Archives of Mechanics ® Archiwum Mechaniki Stosowanej ® 26, 2, pp. 211-220, Warszawa 1974

Some problems of double waves in magnetohydrodynamics

W. ZAJACZKOWSKI (WARSZAWA)

IT was shown in the paper, that an interaction process of two magnetoacoustic simple waves
for the MHD system can be described always by a system of Riemann invariants. The hodograph
of this interaction process, being the solution of the MHD equations, is determined by a partial
differential equation of second order for a density fluid function with independent variables
as components of the fluid velocity. In the case of the cylindrycal hodograph this problem is
reduced to analysis of the ordinary differential equations. The posibility of the linear interaction
process of two magnetoacoustic simple waves was presented.

W pracy wykazano, ze proces oddzialywania dwoch fal prostych magnetoakustycznych dla
uktadu MHD moze by¢ zawsze opisany przez uklad inwariantow Riemanna. Hodograf tego
oddziatywania, bedacego rozwigzaniem rownaii MHD, jest okreS$lony przez rownanie roznicz-
kowe czastkowe rzedu drugiego dla funkcji gestoéci cieczy, gdzie zmiennymi niezaleznymi
sg skladowe wektora predkosci cieczy. W przypadku hodografu cylindrycznego problem spro-
wadza si¢ do badania réwnan rézniczkowych zwyczajnych. Ponadto przedstawiono mozliwosé
liniowego oddzialywania fal prostych magnetoakustycznych.

B pafore mokasaHO, UTO NpOLECC B3aMMOAEHCTBHA JBYX MarHMTOAKYCTHUECKHX IIPOCTHLIX
BOJH anA cucrembl MII] moxker OBITH BCerja OmMcaH NpH IIOMOLUM CHCTEMbI HHBADHAHTOB
Pumanna. I'omorpad sroro B3aumogeiicTBus, SBIMIOLErocs pelueHuem ypapHenuit MTJI,
onpefened AugepeHIHATLHEIM YPaBHEHHEM B YACTHBIX MPOH3BOJHBIX BTOPOro MOpAAKA
OTHOCHTEJIBHO [LIOTHOCTH YKHIKOCTH, I/Ie HE3aBHCHMMBIMH MepeMEeHHBIMH ABIAIOTCA COCTABIIA-
IOIIHE BEKTOPA CKOPOCTH TEYEHHA YKUAKOCTH. B ciryuae munuugpuueckoro rogorpada 3ajaua
CBOMTCA K HMCCI/IEI0OBaHHIO ODBIKHOBEHHBIX AuddepeHuatbHbIX ypaBHerHid. [TokasaHa Bo3-
MOYKHOCTH JIMHEHHOIO B3aHMOLEHCTBHA 1IPUCIBIX MAI'HHTOAKYCYHUYECKHX BOJIH.

o density of the fluid,
p pressure of the fluid,
u = (vy,v;) velocity of the fluid,
H a magnetic field,
E physical space,
# hodograph space,
x = (t,x,y) coordinates of E,
u = (p, p,v1,v;, H) coordinates of 3,
¥ = (Yo» ¥p» Y1, ¥2, k) characteristic vector from
A= (Lo, Ay, 4;) = (A5,A) characteristic covector from E,
§ = Ag+u-A velocity of magnetoacoustic wave regard to a moving media,
R', R* Riemann invariants,
x adiabatic exponent,
o direction in which every double wave is constant.

1. Introduction

IT HAS been shown [7] that the process of interaction of two, in general non parallel (*),
acoustic simple waves in gasdynamics may be described by an appropriate system of two

(*) The case in which the directions of propagation are parallel was solved by Riemann (1869), [10].
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Riemann invariants (by double waves). This fact may be physically expressed in this that the
result of the interaction of two simple waves being also two simple waves of this same kind.
Thus the process of interaction changes only the profilesand directions of propagation of the
waves. In the present paper it is shown that for interaction of two magnetoacoustic waves
in the case in which magnetic field is perpendicular to the direction of propagation of the
waves, there exists also a system of two Riemann invariants describing the interaction
process. We have assumed that the flow is an ideal isentropic flow with infinite conductiv-
ity. Similarly as in paper [7], the hodograph of this interaction process is described by
a second-order partial differential equation. In this paper is analysed a particular solution
of this equation for a cylindrical hodograph. On the cylindrical hodograph will be exempli-
fied the procedure for constructing a solution of this equation. In this paper we apply the
method developed in [1, 2, 3,4, 5, 10].

