
CHAPTER XV.QUADRATURE (IV).
MISCELLANEOUS THEOREMS, CONNEXION OF A LINE­

INTEGRAL AND A SURFACE-INTEGRAL, MECHANICAL 
INTEGRATION, ETC.466. A Theorem due to Stokes.

Let u and v be two functions of x and y, finite, single-valued and 
continuous at every point within and along the boundary of a given 
region bounded by any given contour line in the plane of x, y 
having no multiple points, and let the differential coefficients 

 be also functions which are finite, single-valued, and 
continuous at all points of the region; then the line-integral 
taken round the perimeter of the contour is equal to the surface­
integral 
taken over the region bounded by the contour. We shall first con­sider u and v to be real functions of x and y.Let the region referred to be indicated, as shown in the accompanying figure, with an inner boundary and an outer boundary, the inner boundary enclosing a region within which the integration is not to be performed.Divide the whole contour into two systems of strips of infinitesimal breadth parallel to the coordinate axes. Two typical strips are shown in the figure, the one parallel to the x-axis being bounded by lines with ordinates y and y + δy, 496

www.rcin.org.pl



A THEOREM DUE TO STOKES. 497and that parallel to the y-axis bounded by lines with abscissae 
x and x + δx. The first intercepts elementary arcsetc., an even number,and the second intercepts etc., an even number.

Fig. 88.The direction of integration is indicated in the figure; the region to be integrated over being on the left hand as a person travels along either boundary, following the direction of increase of s. The signs of δy at the several points P1, P2, 
P3, P4, ... are respectively — δy, + δy, —δy, +δy, ..., and the signs of δx at the points P1', P2'' P'3, P4', ... are respec­tively +δx, —δx, +δx, —δx, etc.Let ur, vr be the respective values of u, v at Pr, and ur', vr' those at Pr'.And let the abscissae and ordinates of the points Pr, Qs, Pr', 
Qs' be x, y with the corresponding accents and suffixes.If we integrate with regard to x along the strip
P1Q2P3Q4, ..., we have [v δy], taken between proper limits, viz.

say, for the strip.
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498 CHAPTER XV.If then we sum the result for the whole set of strips parallel to the «-axis by integration, we have ∫ dy, where the integra­tion is taken for the whole perimeter of the contour. Similarlyfor the strips parallel to the y-axis, if we integratewith regard to y along the strip P1'Q2'P3,Q4', ..., we obtain 
[u δx], taken between proper limits, viz.
and, summing for the strips, we obtain where theintegration is taken for the whole perimeter of the contour.Hence467. A Line-integral taken round a closed plane contour 
may therefore be represented by a surface-integral taken over 
the surface bounded by the contour, and vice versa.Or, we may say that if u, v be the components parallel tothe axes of x and y of any vector quantity, then maybe regarded as another vector quantity at right angles to the plane of xy, and such that the line-integral of u, v round a contour in the plane of x, y is equal to the surface-integral ofthe vector quantity taken over the surface. Thistheorem is part of a more general three-dimension theorem due to Professor Stokes.*468. Extension to Complex Functions.If the functions u and v be not entirely real, let them be separated into their real and imaginary parts, viz.
where u1, u2, v1, v2 are single-valued finite and continuous functions of x and y for all points within and upon the contour, as also their first differential coefficients.

*Smith’s Prize, 1854; Maxwell, Elect. and Mag., vol. i., p. 25.

www.rcin.org.pl



A THEOREM DUE TO STOKES. 499Then we have
Therefore, multiplying the second line by ι and adding to thefirst,

the integrations to be taken as before. Hence the theorem is true whether the functions u, v be real or complex.In any case in which it will follow that
the integration being taken round the perimeter of the contour.The theorem has many very important applications.469. An Interpretation.We may interpret the theorem thus:LetThen that is the mass of a plane lamina bounded by any closed con­tour for surface density is equal to the mass of theperimeter with a line density

470. Illustrations.
Ex. 1. Taking

we have at once which expressions have been

established (Arts. 409 and 452) as measures of the area.

Ex. 2. Let

Then

taken round the perimeter of the contour

= a× area of the figure enclosed by the contour.
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500 CHAPTER XV.

