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Interaction of material damping and monogenic-polygenic forces
in viscoelastic system

R. N. KAPOOR (TORONTO) and H. H. E. LEIPHOLZ (WATERLOO, CANADA)

IN GENERAL, the elastic systems are always damped and possess polygenic as well as monogenic
loads. Selecting a system, for which the authors have already shown the material damping to
change the mode of instability from flutter to divergence, a detailed study is made of the inter-
action between the ratio of the two types of loads and the material damping. The results, obtained
here, attain added significance in view of the increasing use of damping coatings and materials
with high energy absorbtion coefficients in turbine blades, machine tools, aircraft components
and several other systems, where the monogenic and polygenic forces invariably exist.

Uklady sprezyste sa z reguly tlumione i zawieraja obcigZenia typu poligenicznego jak i mono-
genicznego. Opierajac si¢ na ukladzie, dla ktorego autor wykazal juz, Ze thumienie materiatlowe
zmienia charakter wyboczenia z flatteru na dywergencyjny, przeprowadzono szczegolowa analize
wspoldziatanie miedzy stosunkiem tych dwoch rodzajow obciazen oraz ttumieniem materialowym.
Otrzymane wyniki majq istotne znaczenie wobec wzrastajgcego zastosowania materialow wibro-
izolacyjnych o wysokich wspolczynnikach pochlaniania energii do konstrukcji topatek turbi-
nowych, obrabiarek, konstrukcji lotniczych oraz wielu innych ukladéow, w ktorych niezmiennie
wystepuja sily poligeniczne i monogeniczne.

Vnpyrue cHcTeMbl KaK NpaBiiio 061a1aloT 3aTyXaHHeM M CONEPHAT HarPy3KH TaK MOJIUIeHHOTO,
KaK ¥ MOHOT€HHOTO THIOB. Onupasich Ha CHCTEMY, [UIA KOTOPOil paHbllle aBTOp IOKa3al, 4YTO
MaTepHAILHCE 3aTyXaHHe M3aMeHdeT XapaKTep NpOMNOJEHOro M3rube ¢3 ¢iatTepa B AHBEp-
TeHTHBLIN, MpoBefeH NMOAPOOHBIN aHANH3 B3aMMOEHCTBHA MEXKAY OTHOLUEHHEM 3THX ABYX
THIOB Harpy30K H MaTepHAJIGHBIM 3aTyXxaHueMm. IlosyyeHHbIe pe3yJIbTAaThl MMEIOT CYIUIECTBEH-
HOE 3HaYeHHe 13-33 BO3PACTAIOILEr0 MPUMEHeHHA BHOPO-H30JALMOHHBIX MATEPHAJIOB C BbICO-
KHMH K03 dHIMEHTaMH MOTJIOMIEHHA SHEPTHA 1A KOHCTPYKUMH TYpPOHHHBIX JIOMAaTOK, CTaH-
KOB, 3BHALHOHHBIX KOHCTPYKIMIf, a TalyKe MHOTHX APYIMX CHMCTEM, B KOTODPBIX HEHM3MEHHO
BBICTYIIAKT IIOJIMM€HHBIE M MOHOIeéHHBIE CHIBI.

1. Introduction

IN THE STUDY of systems possessing monogenic as well as polygenic [1] forces, one field
of research has been the investigation of conditions under which the mode of instability
may change from flutter to divergence or vice-versa. DZHANELIDZE [2], K6NIG [3], CONTRI
in [4], HERRMANN and BUNGAY [5], Zvczkowskl and GAJEWSKI [6], and HUSSEYIN and
PrAuT [7] have, by taking various undamped mathematical models, shown that depending
on the ratio of the two types of forces, instability may occur in the form of either flutter
or divergence. BoLoTIN and ZHINZHER [8] considered a viscoelastic cantilever with sub-
tangential end force and obtained a similar result. The authors [9, 10] extended the investi-
gation to a class of viscoelastic systems acted upon by a more general type of monogenic
and polygenic forces and studied the combined influence of the load distribution pattern,
material damping, as well as the ratio of the two types of forces. It was shown that for
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a prescribed pattern of load distribution, the material damping could change a flutter
system into a divergence system. If the load distribution pattern was otherwise, the mode
of instability remained insensitive to damping. By taking a system, Fig. 1, with the appro-
priate value of n such that it falls in the former category, the object of this paper is to study,
in detail, the interaction between &, the ratio of the monogenic and polygenic forces, and y,
the damping coefficient of the Kelvin-Voigt material. It is shown that the influence of y, on
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q,%q, x" a,2£q,(1-x)

