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Acceleration wave and progressive wave in non-linear elastic
material

Z. WESOLOWSKI (WARSZAWA)

CONSIDERATION is given to propagation of an acceleration wave in elastic materials subject to
large strains. The condition of propagation of such a wave is constructed and then, by intro-
ducing the notion of an acoustic radius, a general solution of the equations of motion is derived.
The progressive wave is then discussed, its phase and group velocities being determined. It is
demonstrated that the velocity of propagation is approximately equal to the geometric mean
of the phase and group velocities.

Rozwaza si¢ propagacje fali przyspieszenia w materiale sprezystym, poddanym duzym odksztal-
ceniom. Buduje si¢ warunek propagacji takiej fali, a nastepnie po wprowadzeniu pojecia promie-
nia akustycznego wyznacza ogélne rozwigzanie rownan ruchu. Z kolei rozwaza sie fale poste-
pujacg i wyznacza predko§é fazowa i grupowa. Pokazuje sig, ze w przyblizeniu predko$¢ pro-
pagacji jest srednia geometryczng predkosci fazowej i grupowej.

PaccmorpeHo pacnpocrpaHeHHe BOJIHBI YCKODEHHMS B VIIDYTOM MaTepHase, INOJBEPrHYTOM KO-
HeuHbIM fedopmanuam. [TomyyeHo ycoBue pacTipoCTpaHeHHsA 3TOM BOJIHBI, @ 3aTeM, Ha OCHOBE
BBE/ICHHOTO TOHATHA AKYCTHYECKOTO Jiyya, ompefelieHo oflnee pellieHHe YPABHEHHIT OBIKe-
uuA. Jlanee, nccnenyerca nporpeccHBHas BOJHA, JJIA KOTOPON onpefesieHb! (hasoBasd M rpym-
noBasA cKopocTH. ITokasaHo, YTO CKOPOCTB PacpOCTPaHeHHA PaBHA B NIPHOIHMMKEHHH CpeaHeH
reoMeTpUYeCKoil BenuuuHe $a30BOH M IPYNIIOBOH CHOPOCTEH.

THE PRESENT paper is aimed at developing the simplest possible theory of waves in a non-
linear elastic material. That is why we shall confine considerations to small amplitudes,
which will enable us to apply the linearized equations of motion. A number of results
concerning large amplitudes may be found in various papers published in recent years
(cf. [1] and the references cited there), but the corresponding equations are very compli-
cated. In particular, the equations governing the amplitude variations (analogous to
the Eqgs. (3.17)) are extremely complex, and relations corresponding to those presented
in Sec. 4 of this paper have not been derived at all in the case of large amplitudes.

It should be stressed that the majority of the general considerations given in this paper
(except those presented in Sec. 4) may be found in various books and papers dealing with
the theory of differential equations; however, they are rather dispersed and generally un-
known, Thus it seems useful to collect them, to apply them to non-linear elasticity and to
present the results in a concise form.

1. Equations of non-linear elasticity

Let {X°} and {x'} denote two, generally curvilinear coordinate systems. The body
in a natural configuration B is referred to the system {X*}, and the body in actual configu-
ration B is referred to the system {x'}. Coordinates of a typical material point in the respec-
tive configurations Bg and B are X® and x'.
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Let us consider the motion
(1.1) xt= E(X%1).

Denote by Tg;* the Piola-Kirchhoff stress tensor. If o is the stored energy (elastic poten-
tial), and xi = 8x'/0X* — the strain gradient, pr denoting the mass density in the natural
state Bg, then holds true the relation (cf. [2]):

do
(1.2) Tri = Qxﬁ, 0 = o(x', XP).

The tensor inverse to X%, is denoted by X%,
x‘,X’k = 6ik, szxkg = 5‘8.

The equations of motion have the form:

(1.3) Trlle = or¥',
where double vertical lines denote the total covariant differentiation
(14) -“a =~ -|u+-|rx' 3

and a single vertical line corresponds to the partial covariant differentiation (cf. the formula
dldX = 0/8X+(8/0x)(dx[dX); a dot denotes the material time derivative.
Let us consider another motion

(1.5) x* = B, ) +ul(Xe, X 1),
which differs only slightly from the motion (1.1). Vector ' is the vector of additional

displacement. If the Egs. (1.3) are satisfied, then the disturbed motion equations (1.5)
are (cf. [3])

(1.6) ASP Il = eridy,
where
%*a
xf - .
(1.7 A Or ox, 6x"3 .