2. Simple elements

We have to deal with equations of MHD in the case in which a vector of magnetic
field has a constant direction and is perpendicular to the motion plane. Under these assump-
tions, the equations of magnetohydrodynamics have the form:

2
?';-g+9divu =0, 9%1:--4-\?(,0-1-—':;) =0,
(2.1) - il
=0 (7=
% + Hdivu = 0, it ( 9") 0,
where

d 0
e —(-},—'H' Vand ¢ = o(¢, x, y), u = u(t, x, ),

p=p(t,x,y), H= H(t, x,y). By u = (o, p, v*, v, H) we denote coordinates of hodo-
graph space # and by x = (¢, x, y) coordinates of physical space E, so that dim J# = 5
and dimE = 3. At first we seek equations for simple elements, and hence we put /1",
Jj=1,..,5v=1,2,3 into the Egs. (2.1) instead of the derivatives u/,. Then we get
the system of equations for characteristic vectors  from the hodograph space and char-
acteristic covectors 4 from the space E* dual to physical space. The coordinates of vector
y and covector A we shall denote as follows: ¥ = (¥,, ¥p, ¥1> V2, B). 4 = (4o, 41, 4,).
Finally, we introduce the denotation & = Ap+u-A, where u = (7', 9?), A = (1}, 4?)
and hence the system of Egs. (2.1) will receive the form:

dy,+oy A =0, gﬁ-\r+1(y,,+ f—:) =0,
2.2)
Sh+Hy: A =0, 5(yp---%’—yg) = 0.

The condition of existence of solutions for the vector y has the form:

H? xpl\|
2.3) &3 [62 = (2—35 + _é_)] = 0.
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It is the characteristic determinant for the Egs. (2.2). The Eq. (2 3) gives us two families
of simple elements:
A. Entropic elements if § = 0. Then

Hh
(2.9) y=(?’a,_ﬂ’lz, —Al'h)’ A= (-u ).
e
B. Magnetoacoustic fast elements if 6 = i"/—x'?—+ =
e 4w
A
(2.5) 7= (e. =83 H), A= (0]A]—u-2,2).

Some simple waves correspond to these simple elements. The method of constructing
simple waves from simple elements is described in paper [5].

3. The hodograph problem

Now we restrain the interaction between the magnetoacoustic simple waves. The ho-
dograph of double wave (the image of transformation u:E — ), u = u(R", R*), where
u = (p,p, v', v* H) and R*, R? are Riemann invariants, parametrized by two Riemann
invariants, is described by the following system of partial differential equations:

(3 1) O Rl = V0, PRI = ViXD,

ugi = _V,(ST}:{—, H_Ri =1J;H,

(Al —u-A)ri = pij(BIA] —m e Ap) +v(0[A;| —u- Ay,

3:2
¢2) A ri = pii N+,

where i# j;i,j = 1,2 and »;, u;;,v; are arbitrary functions. From the Egs. (3.1) we
obtain the following relations:

(3.3) p=Ae, H=Co,

(3.4) A= -2 —um, i=1,2 =1,
&Q,RI

where A, C are constants of integration.
The Egs. (3.4) imply the conditions:

do gi
(3.5) S = Ju,

2 - |
g URg2!
L NpT R e

3.6 ¢
S - om0

3

where |u i | are the magnitudes of the vectors u zi . The conditions of involution Eqs. (3.2)
for covectors

62
/1; = (?Q'Ri +“‘“,Rl —uRil, i = 1,2
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receive the form:
82 82 42
3.7 ("e—@'gl +u- u_R:).gJ = p;,-(?g,gi +u- “,Ri)+ﬂu(?9,31 +u- l.l’nj),

(3.8) U gigi = W;ju gl +¥;;URJ,
i+#j,i,j=1,2 and the summation convention is not used.
From the Egs. (3.8) it follows that u,, = v,,, #21 = ¥12, so the set of Egs. (3.7), (3.8)

reduce to three independent equations.
After eliminating the arbitrary functions u;;, #;;, the Eqs. (3.7), (3.8) are reduced to

one equation of the form:

