvox ghr.	3	Quadrigula Chodatii (Tan.-Ful.) G.E. Smith	5
Asterionella formosa Hass.	6	Spirozyra sp.	487
Contronella Reicheltil Volgt (C.Rostaplnisid	34	zygnera sp.	6
Fragilarla oapucina desmaz.	678	Arthrodesmus oonvargens Ehr.	4
- orotonensis Kitton	5678	- incus brèb. Hass.	6
Synodra acus ratz.	1234678	Clostarium Katzingil Brèb.	137
- ulna (Nitzsoh.) Ehr.	234678	- Leibleinit kutz.	$1 \begin{array}{llll}1 & 3 & 5 & 7\end{array}$
Symedra sp.	12678	Closterium sp.	37
Eacillarlophycoze n. det.	12345678	Cosmarium Botrytis Menegh.	$2 \begin{array}{llll}2 & 4 & 6\end{array}$
Ophlocytium capltatum Wolle	5	midum Nords	12357
Triboneara sp.	5678	- subprotumidum Nordst.	123468
Eucorina clegans (L.) Ehr.	12345678	- Turpinil Brèb	$3 \quad 567$
Genium neotorale Mall.	247	Cosmarium sp.	12345678
Pandorina morum Bory	245	Desmidium Swartzil Ag.	567
Volvoz aurens Ehr.	3	Euastrum insulare (Wittr.) Roy	7
merospura sp.	57	-'Turneri West	5
Stifeocionium sp.	2 -	- verrucosum Ehr. var. alatum molle	6
Actinastrum Uantzschil Lagerh.	5678	Euastrum sp.	8
Anlifistrodesmus faloatus (C.) Ralfs	345678	Hyàlotheca dissiliens Brèb.	3
Anktstrodesmus sp. div.	12345678	Pleurotanalum trabecula (Ehr.) Nag.	5
Boiryooocens Braunil kutz.	356	Staurastrum alternans Brèb.	$4{ }^{4} 8$
Charsoium sp.	467	- tetracerum (k\#t) Rells	568
Charaozopsis sp.	5	Staurastrum sp. div.	245678
Chloragitum ep.	78	Xenthidium antilopoum (Brëb) Kutz.	2
Coolestrin proboscldeum Bohn.	5	Chlorophyta n. det.	235

Lohmann's formula

$$
\sqrt[3]{\frac{k}{4}}=10=
$$

Ryc. 1. Ogólna ilość okazów fito- i zooplanktonu w przesadkach I (nr 1—4) i II (nr 5-8)
Fig. 1. Total number of specimens of the phyto- and zooplankton in transfer-ponds I (Nos 1-4) and II (Nos 5-8)

Chlorophyta also being recorded in pond 6. In pond 5 in the first sampling the mass development of Dinobryon divergens (99 per cent of the total number of algae) was observed. After 5 days it already formed 47 per cent, but Pandorina morum also occurred in similar numbers. The occurrence of the latter species was temporary, as in the following period it was only sporadically recorded, while Dinobryon divergens continued to dominate (65 per cent). Towards the end of July and August the green algae chiefly developed with the dominance of the species of Pediastrum, Dictyosphaerium, Scenedesmus, and Tetraedron. A characteristic decrease in the number of algae occurred in August. In pond 6 Dinobryon divergens dominated at first, with a maximum on 12 th July (71 per cent). The more abundant development of green algae, with the dominance of Ankistrodesmus species, was already observed on 19th July. In this pond a much greater share of diatoms was noted, chiefly at the beginning and in the second half of the period of its being filled. In pond 7 in the first two periods the mass appearance of Dinobryon divergens was noted (99 and 95 per cent of the total number of algae). After 5 days it constituted only 1.3 per cent, while a larger number of diatoms (60 per cent) and of green algae, chiefly species of

Scenedesmus and Ankistrodesmus (24 per cent), occurred. The chlorococcous Chlorophyceae, especially the above-mentioned ones, prevailed up to the end of the exploitation of the pond, with the exception of the sampling on 24th July when Eudorina elegans (99 per cent) dominated. In the first period in pond 8 a water bloom of Dinobryon divergens (99 per cent) was recorded, after which its number gradually decreased, so that on 24th July it was only noted in small numbers. At this time Synura uvella developed abundantly (30 per cent) as well as Chlorophyta (Dictyosphaerium pulchellum, Ankistrodesmus, Scenedesmus, Eudorina elegans), which prevailed up to the end of the season. A more numerous appearance of diatoms was observed on 12th July (49 per cent) and on 19th July (20 per cent).