Let us denote
(1.8) J = &2 X g ™,

where &;,, and ¢ are the Ricci tensors. If both the coordinate systems {x'} and {X*}
are Cartesian, then J = detx’. Since J is the measure of the ratio of material volumes
in B and Bg, the relation

(1.9) = % or holds true.

Let us introduce the tensor B",* defined by one of two equivalent formulae:
(1.10) B¢ = JTUANPX X%,
(1.11) AP = IBI X XP,.

The relation (1.11) is now substituted into the linearized equation of motion (1.6). Taking
into account the Eq. (1.9) and the identity

(1.12) Xl =0,
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we obtain a different form of the linearized equation of motion, namely the equation:
(1.13) BrewMI)l, = ol

Without any loss of generality, it will be assumed in what follows that the displacement
u' and tensor B;® are functions of the only variables x! and ¢ (variables X* are eliminated
by means of the Eq. (1.1)). Thus the total covariant differentiation in the Eq. (1.13) is
reduced to the usual covariant differentiation. The Eqgs. (1.13) are then reduced to:

(1.14) Lt = B+ Bl u|s—eily = 0.

These equations will be subject to further analysis. They describe the dynamics of small
deviations from the fundamental motion (1.1). A particular case of the Egs. (1.14) is re-
presented by the Lamé equations which correspond to the case in which the fundamental
motion does not exist. On comparing the Egs. (1.14) with the Lame equations, it is found
that in the classical elasticity theory the functions B;",° are equal to
Bt =i42s, BAP=B3 =p, B =BE =G+,
(1.15)

Bi';2 = Bi'3* =1, B*'=B3%'=yu.

The functions B,"* and B;"® result from cyclic interchange of indices.

2. Surface of discontinuity

Let & be a time-dependent surface described by one of the relations
(2.1) t = p(x),
(2.2) =oM%, K=1,2

where M*, M? parametrize the surface &. The relations (2.1) and (2.2) are not independent,
since the Eq. (2.1) may be obtained from the Eq. (2.2) by elimination of the parameters
M?*, M?. The unit vector orthogonal to & is denoted by n;:

2.3) PO | N—
Vo p:8"

Here, and throughout the paper, a comma denotes the partial differentiation. The vector
a' g = 0n'|OMX is tangent to &, and hence its scalar product with the vector n; vanishes,

(2-4) n; ﬂi,x = 0.

Substituting the Eqs. (2.2) into (2.1), and differentiating in time 7, we obtain the relation:

(2.5) P, =1
Using in turn the Eq. (2.3), we have
(2.6) G, e

P

Vo,

U is now the velocity of surface & in the direction of a vector normal to &. That velocity
will be termed the velocity of propagation of the surface &.
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Let H be an arbitrary function of variables x' and ¢, H = H(x', t). On each side of the
surface &, the magnitude H may be represented as a function of M* and ¢,

H= Hp(Mx,f) on &F,
H = Hy(M%,t) on %p.

The function H and its derivatives H,, H are, in general, discontinuous on &. Obviously,
we may write the relations

2.7

dHg

v i (H)r7' x,
(2.8) dH
_dTF_ = (H)r+(H)en' .

The magnitude dHp/d! represents the time rate of change at the point of & with coordinates
M* = const. Similar relations hold true on the side 5. Denoting the jump by double
brackets

[]] = (')F_(-)H;
we have then: .
(2.9) [H]x = [H:]7 &,
(2.10) [H], = [H.]+[H]=,.

Let us now consider the particular case in which H is continuous over &, and only
the derivatives of H suffer certain discontinuities. Inserting [H] = 0 into the Eq. (2.9)
and making use of the Eq. (2.4) yields:

2.11) [H;] = An,,

A being an indeterminate parametr. Substituting now the Eq. (2.11) into (2.10) and taking
_into account the Eq. (2.6), we obtain

(2.12) [H,] = —AU.