Ex. 3. Consider the effect of integrating

round any closed contour.
Here and

Therefore and
Hence

< area enclosed by the contour.

Ex. 4. If U, V be any single-valued conjugate functions of x and y 
i.e. real functions of x and y, such that U+ι V=f(x+ιy), and if

then [see Diff. Cal., Art. 190],

and round a closed contour

area bounded by the contour.

That many different forms of U and V may lead to the same result is 
obvious from the consideration that the mass of the area bounded by the 
contour for a given distribution of surface density may be equal to the 
mass of the perimeter for many distributions of line density.471. Two Resulting Theorems.If P, Q, U be any three functions of x and y, finite and continuous throughout and along the boundary of a given contour, as also their first differential coefficients, we have

i.e.

the double integrals being understood to be taken over the whole area bounded by the contour, and the single integral being taken round the perimeter in the positive direction, i.e. leaving the area bounded to the left in travelling in the direction in which s is measured.
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MOTION OF A ROD IN A PLANE. 501472. If R, S, T, U be any four functions of x, y which, with their first and second differential coefficients, are continuous and finite throughout and along the boundary of a given contour, we have, supposing suffixes to denote partial differential coefficients,

Hence 

the double integral being taken over the area bounded by the contour and the single integral round the perimeter.Thus

These results will be useful later (Chapter XXXIV.).473. Motion of a Rod in a Plane.Let 0 be the origin and Ox, Oy any fixed rectangular axes in the plane.Let a rod move in any manner in the plane.Let P1, P2, P3 be points attached to it, their coordinates being
Let so thatLet θ be the angle the rod makes at any instant with the x-axis.
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502 CHAPTER XV.Then 

where 
and

Fig. 89.Hence, eliminating R cos θ—S sin θ, 
i.e.

If, then, 0 be the origin and dA1,dA2, dA3 the elementary sectorial areas described by OP1, OP2, OP3, respectively,
Hence, if the points P1, P2, P3 describe closed curves, and A1, A2, A3 be the areas of these curves, and if the rod returns to its original position after making one complete revolution, then

474. Various Cases.If the rod returns to its original position without com­pleting a revolution, rotating in one direction during part
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HOLDITCH’S THEOREM. 503of its motion and in the opposite direction during another part, then ∫dθ = 0; and
475. If then the contours of A1 and A3 be such that the rod cannot complete a rotation, but must oscillate as in the case of the connecting rod in a steam engine, we have
476. If it makes several complete rotations forwards, say m times, and backwards n times, whilst the several points 

P1, P2, P3 describe closed curves once, then ∫dθ = (m-n)2π; and
477. If two of the points, say P1 and P3, are constrained to 

move on fixed curves and the rod rotates once round, as, for

Fig. 90.instance, if the ends were one on each of a pair of confocal ellipses, or on a pair of circles, as in Fig. 90,
478. If P1 and P3 move on the same curve A1 = A3, and the theorem reduces to A2 = A1-πa1a3.This last result is known as Holditch’s Theorem.479. It should be noticed that in the above results, if any of the contours are described in a sense opposite to others, such areas are to be reckoned of opposite sign to the others.
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504 CHAPTER XV.480. Leudesdorfs Theorem.As an application of this theorem, consider the motion of a lamina on which A, B, C, P are fixed points, the lamina being constrained to move so that A, B, C and P describe closed

Fig. 91.curves of areas [A], [B], [C], [P]. Let x, y, z be the areal coordinates of P referred to ABC as triangle of reference. Let AP cut BC at X and the circumcircle at R. Let X describe a curve of area [X].Then
Hence, eliminating the area [X],

Now and
= rectangle of segments of any chord of the circumcircle through P;rectangle of segments of chord.
www.rcin.org.pl