Characteristics of zooplankton

The greatest number of zooplankton animals occurred in pond 2 , there were fewer in ponds 1 and 4, and fewest in pond 3 . In the ponds 1,2 , and 4 Bosmina longirostris or Keratella cochlearis dominated, the quantitative relations between them being variable. In pond 1 Bosmina longirostris constituted 64 and 79 per cent of animals in the first two periods, while in the later period Keratella cochlearis prevailed ($32-36$ per cent). In pond 2 Keratella cochlearis constituted 62 per cent after filling, but already on 16th July only 10 per cent, while Bosmina longirostris amounted to 72 per cent. Later on, up to the moment of draining the number of Keratella cochlearis again increased and reached 75 per cent of the total zooplankton in the last sampling on 2nd July. In pond 4, as a rule, Keratella cochlearis dominated ($37-90$ per cent). In the middle of June only Bosmina longirostris occurred in greater numbers. Copepods prevailed only in pond 3, chiefly their larval stages (nauplii), or Cyclops (32-48 per cent). At the end of June Anureopsis fissa dominated (37 per cent) and at the beginning of July Brachionus angularis (25 per cent). In some first transfer-ponds (especially in 1 and 2) great numbers of eggs of Bosmina longirostris and Keratella cochlearis were noted.

In the second transfer-ponds the greatest numbers of zooplankton were noted in pond 7 , in the remaining ponds the numbers being smaller almost by half or similar. In ponds 5, 6, and 8 the zooplankton was of rotiferous character, and in pond 7 of a cladoceran-rotiferous one. Among rotifers the dominants were, as a rule, Keratella cochlearis, Polyarthra vulgaris, Synchaeta, Conochilus, and Anureopsis fissa, and among cladocerans Bosmina longirostris (Table III). As for Copepoda their larval stages or Cyclops were more common but their numbers were always smaller than those of rotifers and cladocerans. In the individual ponds

Tabels III. Skład fakościony zooplanktonu wrzesadkach plerwszych (nr 1,2,3,4) 1 drugich (ar 5,6,7,8)
Table III. Qualitative composition of zooplankton in the first (Nos 1,2,3,4) and escond (Nos 5,6,7,8) transfer-ponds

Takaon Taxon	Nr przesadki No of transfer- -pond	Takson Taxon	Nr przesadki No of trangfer- -pond
Asplanchna brightwelli Gosse - priodonta Gosse Asplanchna sp. Anureopsis fisas (Gosee) Brachionus angularis Gosse - calyctilorus Wierzojski - diversicornis Daday - quadrísentatus Hermann Brachionus sp. Conochilus unicomis Rouseelet Conochilus sp. Euchlanis sp. div. Filinia brachiata (Rousselet) - langieeta (Ehr.) Keratella cochlearts (Gosse) - - var. tecta (Gosse) - quadrata (O.F. Inthl.) Lecane bulla (Gosse) - luna (0.F. Mull.) - Iunaris (Ehr.) Learne sp. Lepadella patella Null. Notholce ep. Pedalia mira (Hudson)	2 3 5 7 2 5 6 7 2 3 5 6 7 8 1 2 3 4 5 6 7 8 1 3 4 5 6 1 2 3 5 7 2 3 6 7 8 1 2 3 7 8 1 2 3 4 5 6 7 8 1 5 6 7 8 1 5 7 8 1 4 5 6 7 8 5 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 1 2 3 4 5 1 1 5 6 8 1 5 2 3 5 6 7 8	Polyarthra euryptera Merzejaki - major Bruckhardt - vulgaris Cariln Synchasta sp. Testudinella patina Hermann Trichocerca oylindirioa Imhof Triohooerca sp. Trichotria truncata Whitelegge Rotatoria n. det. Rotatoria (ova) Bosmina longirostris 0.F. Mill. Ceriodaphnia reticulata Sar - quadrangula O.F. Mitll. Ceriodaphnia sp. Chydorus sphaericus O.F. 3tll. Daphnia longispina mitll. Diaphanosoma brachyurum Lieven Polyphemus pedioulus Linne. Scapholeberis mucronata O.F. MH11. Cladooera n. det. Cladocera (ova) Cyclopidae Diaptomidae Naupli1	