The acceleration wave, or the wave of weak discontinuity, is the name attributed to
all the phenomena occuring at such a discontinuity surface that #', ', and #', remain
continuous. The surface & itself is called the wave front; it separates the disturbed
region from the undisturbed region. Assuming in the Egs. (2.11), (2.12) consecutively
H=14u', and H =4',, and taking into account the symmetry of derivatives &’y = ' m,
u'y, = u'y, we obtain:

[ ,rs] = a'n,n,,
(2.13) [ ,] = —d'Un,,

[ ] = &'V~
Here &' is an indeterminate vector. It determines the magnitudes of jumps of the second
derivatives of the displacement vector and is called the amplitude. The covariant deriva-

tives and the material time derivative are obtained from the partial derivatives by adding
the terms involving only the first derivatives of the vector «'. For an acceleration wave,
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the first-order derivatives are — according to the definition — continuous on &, and
hence the conclusion follows that the Egs. (2.13) also hold true for the covariant and
material time derivatives. Finally, we obtain

[#.s] = a'n,n,,
(2'14) E:dllf]] = _alUn"
[#] = a'U>.

3. Propagation condition and the equation of the acceleration wave amplitude

Let us now pass to the derivation of the condition of propagation of the acceleration
wave. Since the magnitudes B/".%, B/;’|, and p are independent of «, they must be con-
tinuous on &; but u![, are also continuous, and in accordance with the Eq. (1.14), we
have:

(3.1 By’ [.s] = elii].

Substituting here the compatibility conditions (2.14), we obtain the condition of pro-
pagation of the acceleration wave:

(3.2 (Qu—oU%p)d* =0,
where
(3.3) Ou = Qu = B’nng,

is the acoustic tensor. By means of the Eqs. (2.3) and (2.6), that condition may also be
written in another, equivalent form

(3.4) Bhiyrps—ogw)d =0, y,=vy,.

From the Eq. (3.2) it follows that a* is the eigenvector, and the product oU? — the

eigenvalue of the acoustic tensor Q. This is a symmetric tensor, therefore there

s . _ Dk @k Ok
always exist three orthogonal admissible amplitudes a, a, a, and three corre-

sponding real products gU?2. If the products happen to be positive, then the real velocities
1 2 3

U, U, U exist, and the wave can be propagated. It is easily verified that for the tensor
B* as given by the Eq. (1.15) the product oU? is positive, since A+2u > 0 and x > 0.
If @*||n, then the wave is longitudinal, and if & | n, , the wave is transversal. A typical
wave is neither longitudinal nor transversal.

According to the propagation condition (3.2), the tensor Qu—oU?gy is singular.
By means of the Eqgs. (2.3) and (2.6) we obtain the equation

(3.5 det(B/"y, ps—o0gu) = 0.

It is a non-linear equation for the function y(x’) determining the wave front motion.

The condition of propagation (3.2) determines the direction of the amplitude but not
the amplitude itself. Let us now pass to constructing the equation governing the changes
of amplitude. From now on, @ will denote an arbitrary, fixed vector satisfying the con-
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dition (3.2). The real, actual amplitude which is collinear with &* will be denoted by another
symbol. Displacement u*(x", t) is represented in the following form (cf. e.g. [5]):

(3.6) 1) = ) Snal@)ek (o, 1),
y=0
where
3.7) 5= Ll Lagl+ar|, »=1,2
- r '.I’! 2 ¢ ? E] Ay ey seny
(3.3) P =9y-t
and g (X', 1) are functions of the class C2. The following identities are easily derived:
ds,
dfp = Sv’—l’
o dS; B 1 for ¢>0,
(3.9 So = i n(p) = iO for @<l
!
6=, Sses,se e

plv!

S, is hence the Heaviside function, and all functions S,, » > 1 are continuous. The sum-
mation in the Eq. (3.6) starts at S, to ensure the continuity of displacement #* and of the
derivatives #* ,, #* ,. Let us confine our considerations to the case of stationary, fixed initial
deformation. Differentiation of the expression (3.6) and the relations (3.9) yield

u|, = S, 9,85+ Zsﬁz(gvklr'l' Pr&ir1)s

r=0

“tlrs — S()?rqpsgs+Sl(¢r|sglh)+?rggls+?»gslr+¢r¢sgk0)

(3.10) ®
+ st-l-z(gﬂu'*' Qrgsqvl |.| +?’a gf+lllj 2 2 Q’r'lgf+ 1 2 Pr ?333'54-2)!

i

it = Sog{,+Sl{—2§§+g]{)+2 Sp2(Z5—28% 1 +8F.2).
v=0
Function g§ denotes the magnitude of the jump of second derivatives of the displacement
vector u*,
Let us substitute the above expression into the Egs. (1.14), and group the terms
involving S,. We obtain the equation:

G.11) Lt = SoBo+S; B+, Ses2Brsz = 0,
p=0

in which

(3.12) B, = (Bi'f?’r%"ggit)gﬁ =0,

(3'] 3) Bl = (Bl'rla(lvr Ps— Qgik)g{ + [Birk’ (?’.-S%L + %3’5 |r)
+208, 5 + (B @rls+ B’ I ‘PS)ggl =0,
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(314) Bv+2 = (Bi’ksﬁnr@s_ggik)g;‘q-z +Birks(¢rgf+ 1ls+ %g.’fn Ir)
+208) 11+ (B @rls + B’ |, 95)ghsn + K ir gy = 0.