LEUDESDORF’S THEOREM. 505If P lies outside the circle, instead of the rectangle of seg­ments, we may put —(tangent)2, and the theorem may be written [P] = x[A] + y [P] + z [C] + nτt2,
t being the tangent from P to the circumcircle.This theorem is due to Leudesdorf.*481. Motion of a Plane Lamina sliding in any Manner upon a Fixed Plane. Two Theorems.When a plane lamina moves in any manner upon a fixed plane, so that in the end it again takes up its original position, it is clear that every point in the lamina will take up its original position, that is that the several points in their motion have travelled along paths back to the same points from which they started, and may therefore be regarded as having travelled along closed curves. This will be supposed to in­clude paths which are retraced, which may be regarded as closed curves of infinitesimal distance between the outgoing and returning paths. For instance, a finite straight line of length 2α might be regarded as a closed oval—say an ellipse of semimajor axis a and infinitesimal minor axis.Suppose two points on the lamina P1 and P3 to trace out known closed curves on the fixed plane. This will define the motion of the lamina, and P1P3 may be regarded as a straight rod whose ends are describing the given closed curves. Let 
P be any other carried point on the lamina and PP2 a per­pendicular from P to P1P3.Let a fixed point O in the plane be taken as origin, and let P2P3 = α1, P3P1 = a2, P1P2 = a3 and P1P2=p, so that a1 + a2 + a3= 0.We shall continue to adopt the convenient notation [P] for the area swept out by the radius vector OP to any moving point P.Let E be the point of contact of P1P3 with its envelope.Through P draw a parallel PE' to P3P1, and let the outward normal to the E locus meet PE' at E'. Then EE' = p, and the

* See Williamson, Int. Calc., p. 220 ; Lcudesdorf, Messenger of Mathematics, 
1878.
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506 CHAPTER XV.

E' locus is a parallel to the E locus, the area between them being in the case of n complete revolutions nπp2+pS, where S is the perimeter of the envelope of the line P1P3 (Art. 435), 
i.e. [E']- [E]=nπp2+pS or πp2+pS if there be but one revolution of the lamina.

Fig. 92.Let E'P = EP2 = r. Then P1E = α3-r, EP3 = α1+r, and let P1P3 make an angle ψ with any fixed line.Now

. multiplying by a1, a2, a3 and adding, (cf. Art. 473);and if the lamina reoccupies its original position after n positive revolutions, or if n be the excess of the number of positive revolutions over the number of negative ones, the right-hand side is 
(A)Also it has been shown that
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HOLDITCH’S THEOREM. 507eliminating [P2],
(B)which may be written as

482. Remarks.It is assumed that all the areas are described in the same 
“sense.” If in any case one of them be described by its tracing point in the clockwise direction, then in this equation the corresponding quantity [ ] is to be interpreted as the area 
counted negatively; and if one of the paths cuts itself so as to form several loops, the interpretation of [ ] is the same as that in Art. 399, viz. the difference of the odd and even portions.The sign of p is positive when in the same sense measured from P2 as the outward drawn normal of the envelope of P1P3.483. Deductions.Corollary I. When p = 0 the tracing point P is at P2, and supposing there to be one complete revolution of the lamina we get the case already considered in Art. 477, viz.
which is Woolhouse’s Extension of Holditch’s Theorem.*484. Cor. II. If in addition P1 and P3 are tracing the same 
curve, then [P1] = [P3] and [P2] = [P1]- πα1α3 (Art 478),

Fig. 93.and therefore a point upon any chord of constant length inscribed in an oval curve, and which divides the chord into two portions α1, α3, traces out another curve whose area is less
* See Williamson’s Integral Calculus, p. 206.
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508 CHAPTER XV.than that of the original oval by the area of an ellipse whose semiaxes are α1, a3. This is Holditch’s original theorem.*If α1, α3 were interchanged the result would not be affected in this case. If the tracing point be on the chord produced, one of the letters α1, α3 is negative and the traced oval is greater than the original oval by the same amount.485. Cor. III. If the line P1P3 oscillates back to its original position without performing a complete revolution, or if the 
number of forward revolutions is equal to the number of 
backward revolutions, n=0, and

This is the case when the contours are two ovals each lying entirely outside the other and the line P1P3 cannot revolve completely, but oscillates. It is moreover assumed that the line α1+α3 is sufficiently long to allow of the full description of both ovals. If not, the particular oval which is not fully described contributes nothing.
For instance, if P3 travel along an arc of a circle ACB from A to B via 

C and back along the same arc, it has described what we may regard as 
a contour of zero area.