the quantitative relations of different species varied in time. Thus, in pond 5 the nauplii prevailed at the beginning of July, after a week Synchaeta dominated, later being replaced by Keratella cochlearis and Polyarthra vulgaris. On 6th August the dominance of other rotifers (Conochilus and Anureopsis fissa) was noted. In pond 6 the specific composition, very similar at first, was characterized by the occurrence of a greater number of Euchlanis dilatata on 19th July and of nauplii, Polyarthra vulgaris, and Pedalia mira on 6th August. The character of zooplankton in pond 7 was chiefly influenced by the development of Bosmina longirostris, which constituted as much as 90 per cent of zooplankton on 19th July and reached the greatest number in all the second transfer-ponds. In pond 8 the rotifers Polyarthra vulgaris, Synchaeta, and Keratella cochlearis prevailed up to the end of July. Only in August did Anureopsis fissa develop abundantly (22-33 per cent) besides the most numerous Polyarthra vulgaris.

Discussion

With reference to the phyto- and zooplankton communities of the investigated ponds, described in the first years of their filling (Krzecz -kowska-Wołoszyn 1966), the later stages of their succession were observed in the present investigations. As far as the phytoplankton is concerned, the most striking change was the prevailing share of another group of algae - Chrysophyta. Some authors, chiefly the Russians, interpret in outline the disappearance of Euglenales and Volvocales, and the increasing quantitative and qualitative share of Chrysophyceae, Dinophyceae, and Protococcales, as the process of establishment of a new pond. In the first years after filling the zooplankton of the investigated ponds was of rotiferous character. According to the opinion of other authors dealing with this problem, this is characteristic for the newly formed zooplankton communities. In the present investigations a much greater share of Cladocera and Copepoda was found. In the later stage of stabilization the dominance of crustaceans becomes established (Denisova et al. 1971, Morduchaj-Boltovskoj et al. 1971). It is striking that in the first transfer-ponds built and filled a year earlier, only one of them still preserved this rotiferous character (3), while in the second ones, filled a year later, three ponds (5, 6, and 8) still did so. Thus it is justly postulated that the process of establishment of a new water body takes several years (Starmach 1963 , $\mathrm{Sokolo-}$ va et al. 1971). In the present investigations a further decrease in the number of organisms was found, this probably indicating a more advanced stage of their stabilization. It was more advanced in the first transfer-ponds, utilized a year longer. The increased productivity of new water bodies as compared with the longer utilized ones was stressed by' other authors. Unlike the algae, the amount of zooplankton was maintained on a more equal level in the period of filling. These data are in accordance with the opinions of other authors on the influence of carp fry on zooplankton (Grygierek 1962, 1965, Krzeczkow-ska-Wołoszyn 1972). The much greater disproportion of the total number of phyto- and zooplankton in the second transfer-ponds and their much more equalized production in the first ones, is characteristic. The smaller numbers of algae in the first transfer-ponds might have resulted from the more intense feeding by crustaceans, which occur in greater numbers (Grygierek 1970, Januszko 1970). Smaller numbers of zooplankton in the second transfer-ponds may be explained by the more active feeding of the carp fry which had already grown older. This is also indicated by greater decreases in the numbers of Cladocera and Copepoda which, according to the opinion of other authors, might have been a more suitable fodder for older carp fry. The
qualitative composition both among the algae and among the animals was not basically changed as compared with earlier years. In analysing the fertilization no distinct influence on the numbers of plankton was found. It it possible that in the unfertilized ponds some effect of the fertilization applied in the previous years was still felt. As far as the algae are concerned, the composition of the fertilization might also have played some role. In the investigated ponds Chrysophyta dominated. As Januszko (1970) reports, the effect of fertilization of the same type on the increase in the number of Chrysophyta was small, in contrast to other groups of algae.