The function Sy, Sy, S3, ... are linearly independent and thus each of their coefficients
B has to vanish. Consequently, the signs of equality and zero were added at the right-hand
sides of the relations (3.12)—(3.14). In the Eq. (3.12), the expression in parenthesis is iden-
tical with that in the propagation condition (3.3). It follows (under the assumption that
the Eq. (3.4) has no double roots) that the equation

(3.15) g6 = %od"

holds, where #x, is a scalar multiplier. It should be stressed that g* is assumed to be an
arbitrary, fixed solution of the Eq. (3.2).

Let us now multiply the Eq. (3.13) by &'. Pursuant to the Eq. (3.3), the first term equals
zero and, after substitution of the Eq. (3.15), the equation is reduced to the form:

(3.16) d'd*[B/¢ (prg,s+@s¥o,r) + 20%08u]
+ %00 [B(@r s+ @sd*,) + 2080 d* + (B @ols + Bl ) d*] = 0.

This is a partial differential equation for the function x,. Let x' = x'(4), t = #(4) denote
a curve in the four-dimensional space {x'} x  determined by the differential relations

(.17) BN
dA ;
dt
= = 20d'd*gy.

Let us make the assumption that the parameter 4 is so selected that at the instant t = 0
also 4 = 0. According to the Eq. (3.17), we have

d’co _ 630 dx’ axo dt S b . 4 i

(3.18) i >y TZ'?»_+_6I_ 35 a'd* B (s %o s+ @so ) +20a'a g1 %o .

The first term in the Eq. (3.16) is then equal to dx,/dA. On the curve {1}, the coefficient
at %, is in this equation a function of A only. This function is denoted by P(4). The Eq.

(3.16) is now reduced to the ordinary differential equation:

dxg
3, Ho =
(3.19) T+ %o P(D) = 0,
with the solution
A
(3.20) %o = Coexp (- [ P(R)di).
0

Here, C, denotes a constant of integration.

Let the curve {r} be a projection of the curve {4} upon the three-dimensional space.
The curve {r} is determined by the relations (3.17),. From the Eq. (3.20), it follows that if
at one point of the curve {r} %, = 0 (or %, # 0), then at any other paint of that curve

9 Arch. Mech. Stos. nr 2/74
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%o = 0 (or %, # 0). Therefore, the curve {r} is the acoustic radius, [1]. The Eq. (3.17),
is closely connected with the acoustic tensor Qj, since from the Eq. (3.2), we obtain

dx* 1 § ank
a T

Let us now return to the Eq. (3.13). The expression in brackets is already known,
so we are able to determine g%. The expression in parenthesis being a singular tensor,

the vector gf may be represented in the form

(3.21)

(3.22) gt =, d*+ K,
where
(3.23) akig, =0.

In compliance with the Eq. (3.3), only the vector k,* enters the Eq. (3.13). This equation
does not lead to contradiction and enables k,* to be determined. To determine the parameter
%, let us consider the Eq. (3.14) with » = 0. Multiplying it by a’, g% is eliminated. In the
resulting equation, the expressions (3.22) are substituted to yield the differential equation
for the parameter x,

(324} aiak[Bt"ks(quxl ,5 + Ps#y .r] = 29*13&.‘.] + ) aI[Birks((prak[s'l' (Psaklr) + ZQgEk&k
+ (Bi'ksqu)slr'ihBfrkslr?)s)ak] - “a‘[B;'*"‘(tp,k’{|_,+(psk'i|,.)+2gi;{‘
+ (B¢ psls + BNl 9o K + L3, 80).
The left-hand side is exactly the same as in the Eq. (3.16), provided that x, is replaced
by ;. Therefore, the entire expression may be replaced by dx, /[dA+ », P(). On the curve

{4}, the right-hand side of the Eq. (3.24) is a function of A. Denoting this function by
K, (1), we obtain:

(3.25) %‘—+x,P(1} = K,(%).