Fig. 94. Fig. 95.486. Cor. IV. If P' be the image of P in the line P1P3 
(i.e. PP2 = P2P'),

and [P] — [P'] = 2pS, which is independent of the position of P2. *See Bertrand, Calc. Integ., p. 365; Williamson, Integ. Calc., p. 206 ;
Lady's and Gentleman’s Diary, 1858.
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KEMPE’S THEOREM. 509487. Cor. V. If P1 and Ρ3lie upon the same curve,
In case a1 = 0, we have

488. Cor. VI. Let O, the mid-point of P1P3, be taken as origin, OP3 as x-axis, and let 0P2 = x, P2P ≡p=y. Let the length of the rod be 2α.

Fig. 96.Then and 
i.e.

Hence the locus of point P on the lamina for which the contours [P] are all equal is a circle whose centre is at
These coordinates are independent of [P]. Hence, for specific values of [P], the loci of the P-points are concentric circles on the lamina.This theorem is due to Mr. A. B. Kempe.*489. We note that if [P1] and [P3] be the same contour, the centre of this circle lies on the perpendicular bisector of the line P1P3.

♦ Messenger of Mathematics, 1878, cited by Williamson, Integ. Calc., p. 210, 
where it is deduced from Holditch’s form of the theorem geometrically.
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510 CHAPTER XV.490. If the closed “ contours ” are merely portions of two straight lines [P1] = [P3] = 0, and taking n = l, 
or when p = 0 also, which is the case of a rod of given length sliding with its ends on the coordinate axes, which are drawn in Fig. 97 as long closed ovals to indicate the direction of rotation.

Fig. 97.Note that in the case shown in Fig. 97 the elliptic area is traced clockwise, the ovals, which are in the limit the axes, are traced one counter-clockwise, one clockwise, and that the areas of the two ovals traced by P1 and P3 are both ultimately zero.It is a well-known theorem that in this case the locus of 
P2 is an ellipse of which the product of the semiaxes is the product of the segments of the moving line, whether the axes be rectangular or oblique.491. Cor. VII. If P lie anywhere on the circle on P1P3 as diameter, we have p2=a1a3, and the theorem reduces to
or if [P1] and [P3] be the same contour,
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A GENERAL THEOREM. 511492. A General Theorem on the Motion of the Centroid of a System of Moving Particles, connected or otherwise.If
be five groups of n quantities each

it may readily be proved by induction that 
and and therefore that

Let there be n particles of masses in the ratios 
and (x1, y1), (x2, y2), etc., their coordinates; and let x, y be the differentials of x and y, viz. dx, dy.The centroid of the system is given by 
whence

Let each particle describe continuously a closed contour in the plane, m1 describing a contour of area A1, m2 describing a contour of area A2, and so on, and let x, y in consequence describe a closed contour of area A. Also let the area of the contour which m2 describes relatively to m1 be called S12, and so on for other pairs. Then the above equation may be written 
and therefore integrating round the contours 
an equation which expresses the area of the contour described by the centroid of the system in terms of the areas of the n
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512 CHAPTER XV.contours described by the several particles and of the relative contours.It will be noticed that the particles are in no wise rigidly connected, but are capable of independent motion; also that the result obtained is necessarily homogeneous as regards the masses.493. If the revolutions of any particles of the system be 
not complete, the various integrals 
refer to the sectorial portions of the several contours which have been actually described during the several displacements of the particles, and represent sectorial areas swept out by the several 
radii vectores from the origin to the centroid, or from the origin to x, y in the first two cases, or the relative area by a radius vector from xr, yr to xs, ys in the third class of integral.494. When the several particles are rigidly connected, the several relative contours are circles, with radii the distances between the several pairs, and traced as many times over as the whole system revolves before re-attaining its original position; and in case of no rigid connection, if one or more of the mutual distances returns to its original position without making a complete relative revolution, in such case the corresponding relative area S vanishes.495. In the case where there are two particles only, we have 
a result established by Mr. Elliott, and reproduced in Dr. Williamson’s Integral Calculus, p. 209, with Mr. Elliott’s Enunciation of this Theorem.496. If in this case there be a rigid connection between 
the points A1 and A2, say a connecting rod, we may take α1, α2 as the distances of A2, A1 from the centroid, and
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ELLIOTT’S THEOREM. 513Also the relative contour has area π(α1+α2)2.Hence
becomes