W(x,t) q,(x) q,(x)

F1G. 1. The system.

the critical load and the mode of instability, is quite different in the subdomains 0 <
<t <bp, bp <& <& and & < & < o0, where &p and & are the critical values of &.
The above subdomains are classified in gradually reducing proportion of polygenic forces.

2. The system and characteristic equations

The differential equation of small vibrations for the system, in Fig. 1, is obtained [9] as:
(2.1)  ElWirax+ ¥ Wenzex + o+ 1) {[(I" = x"1)
FE(— X)W g — En+1) (1= X)W} +0 W = 0
along with the boundary conditions
w(0,t) = W.(0,¢) =0,
EIW o (1, )+ yWixx(l, 1) = EIW xx(1, ) +yWiexx (1, 1) = 0,

where g is the linear mass density, E the Young’s modulus, / the second moment of the
cross-section and the subscripts denote the variables with respect to which the partial
derivatives are taken. Introducing the nondimensional parameters

(2.2)

1 1 _1
n=x()"", t=(ED?*@l*) %, G=(EN* ?y,

(2.3) F = qol"*3[(n+1)EN"*
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and seeking the standing wave solution in the form
2.4 W(n, ©) = e D(n),

where w = wg+jw; is the complex frequency of vibration, yields the following non-self-
adjoint boundary eigenvalue problem

2.5)  (14+4G) Py + F{[(1 =13+ ) + E(1 =)+ 1] B, — E(+1) (1 — 1) D,} +0?P = 0,
(2.6) B(0) = B,(0) = Dpy(1) = B,py(1) = 0.

In the absence of the existence of a closed form solution for the above fourth-order system,
we seek the solution

@) D) = D A,.(0),

r=1

where y,(%'s) are the orthogonal eigenfunctions of free vibrations of the system, obtained
from Eqgs. (2.5) and (2.6) by putting F = G = 0. Applying the Galerkin’s method by
substituting Eq. (2.7) in Eq. (2.5), taking « = 2 and seeking nontrivial solution in 4,,
yields the characteristic equation(*):

(2.8)* o*+ o+ i’ + fw+BF = 0.
3. The instability boundary

The complex frequency of vibration, w, decides on the state of the system. Inequality
wg < 0 implies asymptotic stability and wg > 0, instability. The condition wg = 0 re-
presents entirely different phases for the damped and undamped systems. For the former
it implies “instability boundary” and for the latter “stable domain or instability boundary”.
The imaginary component of the frequency, w;, governs the vibrational behaviour of the
system. The conditions, w; # 0 and w; = 0, imply oscillatory and non-oscillatory motions,
respectively. If at wmz = 0% w; is also zero, the system fails by divergence. If at wg = 0%,
wy # 0, the system fails by flutter, Therefore, the nondimensional critical load, K., of
the system, for a prescribed &, G and n, given by

(3.1 K, =(0+8F
is obtained, when the infinitesimal increase in F results, in the condition wg = 0%, for
the first time.

For the undamped system, g% = % = 0 in Eq. (2.8), and the divergence loads K,
corresponding to @ = 0, are given by

rD!

x 2 A

(3.2)* Korpgr 2y = (1M [ 12 (1 = M,)?].

The flutter loads of the undamped system }%c, p» corresponding to w* — complex, gives
= w ok

3.3y Karpny = 1+ M [=14 (1= M)7].