82 82
3.9) -—) Q.R10,R2+ ——0 RiRz +U R - WRa+U U RiR2 =
Q2 /e e
det” U Rig2, ll’g:” 82 det”ﬂ‘m, ll’gup” 82
= ——QRit —O,r2
det||ups, 0| @ det|[u ki, 0 g2l @

where
2

R e
The system of Eqgs. (3.5), (3.9) describes the hodograph interaction of two magneto-

acoustic waves, for which there exist Riemann invariants and the condition (3.6) must

be satisfied.
From the Egs. (3.5), (3.9) we eliminate the Riemann invariants R', R? by exchange
of independent variables R!, R? — v!, v?; thus we obtain one equation of the form:

1[8 (o 6 &
010 3% () Jerirern-2+ 2] otun(enn 2-1)

5 , 8
- 29,#19.02 O,0102 ‘_QT +0,0202 | 001 '9_2 -1 =0

for the unknown function p.
The condition (3.6), which assures the existence of characteristics, takes the form:

az
(3.11) ra (@51+0%2) = 1.

Thus the hodograph of the double wave determined by the Egs. (3.1), (3.2) is described
by a system of functions:

(3.12) o' =0, o?=0% g=9¢@,0?), p=dg"(',v?), H=Co(v'v?),
where 4, C are constants and p satisfy the Eq. (3.10) and the condition (3.11). Equation

2

2
(931 3—2 = 1) (') 420010029 0* — (eﬁz 3—2 - 1) (#%)? =0

determining a characteristic curve (o(s), ©!(s), v2(s) from the Eq. (3.5) has the same form
as the equation defining characteristic curves for the Eq. (3.10). Then the Eq. (3.10) is
a hyperbolic one on a hodograph surface determined by the Eq. (3.12). This suggests the
Theorem 5.1 from paper [7].
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TueoreM. If Iy, I, are two characteristic curves in the hodograph space (with the excep-
tion of the case in which I'y, I, lies on a plane Av' + Bv?—C = 0) passing through a point
(00> 5, 3) i.€. (00, vs, v3) €'y N I'y —then

1) in some neighbourhood of the point (0o, v5, v3) there exists a solution of the Eq. (3.10)
which passes through the lines I'y, I',.

2) this solution is uniquely determined.

This theorem may be understood as the solution of the problem of simple wave — simple
wave interaction for system (2.1).

It is useful sometimes to seek solutions in the implicit form:

(3.13) F(p, v',v%) = 0.

Expressing the Eq. (3.10) and the condition (3.11) in terms of F(p, v!, ©?), we arrive at
1] 8 82 2 2 3. & » 2

(3.14) £ ot vy 1 (Fo1+Fy,) F,—2F; +? [Foo(Fo1 + Fg3) = 2F (Fopy F

+F002F02)" (FuialFuzZ _ZFpIFvIFvlvz+F02v2Fuzl)+ (Fazu +Fn2n2)F:] e 0
and

2
(3.15) F? < -g— (F2+ ).

The set of solutions of the Eq. (3.14) contains the set of solutions of the Eq. (3.10)
and solutions of the form: F = g(2!, v?)—g. If we put C = 0 (otherwise H — 0) in the
Egs. (3.14), (3.15), we obtain analogous equations for gasdynamics, which can be found
in paper [7].

The equations, which possess only magnetoacoustic simple elements, have the form:
CZQI

8n

(3.16) %+9divu =0, g%—}-v(
The system (3.16) is the Q,-system; hence every solution of one may be constructed
from simple magnetoacoustic elements. Moreover, the double wave is a solution of this
system and also a set of solutions of this system contains some non-linear superposition of
three and more magnetoacoustic waves.
It is easy to see that the Egs. (2.1) are invariant under the following homotetia
transformation:

+A9") =0, rotu=0.

¥—1
(o, p,u, H) » (0o, 8p,a = 8'%u, 5”20'"“}11),

x—1 x—1

(¢, X%, x2) — (B, B8* %6 T X1, 8026 T x2),

(3.17)

where ¢ > 0, § > 0, B # 0 are constants.
For the Eqs. (3.16), the general homotetia transformation (3.17) reduces for x # 2

to one parametr group:
(e,p,u, H)> (¢,p,u, H),

(3.18)
(t, x*, x*) - (Bt, px*, px?),
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and for x = 2 to:
(0, p,u, H) - (s, &*p, Y om, aH),
(2, x*, x2) — (Bt, Bx*, Bx?).