STRESZCZENIE

Badania niniejsze omawiaịa rozwój planktonu przesadek pierwszych i drugich, w 1,961 roku, przy zastosowaniu innego typu nawożenia. Są one kontynuacja wcześniejszych badań, prowadzonych w pierwszych latach po ich wybudowaniu (Krzeczkowska-W oloszyn 1966). W pcrównaniu z nimi sklad jakościowy fito- i zooplanktonu nie wykazywał istotnych zmian, stwierdzono natomiast dominacje odmiennych grup. Wśród glonów dominowały Chrysophyta. W obrębic zooplanktonu stwierdzono przewage, lub znacznie większy udzial Cladocera i Copepoda. Notowano też dalszy spadek liczebności organizmów. Charakter planktonu oraz tego typu zmiany wskazywałyby, zgodnie z danymi innych badaczy, na późniejsze etapy sukcesji oraz układy bardziej zbliżone do wystẹpujących w zbiornikaclı z dłuższym użytkowaniem. Obserwowano więlssą dysproporcje produkcji glonów i zwierząt w przesadkach drugich, przy bardziej wyrównanej ich produkcji w pierwszych. Mniejsza ilosć fitoplanktonu przesadek pierwszych mogła wynikać z intensywnjejszego wyjadania obficiej występujących skorupiaköw. Natomiast mniej liczny zooplankton przesadek drugich można tumaczyć alstywnicjszym żerowanicm starszego narybku karpia. Rozpatrując nawożenie nie stwierdzono jego wplywu na ilość planktonu. W stawach nie nawożonych mógł jeszcze wchodzić w grę następezy wplyw nawożenia stosowanego w latach poprzednich. Odnośnie glonów pewną rolę mógł też odgrywać jego skład. W badanych stawach dominowały Chrysophyta. Zgodnie z danymi z literatury wpływ tego typu nawozenia na wzrost liczebności Chrysophyta w przeciwienstwie do innych grup glonow jest niewielki.

REFERENCES

Denisova A. I., E. P. Nakhshina, 1971. Hydrochemical regime of the Dnieper river under conditions of regulated flow. Leningrad, Limnol, Conv. 18.
Grygierek E., 1962. Wplyw zagęszczenia narybku karpi na faunę skorupiaków planktonowych. Roczn. Nauk Roln., 81, B, 189-210.
Grygierek E., 1965. Zmiany rozmieszezenia skorupiaków jako wyraz oddzialywania narybku karpi na plankton. Roczn. Nauk Roln., 65, B, 183-194.
Grygierek E., 1970. Wstẹpne wyniki badań wplywu nawożenia stawów na zooplankton. (Porównanie działania weglanu i siarczanu amonu). Roczn. Nauk Roln., 91, H, 467-483.

Januszko M., 1970. Rozwój planktonu roślinnego pod wplywem nawożenia azo-towo-fosforowego w stawach z wylegiem karpia. Roczn. Nauk Roln., 91, H, 485-497.
Krzeczkowska-Woloszyn Ł., 1966. Plankton nowych stawów przesadkowych gospodarstwa Golysz - Das Plankton der neuen Streckteiche der Teichwirtschalt Gołysz. Acta Hydrobiol., 8, Suppl. 1, 47-109.
Krzeczkowska-Wotoszyn Ł., 1972. Zooplankton stawu karpiowego pozostającego pod kilkuletnim zalewem - The zooplankton of a carp pond under conditions of continuous filling. Acta Hydrobiol., 14, 307-315.
Morduchaj-Boltovskoj F. D., N. A. Dziuban, V. A. Eksevtzev, 1971. Die Ausbildung der Pflanzen und Tierwelt in den Stauseen der Volga. Leningrad, Limnol. Conv. 18.
Sokolova N. Yu., A. A. L'vova, E. I. Izvekova, 1971. The formation of benthos in near-Moscow water - supply reservoirs and the role of bottom organisms in the turnover of matter. Leningrad, Limnol. Conv. 18.
Starmach K., 1963. Staw jako środowisko hodowlane (Hodowla ryb w stawach, red. A. Rudnicki). Warszawa, PWRiL.

Adres autorki - Author's address
dr£ucjaKrzeczkowska-Wołoszyn
Zakład Biologii Wód, Polska Akademia Nauk, 31-016 Kraków, ul. Sławkowska 17