It follows that the solution of the Eq. (3.24) is:

A
(3.26) %, = Cyexp(— [ P(W)d2) +D,(2).
0

Here, D, is the particular integral of the Eq. (3.25). Proceeding in a similar manner with
the Eq. (3.14), forv» = 1, 2, 3, ... we obtain for each » > 1

(3.27) gk = x,a +k¥,
A

(3.28) %, = Cexp(— [ P(3)d2)+D,(D).
(1]

The functions k,(2) and D,(4) are known if the parameters », for 4 < » are known.

The unit vector in the direction of the acoustic radius {r} is denoted by r*. It is collinear
with the vector dx*/dA given by the Eq. (3.21). The velocity at which the discontinuity
surface & propagates along the radius {r} is the radial velocity. The relation

(329) U,fkﬂg =U
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holds. Using the conditions (2.6) and (3.29), we obtain

(3.30) U, = r,‘; . Uz>=U
k

4. Progressive wave

The solution derived enables us to construct a different solution which has no discon-
tinuity at the surface ¢ = 0. Let us in the relation (3.6) replace the functions S,(¢p), defined
by (3.7), by arbitrary functions T,(¢) satisfying the relation

dT,
dp

and let us construct the series:

(41) =T,_1, 7"=031,2;---,

42) @, 1) = D Tra(@eh(e, 1).
v=0

The series, if it is convergent, represents the solution of the Eq. (1.14). For the displacement
u* in the form (4.2), the Eq. (1.14) assumes the form (3.11) with functions S, replaced by T,.
All the coefficients B, are zero and hence Z;,u" = 0.

In particular, we may assume

1 . —_
4.3) Ty =——¢€“", w=const, i=y-1I,
(iw)’
and then
1 1
4.4 k — plogl ok ok o e 1.
( } u (f5 f) e g0+ Iw gl+ (!w)z 32+ )

The solution (4.4) is called the progressive wave.

Since our considerations are confined to the case in which the function & in (1.1)
does not depend on the time, then the functions B;* depend solely on x™, in accordance
with the Egs. (1.7) and (1.10). Consequently, from the considerations presented in Sec. 3
it follows that the functions »,, g are time-independent, g% = g*(x™). By using the definition
(3.8), the solution (4.4) is reduced to

(4.5) W', 1) = e_"“"é""‘"’z-‘(fi—)*rgﬁ (x,
v=0

and represents a product of a function of time and a function of place. The solution (4.5)
is closely connected with the surface of discontinuity. It should be stressed that separation
of the variables in the Eq. (1.14) does not directly lead to the solution (4.5).

In order to write the Eq. (4.4) in a real form, let us first observe that, in the situation
described, the solution may also be represented by:

(46) uk(xr’ l') = e(—im)w(gs+ __(#liw) g{‘+ (—:w)z g§+ )

g*
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Summing both sides of the Egs. (4.4) and (4.6), we obtain the real solution

1 1 1
@n u= (83—;{g§+;)-:85——a-’§8g+---)°05"-’§°

1 1 .
(—81 83+ 585 73$+...)smwcp.

Pursuant to the Eq. (3.27), the displacement # may be written in the following form:

1 1 1
(4.8) ut = ak[(%g,—?o—z‘ %3+BT?C4—;6-?¢5+ ...)COSw(p

I 1 ;
(-——-xl x3+ Xs ?"‘1'}' .)Slnw?)]""Rk’ . R*J_ak.

Denoting
M= xo—?ol—z-x2+;l4-x4—-—gx5+
4.9 N = Lx,—-%xa+-l—5x5—~—,x-,+
w w w
@ = arc tg%-,
we obtain
(4.10) u* = &) M>+N? cos(wgp—a)+R*, R*| d*,
The expression wp—a = —wt+wyp—a is called the phase. The point of space at which

the phase is constant form, a certain surface &, which is moving in time. The surface &,
moves, in general, in a different manner than the discontinuity surface &. Various velocities
may be attributed to the surface &, such as velocity in the direction of its normal (velocity
of propagation of #;), velocity in the direction of the normal n , and the velocity in the
direction of the acoustic radius {r}; the last named is called the phase velocity. By means
of the Eq. (4.10), the equation of the constant phase surface is

(4.11) —ot+wy— o = const.