(') Henceforth, equations superscripted ()* involve complicated mathematical expressions, in this
case ff, which for the sake of brevity are omitted here but explained in [9].
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The criteria for the existence of the divergence and flutter loads of the undamped system
are obtained as

(3.4)* Enll 2] Tz(zrl) l{_ l + [] —4T T3 (Tz) llz}
and
=z 2 = o 1
(3.5)* Eran < T, QT H{— 14 14T, To(TH )7},
respectively.
For the damped system, the inequality
(3.6) PrBEAs—BIBD—F3* > 0
decides on the flutter loads, K, erps which are obtained as
1
B.D* Kﬂm'” = (148U, [-1+(1-0T,)2).

The divergence load of the damped system, K. i is given by the inequality

(3.8) pt >0,

which leads to the same values as given by Egs. (3.2) and (3.4). The criterion for the existence
of flutter loads of the damped system is obtained as

1
(3.9 Er.2) < Atol—1£(1-4%,)7].
The lowest flutter and divergence loads for the damped system are given by ffc,ﬂ » and
k"n( .y respectively; and the type of instability is governed by the lower of these two

critical values. The transitional value of Kelvin-Voigt material damping G,, at which the
transition from flutter to divergence, if any, takes place, is obtained from the condition,

-~

K, erp(1)? which yields the transition governing condition

TR

1
(.10 Bi(E, G) {—1+ [1-B, (¢, G)]_z} —Bs(®) {—1+11-Bu®)P} = 0.

4. The numerical analysis and discussion of the results

The authors have already shown [9, 10] that a change in the mode of instability from
flutter to divergence for this class of systems, purely as the result of material damping,
may be possible if the load distribution exponent satisfies the inequality
4.1 2006 <n < 0.

Taking the illustrative system as a viscoelastic steel cantilever of diameter 1inch, length
50in., and n = 4, results obtained on the IBM 360 computer of the University of Waterloo
are plotted in Figs. 2-10. These shall be discussed at length.

4.1. The undamped system

The divergence and flutter boundaries of the undamped system, in the K,.—¢& plane,
as obtained from Egs. (3.2) and (3.3), are plotted in Fig. 2, where &, = 3.292747 and
&r = 4.175263 are the positive critical values obtained from Egs. (3.4) and (3.5),respectively.
The following features are observed in Fig. 2:
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FiG. 2. The flutter-divergence boundaries of the undamped system,

1) Range 0 < & < &p. There exist two flutter loads such that IZ,F“] < Ié,rm

ii) & = &p. The introductory divergence load K:,D“ i = 384.829 appears at 4 such
that K., - < K., <K

CTR(1) ¢TF(2) °*p(1,2)°
iii) Range &p < & < &p. There exist two flutter and two divergence loads such that
Kerm) < Kc,m) < Ke,m) < Kc,m).

iv) & = & There is coalescence of the two flutter loads at D such that E’-"m. , = 120.223.

oy = 124.131,
v) & = &p+ A&, The flutter loads vanish and there is a transition in the mode of insta-

Besides, there exist two divergence loads, the lower being 1=(,,

bility from kinetic to static. During this transition, the critical load jumps from sz,,, a5

= 120.223 to Kurp,,) = 124.131. This jump(?) is represented by the vector DC.

vi) Range & < & < 0. The system is purely divergent and fﬁc
critical load.

£D(1) is decisive for the

(*) The rare case where such a jump vanishes, occurs when n has the lower bound value in Eq. (4.1),
19, 10].
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Conclusion I. The ratio of polygenic and monogenic forces £ influences the mode of
instability of the undamped system. An increase of & transforms the initial flutter system
into a divergence system. This transformation occurs at & = &, accompanied by an
abrupt increase of the critical load.

4.2. The damped system

The interaction between & and y influences K., the critical load of the damped system,
as well as the mode of instability.