Fig. 98.Holditch’s theorem is therefore deduced as a particular case of the two particle motion, there being a rigid connection.497. If there be three particles the theorem takes the form
498. Let us apply this result to find the area described by any point P attached to a triangle ABC which moves in its own plane and after one revolution re-occupies its original position. If x, y, z, be the areal coordinates of P with reference to the triangle ABC, P is the centroid of masses proportional to, at A, B, C respectively, where andthe several “ relative areas" are

whence
where t2 is the square of the tangent from x, y, z to the circumcircle if the point be without, zero if upon, or —the rect­angle of the segments of a chord through x, y, z if the point be within the circumcircle ; which gives Mr. Leudesdorf’s result of Art. 480 already established in a different manner.
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514 CHAPTER XV.499. It is worth observing that the locus of points P which give equal areas [P]is -linear terms =0, i.e. a circle,or making it homogeneous,
and the centre of this circle is given by

=two similar expressions,
i.e.which is independent of [P], and therefore indicates that such loci for different values of [P] form a set of concentric circles, which is Mr. Kempe’s Theorem of Art. 488 (Cor. VI).500. It is also worth notice that the area described by the 
centroid of the triangle is given for the case of one complete revolution by
and for the orthocentre 0,

where Ji is the radius of the circumcircle.

Fig. 99.501. In the case of four particles in rigid connection if 
a, b, c, d be the sides and e, f the internal diagonals of
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MECHANICAL INTEGRATORS. 515the quadrilateral formed, we have, in the one-revolution case, 

and similarly if there be a greater number of points.502. In a case where there is no rotation, i.e. where the line joining each pair of particles remains parallel to its original position, or if there be rotation of any of these joins and an opposite equal rotation of the same join, it is clear that all the ,, relative contours ” will disappear and
503. The same result will also hold in the case when the “relative contours,” though not individually vanishing, are such as in the aggregate to destroy each other, some being positive and others negative, for in such case ∑mrmsSrs=0.504. If the several particles be in rigid connection and the figure describe n revolutions before re-occupying its origi­nal position, 

by Lagrange’s “ Second Theorem.” (Routh, Anal. Statics, vol. i., Art. 437); and in that case 
whereM=∑m and κ the radius of gyration about the centroid G.505. Mechanical Integrators or Planimeters.Consider the case of two rods OP, PQ of lengths α1 and α2, freely hinged together at P and the first one OP hinged to a fixed point 0 in a plane in which both rods can otherwise move freely.Let x, y be the coordinates of Q relative to a pair of rectangular axes through 0, let the rods make angles θ1, θ2 respectively with the x-axis, and let θ2-θ-l=ψ.

www.rcin.org.pl



516 CHAPTER XV.Then

Fig. 100.Let R be a point on PQ at distance b from P, and let 
P', Q', R' be the positions taken up by P, Q, R after dis­placements dθ1, dθ2 of the rods.Then R has advanced perpendicularly to PQ a distance, say, to the first order.Then;If Q be made to travel round the contour of any closed curve whose area is to be found, in the positive direction, on completion of the circuit, supposing the point 0 to be outside the contour and OP and OQ to have oscillated back to their 
original positions,

and we have Area bounded by the contour=a2S,where S is the total distance travelled over by a point R on the rod PQ, in a direction at right angles to the rod. And it is further to be noticed that this result does not
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MECHANICAL INTEGRATORS. 517depend upon b, the term involving b disappearing upon integration round the contour. Hence the particular position of the attachment of the point R to the rod is immaterial.506. But if the point 0 be within the contour considered, and both rods make a complete revolution before regaining their original position, 
and therefore

Fig. 101.Now α12+α22-2a2b is the value of 0Q2 when the rods are clamped at the joint P in such a position that OR is per­pendicular to PQ. Call this value of 0Q2, r02.

