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BRIEF NOTES

A note on the constitutive law of plastic flow

P. MAZILU (BUCHAREST)

THE PHYSICAL characteristics of the constitutive law of plastic flow are considered
and the most general form of the constitutive law having the same physical
characteristics is derived. The constitutive law which is obtained is slightly different
from the original constitutive law of plastic flow. Using this new constitutive law
one can explain the results of the experiment of complex loading performed by
M. FEeiGen [1].

1

LET us denote by & the infinitesimal strain tensor of components

=2\ ax,  ox )’
where by u; (i = 1, 2, 3) we denote the components of the displacement vector, by o the
Cauchy stress tensor of components oy; (0 = oy), i,j = 1, 2, 3, by 6 the dilatation
b= Eiis
by @ the spherical part of stress tensor
O = gy,
by & and o' the deviators

r 1

&y = su—-—-jﬁﬁu,
; 1
oy = Uu—"j@au’

and by = the second invariant of the stress deviator

72 = aj0y;.
Consider the following constitutive law of plastic flow:
6 = kO,
(1.1) dey = -;;dab+h(r)a{,dr for ©20,
, 1 .. .
deyy = ——doy; for T<0,
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where k and u are positive constants and /(7) a continuous function on 7. This constitu-
tive law is used in the books of R. HiLL [2] and W. OLszAK, P. PERZYNA, A. Sawczuk [3].
Let us denote by d.% the variation of the work done by the stress deviator

d¥ = O’;;d&‘;}.

We note that the constitutive law (1.1) belongs to the following general class of constitu-
tive laws:

6 = k0O,
(1.2) de’ = G*(v)ds’ for £ >0,
de' = G-(v)do’ for £ <0,

where G*(t) are matrix whose components are functions on the second invariant of the
stress deviator 7.

We evidence the following physical properties of the material described by the consti-
tutive law (1.1):

1) is isotropic,

2) to a compression (or decompression) behaves like a linear elastic material,

3) if £ < 0, to continuous stress rate corresponds continuous strain rate.

A short computation shows that the general constitutive equations of the form (1.2)
which satisfy the conditions 1)-2) are

0 = k6,
(2.1) dej; = dlgi (v) o) +g3 (v)doy;  for £>0,
dsyy = dlgr (v)o})+g5(v)doj; for £ <O.

Remark. The equations (2.1); and (2.1); belong to the class of equations of hypo-
elastic materials derived by C. TRUESDELL [4]. A. E. GRreeN [5, 6] used the equations of

hypo-elasticity for describing the loading & > 0) and the unloading (% <0), and derived
the general isotropic form of these equations (for large deformations). Naturally, the Eqs.
(2.1) are particular case of those derived by A. E. GREEN [6] (we use the Green’s notations):

Sm = 3hodn,
2.2) ?j = hifj+2iff+ -%hf (s +4fH+(ht M+hEN) &
+ (hE M+hEN) i+ (hE M+ hEN) it + %k,* (fEeme) + thinfD),

where f;; and #; are the components of the deviators

I . 1
fi=di-zdis, 1 =sj-5 8,
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dy = %(v,, j + 95, and 2us;; being the components of the rate deformations and stress

tensor, respectively (u is one of the Lamé constants),
~ os!
s = —5’-‘{ + U]t Ot — O 1,

hE, h%, ..., hi, are dimensionless analytic functions on

J=_;zjz}, K= %r}tfr,",
M =tf], N = t}ift,
the sign + corresponds to M > 0 and — to M < 0. Let us take hf =hf =hf = ... =

=hf, =0, and hy = % = const. Then from the condition ¢} = 0 we obtain A = —2.