Figure 3 shows the mode separation curve DAEF, the vanishing flutter curve DBECG
and the introductory divergence line HEJ, in the £—y plane. The introductory divergence

| 6
4
ITEM SYMBOL | AREA ABOVE | AREA BELOW
MODE MODE OF MODE OF
S%PERHTION | |NSTABILITY! INSTABILITY +
URVE FLUTTER OIVERGENCE
INTRODUCTORY| DIVERGENCE NO DIVERGENCE
DIVERGENCE | —— - — | LOAD EOAD
LINE EXISTS XISTS
VANISHING NO FLUTTER FLUTTER
FLUTTER — " LOAD LOAD
CURVE EXISTS EXISTS

o =350
; & E DIVERGENCE F o4
: FLUTTER
]
i3
-~
-
iy 231,790
0 ! i | | K
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FiG. 3. The subspaces R, ..., Rs of the damped system.

line, region above, which guarantees the existence of a divergence load, is obtained from
Eq. (3.4). The vanishing flutter curve, region below, which guarantees the existence of
a flutter load, is obtained from Eq. (3.9). The mode separation curve, regions above and
below, which represent the divergence and flutter instability modes, respectively, is obtained
from Eq. (3.10). The entire & —y plane is divided into five subspaces, R;, which have distinct
characteristics as explained in Table 1. The iso-£ and iso-y curves in the f,,,r—y and
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Table 1. The interpretation of subspaces R;

Subspace Range of & ' o 5 instability
R, 0<&<ép ‘ Yes ‘ No | F
R, ED < &< EF | Yes Yes F
R; Ep< &< ép | Yes Yes D
R, ; p<l<cw | No Yes D
Rs | ép<é<om | Yes Yes D

F = Flutter; D = Divergence

K.:p—& planes, as obtained from Eq. (3.7), and which ultimately lead to the optimal
stability envelope, are shown in Figs. 4 and 5, respectively. The critical loads of systems
with different £ in the K,,—y plane, as obtained from Egs. (3.7) and (3.8), are shown
in Figs. 6-10. The damped systems in ranges 0 < § < ép,ép <é < fpand & <& < @
are discussed separately.

1) Range 0 < & < &p. This range, in Fig. 3, is represented by the rectangle OHJK,
where only flutter instability is possible. The following features are observed in Figs. 4 and 5:
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FI1G. 4. The iso-£ curves of the damped system.

a) in the range 0 < y < y*, represented by the area O4ABCD (Fig. 4), an increase in &
raises the iso-£ curves. Hence the increase of £ increases the critical load.

b) in the range y* < y < oo, represented by the area DCEFG (Fig. 4), an increase in £
up to a certain critical value increases the critical load, further increase in & lowers the critical
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load. At & — &p, line CF, the flutter load attains its minima, Her}, = 384.829. For every y,

there exists a critical value of & which yields the maximum critical load. The optimal
stability envelope contains all such maxima.

¢) in the range 0 < y < y*, represented by the area 04 PQ (Fig. 5), all the iso-y curves
have a positive gradient. Hence, the increases of & increases the critical load.

d) in the range ¥* < ¥ < co, represented by the area above curve AP (Fig. 5), every iso-y
curve has an extremum. All such extrema are contained in the optimal stability envelope.

L]
]
]
]
1
1
: OPTIMAL
5 STABILITY
\ s ENVELOPE
1
800 '

8

CRITICAL LOAD
8

r-————— 384-829

FiG. 5. The iso-y curves of the damped system.

For a prescribed 7, the increase of £, up to a certain critical value &*, increases the critical
load. Any further increase of & reduces the critical load. Finally, as & — &p, all the iso-y
curves converge at P, yielding the flutter load kﬂr = 384.829. The intersection between
the optimal stability envelope and the prescribed iso-y curve, P*, yields the correspond-
ing &*,

ii) & = £,—AE&. In Fig. 3, these systems belong to the region just below the line HEFJ.
Since the mode separation curve is common with the introductory divergence line along
EFJ, the flutter systems in the range y** < y < oo are at the verge of becoming divergence
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systems. This region, in Fig. 6, is represented by the area SQRT. In striking contrast to
the area OP’QS, where the flutter loads, as expected, are highly sensitive to the material
damping, the flutter load in the region SQRT remains constant.

iii) & = &p. In Fig. 3, the line HEFJ represents this class of systems. In the range
y** <y < o0, line EFJ, there exist both the divergence and flutter loads; and the mode

Ker
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Fi1G. 6. The instability boundaries of the system & = &p—4E.