(3.19)

For » = 2 the Egs. (3.16) reduce to hydrodynamic equations of the form:

1 . d
(3.20) % Loy w0,

5 2 a +2aVa =0

2

C ;
where @ = 2 (A+ E) o, p = Ap*, H = Cp. The Eqgs. (3.20) were analysed in paper [7],

where a plays the role of sound velocity.

4. Cylindrical hodographs

Now we shall seek solutions to the basic Egs. (2.1), hodographs of which are described
by the Eq. (3.14), and which have the form of cylindrical surfaces. First, we restrict our
considerations to the function F of the form F = o' —¢@(2?), substitution of which into
the Eq. (3.14) yields:

4.1) $ =0.
Here, dots denote differentiation with respect to »2. Thus, besides the planes (describing
one-dimensional flows), there are no hodographs in the form F(¢!, v?) = 0.

In a manner similar to [7], we may consider the hodograph given by the relation F =
= o' —g(p); substituting o' —p(p) for the function F(p, v, v?) into the Eq. (3.14), we
obtain the following ordinary differential equation:

4.2) i +Axp*"? |+ _cz — Ax(x—3)p"2 2_2-2_
) 4n 0 ¥ an e 0 ¢ =0,

where the dot denotes differentiation with respect to p. This equation which is known as
an Abel equation of the first kind, has solution:

M= 2
ol = ¢ = if H+A?¢Q dg +C2 for % F 3
e C 4o Adx
. ! 0 x®—3 "
ol=¢= :tf ”Z{‘—g—-— % +C, for x=3,

]/cl+% —34lng

where « = C?/4n and C,, C, are arbitrary constants of integration. This solution contains
two arbitrary constants. We may put C, = 0, since the equations are invariant under
the Galillelian transformation.
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The characteristic vectors in the hodograph space for solutions (4.3) may be expressed
in terms of ¢(0):

. ; @; ‘4_3‘_9_'"1_ o
Yi-= (”(ps ‘}"'l_,.Jf L e '_(Pz)y

L e A
)’:=(|.fP,~ O H —-¢° ],

and the characteristics covectors 4, 2 in physical space knotted with y, y. respectively,
12 12

(4.4)

take the form:

T PP o G 201
f" = (a+Ax9*-2+v‘®‘+vzl/&gf—g -(@)?, -9, — ]/-q(‘!.m'{?————(z‘:‘}’),
(4.5) R

=1 - wpr®=1
2 (mmx-wes_ﬂz]/ AR i g, *l/ 39-*?%-—(@1;2),

where the dot denotes differentiation with respect to p.
The direction o(g||Ax 4) on which the solution must be constant is given by
1 2

(4.6) o=

¥=2
(l, m+{’—‘—— +o!, @2).
¢

The construction presented has sense if the following conditions are satisfied:

x—1
4C, 0+ 3a+x =220
@.7) '9 =

4C, +3a—o(l +4lnp) > 0 for x =3,
where C, is an arbitrary real constant and a« is an arbitrary nonnegative constant. The

conditions (4.7) assure the existence of two families of characteristics and thus define
the area of hyperbolicity of the Eq. (3.14).

The double waves considered are constant over the direction o; hence the operator

for = # 3,

(4.8) o'V =._gl_+(.ﬁ./4_.x.9x:.+wl)i+@2_a d i _6-
! P

must vanish on the solutions.

If Fis the solution of the Eq. (4.2), then a double wave with hodograph F is described
by the Eq. (3.16) and equations:

(4.9) c:Vop=0, o-Vo'=0, o-Vo?=0.
Therefore, using the Eq. (4.9), the Egs. (3.16) take the form:
L Bh 8 (af’i + a”z) -0,

=

ox 5y=;1’? g ox

olo)  ox ox | Oy
o+ Axg*"* oot d [a
410 5o NIRRT RS 8 N B
et o) an+ax(29+9) °

a+Axg*"2 ov? 0 [a , o
- Gt (5]
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The Egs. (4.10) are linearly dependent; hence we obtain two equivalent forms:
=2 -2
[—% +l:lv,‘,,+w_’,. =0, or [1—5—4542‘9—}¢9,,+uf,=0,
(4.11) ) )
vy—v% =0, @o,—v%=0.