In rectangular Cartesian coordinates we have, for small deformations:
2usi; = 0ij, Ly =0y, sm=86,
B4fiti—tift = oy, =6,
dy=¢8;, di=0, M=,
and the equations (2.2) become
0 = k0,
& = 2u(htéy+htoy®) for £ 20,
Gij = 2p(hy &+ b 048)  for £ <.
Now, if we take
2ubt = qi(v), 2uhi = qi (),

where
1
“O e
£ %L

T

93 (7) = i ;
r[gf(r)+rd—r‘(r)+g;‘(r)]

we obtain (2.1).
The relation (2.1), and (2.1); could be written in the following equivalent form:

B = 815+ B @alyi et @iy for €30,
@3) i
é;j=g,‘(‘r)b';j-{-a:?—;(r)o'}j’c+g;(t)irfj for & <.
From (2.2) and (2.3) it follows that = 0 implies % = 0. The condition 3) written at
any moment for which = = 0 leads us to the relation
gr(M+gi(7) = gr (D +g: (1),
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therefore g7, g7, gf and g could be expressed in the form
g1 (1) = &.(7), 81 (7) = g2(7),
gi(v) = g1 (D +f(7), &I () = &) —-f(v).

Let us denote A(7) = % (7). Then (2.3), and (2.3), become

(2.9 dejy = d[g,(v) 0} +&2(v)doi;+h(D)oldr  if £ >0,
2.5 dej; = dlg, ()0}l +g.(Ddoy;, if £ <O.

The relations (2.4) and (2.5) depend on three material functions g,(7), g,(7) and 4(7).
For the determination of these functions we can imagine the following experiments:
i) loading according to the law

Oy =0=04t, G,>0, 0<K1<1t,,
g;=0 for (i,j7)# (1,1,
ii) unloading according to the law
0y = 0 = Oglog—0o(t—1y), =1,
g;=0 for (i,/))# (1,1),
iii) complex loading
0y =0, 043%0,
oy =0 for (,))¢d,Du(,?2).

The experimental realization of such a kind of experiments is described by M. FEIGEN
(op.cit.). Let us denote by dL the variation of total work

(2.6) dL = Uudsu-
Obviously, we have

@7 e d.9?+%k@d6.

Denote by g/, = —:‘:1 e,(0) the value of the component ¢y, inthefirst experiment. Assume
that in this experiment the rate of the total work is positive
L>0.
According to (2.7), we have
. 8.
F=—L>0.
9

From (2.4) it follows

o/ SV Sl ol o/ 0 T
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Let us denote by &}, = %ez(a) the value of the components &}; measured in the second
experiment. Assume that in this experiment the rate of the total work is negative

L <0.
Then we have also

Z <0

and from (2.5) we obtain

I AN TV NV SR

dey,
daoy,
ured in the last experiment. The derivative is calculated for ¢,; = ¢ and o,, = 0. We

must have
iii) gl(l/%cr)+g2(l/—§~a) = G(o0).

3. Conclusions

Let = G(o) be the derivative with respect to o,, of the response &, meas-

From the precedent paragraphs it follows that the general constitutive law of the form
(1.2) having the physical characteristic 1)-3) is:

6 = k0,
a1 dej; = d[g,(v) o}l +g2(7)doi;+ h(r)oyde  for £ >0,
' deiy = dlg, (1) o}))+8,(v)do; for # <0.

We note that the classical law of plastic flow (1.1) is a degenerate form of (3.1). It is
known that, using the constitutive law (1.1), in the describing of the complex loading ex-
periment it appears a non-concordance between the experimental data and theoretical
predictions, see M. FEIGeN (op. cit.). For the constitutive law (3.1) this non-concordance
is excluded.

If in the second experiment we obtain

(.2) _r % #

then at one-dimensional unloading (i.e. when only a component of stress tensor is non-zero

and & < 0), the material described by (3.1) behaves like a linear elastic material.
We remark that (3.1) and (1.1) have the same plastic part, i.e.,

(3.5 def; = h(v)o}dr;

the difference is occuring only in the non-plastic parts.
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From (3.1), and (3.1); it follows

& = i'r[gl{r}-i-r—?r'—(t)+gz(r)+rh(t)] if £>0,

(3.6)
& = i-r[gl(r)+r%(r)+g,(r)l if £ <0.

If in the first and second experiment, the rate of total work is positive and negative,
respectively, then the following relations must be satisfied:

£+ %L (@) g, h) > 0,

2@+ B @42, > 0.

From (3.6) it follows that the loading and unloading criteria (9 >20,% < 0) could be
replaced by (7 = 0,7 < 0).
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