A circle with centre 0 and radius r0 is called the zero circle. When the system is clamped in this position the motion of R is at right angles to OR, i.e. in the direction of PQ, and R has no motion at all at right angles to the rod PQ on which it lies. Hence when 0 lies within the contour the area of the zero circle, viz. πr02, must be added to α2S to give the area of the contour.Again, if one rod, say OP1, oscillates back to its original position whilst the other PQ makes a complete turn, then 
andSimilarly, if PQ oscillates but OP revolves, 
and
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518 CHAPTER XV.507. The general result is therefore that the area traced by the pointer is or or or according as neither a1 nor a2 complete a revolution,both complete a revolution,α2 completes a revolution but a1 does not,
a1 completes a revolution but α2 does not,in each case the arms of the instrument occupying the same position as they did at the beginning of the tracing.508. This principle is made use of in the construction of a Mechanical Integrator known as Amsler’s Planimeter, which is used for the practical measurement of an area. The rod PQ is provided at R with a small graduated wheel with axis parallel to the rod, which is allowed to rest on the paper and to turn by friction with the paper. It can then only register the amount of travel of R at right angles to the rod, the amount of travel in the direction of the rod being necessarily unregistered as it is due to slide along the surface of the paper and not to the rolling of the wheel. A reading of the wheel gives the value of S. Thenarea or contour oraccording as the point 0 is outside or within the contour.509. Several forms of Mechanical Integrators are in use, but for the most part they are modifications of Professor Amsler’s form and based upon the general principle described above.Description of the Instrument.The figure shown (Fig. 102) is an illustration of a form of the instrument made by Messrs. John J. Griffin & Sons, Scientific Instrument Makers, Kingsway, London. The lettering corresponds to the preceding general explanation of the principle. 0 is the fixed point, ABC the contour of the area required, Q the tracing point which is being made
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AMSLER’S PLANIMETER, 519to traverse the contour, P is the joint connecting the two beams of the instrument, R the graduated wheel or roller whose axis is parallel to PQ and which rolls upon the paper when there is any motion at right angles to PQ. Its posi­tion upon the beam PQ being immaterial, it is placed in this form of the instrument on QP produced. D is a dial whose axis is perpendicular to the axis of the wheel and turned by a worm on the axis of the roller. There is a pointer attached to the beam PQ, serving to mark the amount of rotation of the dial plate. V is a vernier assist­ing to read small amounts of rotation of the wheel. There is

Fig. 102.a pointer at Q by means of which the contour can be carefully followed.The graduations on the rim of the wheel are such that the circumference is divided into 10 equal segments indicated by 1, 2, 3, 4, ...0, and each segment into 10 further subdivisions. The dial D is such as to rotate once for 10 revolutions of the roller, and is itself divided into 10 segments, which are again subdivided, an advance of a segment of the dial indicating one complete revolution of the wheel. The read­ings of the dial therefore indicate the number of complete revolutions of the wheel. In the vernier a length equal to 9 subdivisions of the wheel is divided into 10 equal portions on the vernier.If the figures on the dial be taken as units, the figured gradua­tions on the wheel will represent 10ths and the subdivisions
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520 CHAPTER XV.100th,, the difference between the distance of two consecutive divisions of the vernier and two consecutive subdivisions of the wheel, being (1/100 × 9/100) of the circumference of the wheel, is 1/1000 of the circumference of the wheel. Hence, by means of the vernier, readings may be made to three places of decimals. The area to be found has been shown to be

Fig. 103.proportional to the number registered by the roll of the wheel, the component of motion parallel to the axis, i.e. slide, being unregistered. Let S be the number registered by the wheel, then 
where C is some constant called the constant of the instrument. Apply the instrument first to any figure of known area Ao, say a square or a circle, as may be most convenient; let the difference of initial and final readings of the instrument be 
So, then A0 = CS0, which determines C. If now we apply it to the contour whose quadrature is required and S be the difference of the initial and final readings of the instrument,
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AMSLER’S PLANIMETER. 521It has been assumed that the fixed point 0 has been taken outside the perimeter of the contour. If inside, we have still to add the area of the “ zero ” circle, and
The area of the zero circle is usually marked on the instrument.
Mode of Procedure.The procedure is then as follows:(1) Fix the point 0 to the drawing board on which thearea to be found has been previously pinned.(2) Bring the pointer Q to some point of the perimeterof the contour and mark the starting point.(3) Read the instrument by means of the dial, the wheeland the vernier, and note the initial reading.(4) Trace carefully the whole perimeter of the contourwith the pointer Q.(5) Read the instrument again.(6) Subtract the two readings. The difference is S.Then the constant of the instrument being known, or having been found previously in like manner,

according as it has been convenient to take 0 outside or within the contour.
EXAMPLES.