After hodograph transformation, instead of the Eq. (4.11) we have:

+Axg*? | . ;
4.12) [ ~ %—] Partxe =0, §Xpa=yo=0
and further
(4.13) [09? — (a+ A%0""2)] PY.0202 = 0BV, 0PV ,g0-
Using the Eq. (4.3), we obtain:
(4.14) (:i—; Axp "—Clg—h) (a+ A% 2) Y y20z = Q[Axg ~2(x—3)C,

+4 Ao &%ﬂ 0* "2 —2x24%% 5 —2a%~ ' - C, u:] Ve

4Ax%

x—13

This is the linear equation of second order for the function y, and for » = 3, we obtain

the analogous linear equation:

(4.15)  (a+340)*[C 0+ (Ino—1)340]y,0202 = [22(C,0+a—3A4gIng)

—(2+340)*1y,o+20(a+340)(Cio+a—340InQ)y 4.

The Egs. (4.11) describe the interaction of two fast magnetoacoustic waves with a hodo-

graph which can be represented by the expressions:

(4.16) H=Cp, p=Ao, o' =g,

where ©? is arbitrary and ¢ is a solution of the Eq. (4.2) (see Eq. (4.3)[9]). Therefore, we
have a three-parametr (C, 4, C,) family of hodographs. Each solution of the Egs. (4.11)
presents the interaction process of two fast magnetoacoustic waves for the fixed moment
of time. Dependence on time is described by the Egs. (4.9). The Eqgs. (4.11) are of mixed
type; hence we have:

—{a+Ax9"“2)(C1+4a9“‘— 9"'3))’_” for = # 3.

X =2
hyperbolic type if 2X4%¢" _j 5 o,
9
-2
elliptic type if L;?f”—— -1 <0,

The method presented makes sense in the area of the hyperbolicity of the Egs. (4.11),
or equivalently if characteristics vectors exist y;, 4; i=1,2.

Now shall describe the manner of constructing solutions with cylindrical hodographs.
First, we solve the system (4.11) from which we obtain 2 = v*(x, y), ¢ = o(x, y) and
the other hodograph functions we have from the relations (4.16). Subsequently, this solution
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may be prolongated along direction ¢ using the Eq. (4.9), because the solution is constant
in that direction; hence we obtain time dependence v? = v*(x, y,t), o = o(x, y, 1).
This method is described precisely in paper [6].

We know in gasdynamics the case in which two simple acoustic waves interact linearly
-1 .
7 where ¢ is the angle
between directions of propagations of the interacting waves. The physical meaning of the
linear interaction lies in that one wave does not disturb another. The mathematical meaning
denotes that the hodograph is of the form:

u = uy(R") +u,(R?),
where u gi = ¥ and covectors from the physical space 4 = A(R), so that R* = ¢(4- x).
i kK k k

(8,9). This interaction is possible if and only if cosp = — 2

The case of linearly interacting waves appears in magnetohydrodynamics for two simple
magnetoacustic waves only for x = 2, but in this case equations of magnetohydrodynamics
reduce to equations of hydrodynamics [see (3.20)], [8, 9].

Obviously, the angle between directions of propagations of waves is determined by
cosg = —1'/,. Of interest is the possibility of this interaction being independent of the
profiles and amplitudes of the waves.

5. Entropic waves in the interaction

Now we are interested in the problem of interaction of two entropic waves. Using the
form of entropic simple elements in the Eq. (2.4), it is easy to see that p is an arbitrary
function and p+ H?/8n = C, where C is a constant of integration. Further, from the
characteristic vectors in hodograph space, we have the following form for covectors of
entropic waves:

(5.1) A= (—v'okitovPoiy, vk, —ok), i=1,2,
i

where R', R? are Riemann invariants for entropic waves.

From the condition of involution, we have the equation
(5.2) Ve Rt —viR0%R2 =0, so 92 = y(v!) there A||A.

12

Thus interaction waves are not described by a double wave.

The process of interaction of entropic and magnetoacoustic waves is more complicated
and not yet solved in general, except for a few special examples.

The results presented in this paper may be used for constructing particular solutions
of the basic equations and for numerical analysis of solutions.
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