of instability is under a process of transition from flutter to divergence. This is clear from
Fig. 7, where line QR represents the coincidental divergence and flutter loads, K, and
K“D(l}'

iv) & = £p+A4E. In Fig. 3, a line parallel to and just above HEFJ, represents this class
of systems. It can be visualized that the latter half of this line lies above the portion EF
of the mode separation curve, and therefore these systems undergo the transition from
flutter to divergence at a certain damping, y = 9,. The following features are observed
in Fig. 8:

a) With the introduction of damping, the flutter load of the undamped system OP

reduces to OP' due to the Ziegler’s jump PP'.

p(1)
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b) addition of damping, in the range 0 < y < y,, increases the critical load mono-
tonically.

c) at y = y,, the flutter load I?"m)

d) at y = y,+ A4y, the mode of instability changes from flutter to divergence.

e) in the range y, <y < o, area SQRT, the system continues to remain a divergence

system with the critical load K,

and the divergence load !Ec, oy r€ identical at Q.

(1)’

v) Range &, < & < &p. This range in Fig. 3 is represented by the subspaces R, and
R; in entirety, and the lower half of the subspaces R, and Rs. Since the portion DAE
of the mode separation curve divides the subspaces R, and R, in the range 0 < y < p**,
it is possible for the material damping, in the above range, to change the mode of instability
of the system from flutter to divergence. For example, the system with & = 3.50, repre-
sented by the dotted line O’ ABC, is a flutter system in the range 0 < ¢ < 0’4 and a diver-
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Fic. 9. The instability boundaries of the system & = 3.50.

gence system in the range O'A < y < o0; the transitional damping coefficient being

¥+ = O'A. Figure 9, also representing the system & = 3.50, reveals the following features:

a) with the introduction of material damping, the flutter load of the undamped system
OP reduces to OP’ due to the Ziegler’s jump PP’.
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b) in the range 0 < y < y,, area OP'AD, addition of damping increases the flutter
load monotonically.

¢) in the range ¥, < y < o0, area DAEF, the system becomes divergent with the critical
load K,

erp(1)’
d) the damping values corresponding to A, Band Care identical to the values represented

by 4, B and C in Fig. 3.
vi) &g < & < oo. This range, in Fig. 3, is represented by the upper portion of subspaces
R, and Rs. Since this area is above the mode seperation curve in entirety, the mode of
instability remains as divergence. These are the so-called pseudo conservative systems,
i.e., systems for which instability occurs through divergence, although at least some polyge-
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Fi1G. 10. The instability boundaries of the system. & = &g+ A&

nic forces are present. A restudy of Figs. 7, 8 and 9 and Fig. 10, which represents the
system & = Ep+AE&p, reveals the following features:
a) an increase of & lowers the dotted divergence boundary, K,, = K"‘,,D(l).
b) with the increase of &, the left and right loops of the flutter boundaries begin to shift
apart. Finally, as seen in Fig. 10, the left loop of the flutter boundary disappears

completely; rendering the system fully divergent.
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Conclusion IL  As a result of the interaction between £, the ratio of the polygenic and
monogenic forces, and y, the material damping coefficient; the mode of instability and the
critical load of the damped system are influenced in the following manner:

i) in the range, 0 < & < &)p, the mode of instability, which is flutter, remains unaltered.
The critical load, however, is influenced significantly and the maximum attainable value
is given by the optimal stability envelope.

ii) in the range, &, < & < &g, the transformation from flutter to divergence is possible
at ¥ = y, provided the inequality, 0 < y < y**, is satisfied. For y > y**, the mode of
instability becomes divergence. For 0 < ¥ < y**, when the initial mode of instability is
flutter, the critical load is influenced in the following manner: First, the introduction of
infinitesimal damping produces the Ziegler’s jump. Further addition of damping increases
the critical load monotonically up to ¥ = y,, where the system transforms into a divergence
system and the critical load thereafter remains constant. In contrast to the undamped
case, there is no jump of the critical load during transformation from flutter to divergence.

iii) In the range, ér < £ < o0, the mode of instability, which is divergence, remains
unaltered. The critical load, as expected, remains insensitive to damping.
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