1. 0x, 0y being perpendicular axes, A, B fixed points on 0y 
and AMBA any closed region of area S lying in the positive 
quadrant, show that the integral 

taken round the curve from A to B, is equal to

ϕ(y), ϕ'(y) being finite and continuous, m a constant and OA = a, 
OB = b. [J. Math. Schoe. Oxford, 1904. ]
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522 CHAPTER XV.

2. P1, P2 are points on a closed oval of area A, such that P1, P2 
subtends a right angle at a fixed point 0. Show that the area of 
the curve traced out by the middle point of P1P2 is equal to 

where
[Colleges β, 1889.]

3. A fixed point 0 is taken on a central oval which is such that 
through any point inside it other than the centre one and only one 
chord can be drawn which is bisected at that point; prove that the 
locus of the middle point of the chord PQ for a constant sum 2σ of 
the arcs OP, 0Q cuts at right angles the same locus for a constant 
difference 2σ' of these arcs; and deduce that the area of the oval is

where l is the length of the oval, and θ is the angle between the 
tangents at P and Q. [Math. Tripos, 1889.]

4. A bar AB carries at a point of its length a small wheel having
AB for axis and which turns about AB: the end A is constrained 
to move in a given straight line; show that if the end B is carried 
round any closed curve without singular points and which does not 
cut the straight line on which A moves, the area of the curve is 
measured by the product of AB into the whole length registered by 
the revolving wheel. — [Colleges, 1892.]

[This is the principle of construction of Coffin’s Planimeter. A full 
description will be found on p. 159, Practical Electrical Engineering, by 
Briggs and others. It is the case when the rod OP of Fig. 102 is of infinite 
length, so that P describes a straight line instead of a circle.]

5. A straight line of given length moves with its extremities on 
the arcs of two closed curves of given areas, and a point is attached 
to the moving line.

Prove that when the area traced by this attached point has a 
minimum value for different positions of the point on the line, 
the difference of the areas of the circles whose radii are the segments 
into which the point divides the line is equal to the difference of 
the areas of the given curves. [St. John’s, 1882.]

6. Show that the path of the mid-point of a rod of constant 
length 2c, whose ends lie upon an ellipse, is an oval of area π(a,b - c2).
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PROBLEMS. 523
If, instead of both ends being on the ellipse, one end lies on the 
ellipse and the other on the major axis, or if one end lies on the 
ellipse and the other on the auxiliary circle, find the areas of 
the paths described by the centre of the rod in both cases.

7. A rigid cyclic quadrilateral A BCD moves in its plane so as to 
return to its original position after turning through four right 
angles. Show that if (A), etc., denote the areas of the curves 
described by A, etc., and if S1, S2, etc., denote the areas of the 
triangles BCD, CD A, etc., then

S1(A)+S3(C) = S2(B) + S4(D).
Find also the equation connecting the areas described by any 

three vertices with that described by the centre of the circumcircle 
of the triangle. [I. C. S., 1909.]

8. Two bars OP, RPQ, of lengths OP = c, RPQ = b + a, respectively 
turn round a fixed pin at 0 and a joint at P. dS1, dS2 denote the 
polar elements of area about 0 of the curves traced by P and Q 
respectively; prove that

dS2 - dS1 = adζ+a (1/2α + b)dθ -1/2α dp,
where PQ = a, RP = b, p is the perpendicular from 0 on RPQ, dζ is 
the displacement of R perpendicular to RPQ and θ is the inclination 
of RPQ to a fixed line 0A. [Math. Trip., Pt. I., 1914. ]
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