When written in a differential form

oa
(4.12) —wdr+(w1pk-— @—) Ugrkdt = 0,
the expression for the phase velocity may be written as:
(4.13) Uiomm——
oy rk— ﬁ1'-"
L
From the Eq. (3.30) it follows that the product y,n* is equal to 1/U . Thus we finally obtain:
(4.13) I P
y 1 Oa
1=Ut———
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The vector R* is a function of the variables x* and ¢ and has the form of a trigonometric
function cos(w@+k*). The R* vector cannot be taken into account in the evaluation of the
phase velocity, since for £ = 1, 2, 3 three different phase velocities are obtained, different
also from Uy. Let us, however, observe that for large w the vector R* is small in comparison
with the first term of (4.10), since each of the components of R* is divided by w", n > 1
[it is known from the Eq. (3.15) that k% = 0). The first term of (4.10) represents then the

principal part of the displacement.

Usually, we have to deal not with a single wave (4.10) but with a system of waves with
frequencies from within a certain interval w; < @ < w, and with amplitudes forming
a continuous function of the frequency w. The displacement has then the form

wy
(4.15) uk = g*(x") f P(w)cos(wg— a)dw+ RE,
wy
where a*, in compliance with the analysis of the preceding section, is independent of w.
The case in which w, is close to w, is of special interest. The Eq. (4.15) may then be con-
sidered as a superposition of two waves with identical amplitudes, and with frequencies
w+Awandw—Aw, do < w.

(4.16) ut = akVM2+N2_{COS[(&J+Aw)fp—(O€+—g—5—ﬂw)]
da 2 da
+cos[(m—dw)(p— (a__é;Aw]}'i'Rk’ e = o
whence it follows
N —— da 2
(4.17) ut = [20’|/M2+N2cos (cp— _aa_a) Aw]cos(mcp—a)+R*.

The motion represents a wave cos(wp—a) with an amplitude (expression in brackets)
varying in time and space as cos(p— a,)Adw; thus we are dealing with groups of waves
which move as the surfaces described by the equation

Oa oo
(4.18) (@—%)Aw = (—t-&-vp——aa—)dm = const.

The propagation velocity of these surfaces measured in the direction of r* is the group
velocity U,. According to (4.18), we have

(4.19) d P8 Ve o
) A\ g | 4 =0
and
(420) Uy = U, ————.
gt D2
" dwoxk

Let us concentrate upon the first two approximations. For sufficiently large frequencies
o, all terms in the Eq. (4.7) may be disregarded except gk coswg; that leads to the first
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approximation. Then N = « = 0 [cf. Eq. (4.9)] and from the Eqs. (4.14) and (4.20), we
obtain:

4.21) Uy=U,=TU,

In deriving the second approximation, all terms of orders higher than 1/w? are disre-
garded:

M = xo——5%, N=_-x;,
(4.22)

Determining the derivatives da/dx*, d%a/dx*dw, expanding into series and disregarding
the terms of orders higher than 1/w?, we obtain

1 0e 1 ﬁ) _Pa _L(_’_‘g)
w X w\x ] oo w? \ x4

This result together, with the Eqgs. (4.14) and (4.20), yields the phase and group velocities

Uy and U,
~1
UI=U? l—'br'(i r" zUrl‘f‘Ur(_"‘g rh9
w? \ % | x w?\ %, | x

U, =

(4.23)

#y

I
S
f——
—
-+
of
—
x
(=]
———
=
-
=
I
Q
=
o Sm—
SIS
—
‘x
o =
—
=
-
-
]

The velocities evidently satisfy the relation
(4.24) uU, = U2

In the order of approximation assumed, the radial velocity represents the geometric mean
of the phase and group velocities. It should be stressed that, in general, U, > U, and
U, < U,. There exist, however, waves for which U, < U, and U, > U,, cf. e.g. [6].

A forced displacement on a certain surface &, which has the form of vibrations sinu-
soidal in time is called a signal

t <0,
(4.25) wk (Lo, 1) = d*(Fp)coswet, 0 <1,
’t < IU

Here, w, and ¢, are fixed. At the point x* lying not on %,, the signal is received in the form
of vibrations of various frequencies @ from the interval 0 < @ < oo0. The vibrations start ata
certaint instant 7,(x*), but are very weak at the beginning. The main portion of the signal
arrives in x* at the instant 7,(x*). The instant 7, is determined by the propagation velocity U,
while the instant r, — by the signal velocity U,. In general, the signal velocity is equal
neither to Uy nor to U,. The signal velocity was, in the simplest case, analyzed by Sommer-
feld in the BRILLOUIN monograph [6]. The corresponding Eq. (1.14) derived in this
paper has to author’s knowledge not so far been analyzed.
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