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Some problems of double waves in magnetohydrodynamics 

W. ZAJ.t\CZKOWSKI (WARSZAWA) 

IT WAS shown in the paper, that an interaction process of two magnetoacoustic simple waves 
for the MHD system can be described always by a system of Riemann invariants. The hodograph 
of this interaction process, being the solution of the MHD equations, is determined by a partial 
differential equation of second order for a density fluid function with · independent variables 
as components of the fluid velocity. In the case 'of the cylindrycal hodograph this problem is 
reduced to analysis of the ordinary differential equations. The posibility of the linear interaction 
process of two magnetoacoustic simple waves was presented. 

W pracy wykazano, :Ze proces oddzialywania dw6ch fa) prostych magnetoakustycznych dla 
uldadu MHD mo:Ze bye zawsze opisany przez uklad inwariant6w Riemanna. Hodograf tego 
oddzialywania, ~d'lcego rozwi'lzaniem r6wnan MHD, jest okre8lony przez r6wnanie r6znicz­
kowe CZ'!Stkowe rz~du drugiego dla funkcji g~stosci cieczy, gdzie zmiennymi niezaleznymi 
S'l sldadowe wektora pr~dkosci cieczy. W przypadku hodografu cylindrycznego problem spro­
wadza si~ do badania r6wnan r6zniczkowych zwyczajnych. Ponadto przedstawiono moi:liwosc 
liniowego oddzialywania fa) prostych magnetoakustycznych. 

B pa6oTe noKa3aHo, tiTO npon;ecc B3aHMO;::{eiicrBHH ;::{Byx MarHHToaKyCTHtieCKHX npocrbiX 
BOJIH ;::{JIH CHCTeMbl Mr )J; MO>KeT 6b1Tb BCer,r:{a OllHCaH npH llOMOIIJ;H CHCTeMbl HHBapHaHTOB 
PHMaHHa. ro,r:{orpa<t> 3TOro B3aHMO,r:{eHCTBHH, HBJIHK>IIJ;eroca pemeHHeM ypaBHeHHii Mr,U:, 
onpe;::{eJieH ;::{H<t><t>epeHn;Ham.HbiM ypaBHeHHeM B t~aCTHbiX npoH3BO;::{HhiX BToporo nopa;::{Ka 
OTHOCHTeJibHO llJIOTHOCTH >KH;::{KOCTH, r,r:{e He3aBHCHMbiMH nepeMeHHbiMH HBJIHK>TCH COCTaBJIH­
IOIIJ;He BeKTopa cKopocrH TetieHHH >KH;::{KOCTH. B CJIYtiae IJ;HJIHH;::{pHtiecKoro ro;::{orpa<Pa 3a;::{atia 
CBO;::{HTCH K HCCJie,r:{OBaHHIO 06biKHOBeHHbiX ;::{H<f><f>epeHIJ;Ha.JibHbiX ypaBHeHHH. iloKa3aHa B03-
MO>KHOC"fb mmeHHOrO B3&HMO,r(eHCT:SHH HpOC'l'biX Mai'HHTOaKfC'l'HtleCJ<HX BOJIH. 

e density of the fluid, 
p pressure of the fluid, 

u = (v1, v2) velocity of the fluid, 
H a magnetic field, 
E physical space, 
;'( hodograph space, 

x = (t, x, y) coordinates of E, 
u = ((!, p, v1, v2, H) coordinates of .Tf, 

Y = (y11 , YP• Yt, Y2, h) characteristic vector from .Tf, 
A. = (A.o, A1, A.2) = (A.0, A) characteristic covector from E, 

o = A0 + u · A velocity of magnetoacoustic wave regard to a moving media, 
R1

, R2 Riemann invariants, 
x adiabatic exponent, 
a direction in which every double wave is constant. 

1. Introduction 

IT HAS been shown [7] that the process of interaction of two, in general non parallel (1 ), 
acoustic simple waves in gasdynamics may be described by an appropriate system of two 

e) The case in which the directions of propagation are parallel was solved by Riemann (1869), [10]. 
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Riemann invariants (by double waves). This fact may be physically expressed in this that the 

result of the interaction of two simple waves being also two simple waves of this same kind. 
Thus the process of interaction changes only the profiles and directions of propagation of the 
waves. In the present paper it is shown that for interaction of two magnetoacoustic waves 
in the case in which magnetic field is perpendicular to the direction of propagation of the 
waves, there exists also a system of two Riemann invariants describing the interaction 
process. We have assumed that the flow is an ideal isentropic flow with infinite conductiv­
ity. Similarly as in paper [7], the hodograph of this interaction process is described by 
a second-order partial differential equation. In this paper is analysed a particular solution 
of this equation for a cylindrical hodograph. On the cylindrical hodograph will be exempli­
fied the procedure for constructing a solution of this equation. In this paper we apply the 
method developed in [1, 2, 3, 4, 5, 10]. 

2. Simple elements 

We have to deal with equations of MHO in the case in which a vector of magnetic 
field has a constant direction and is perpendicular to the motion plane. Under these assump­
tions, the equations of magnetohydrodynamics have the form: 

~g+gdivu = 0, Q ~ +V(p+ :~) = 0, 

-~ +Hdivu = 0, ~( :. ) = 0, 

(2.1) 

where 

d a dt =a! +u. V and(!= (!(t, X, y), u = u(t, x,y), 

p =p(t,x,y), H= H(t,x,y). By u = ((!,p, vt, v2 ,H) we denote coordinates ofhodo­
graph space £? and by x = (t, x, y) coordinates of physical space E, so that dim :If = 5 
and dimE= 3. At first we seek equations for simple elements, and hence we put yi ;.v, 
j = 1, ... , 5, Y = 1, 2, 3 into the Eqs. (2.1) instead of the derivatives u~v . Then we get 

the system of equations for characteristic vectors y from the hodograph space and char­
acteristic covectors }. from the space E* dual to physical space. The coordinates of vector 

y and covector }. we shall denote as follows: y = (y," yP, Yt, y2, h). A = 0-o, A1, A2). 
Finally, we introduce the denotation c5 = J. 0 +u ·A, where u = (vl, v 2 ), A= (J.l, A2

) 

and hence the system of Eqs. (2.1) will receive the form: 

dr.+ey ·A = o, edy+ A(r.+ ::) = o, 
(2.2) 

flh+Hy· A= 0, +·- "; r.) = o. 
The condition of existence of solutions for the vector y has the form: 

(2.3) d{ d2
- (!: + "i)] = 0. 
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It is the characteristic determinant for the Eqs. (2.2). The Eq. (2 3) gives us two families 
of simple elements: 

A. Entropic elements if c5 = 0. Then 

(2.4) y ~ (r.,- ~;, A2, -A,, h), A~ ( -u ·A, A). 

B. Magnetoacoustic fast elements if c5 = ± -. / xp + 
4
H

2 

V e ne 

(2.5) y ~ ( e, ><p, - d l~l , H), A~ (diAI-u ·A, A). 

Some simple waves correspond to these simple elements. The method of constructing 
simple waves from simple elements is described in paper [5]. 

3. The hodograpb problem 

Now we restrain the interaction between the magnetoacoustic si.mple waves. The ho­
dograph of double wave (the image of transformation u:E---+ .if), u = u(Rl, R2

), where 
u = (e, p, vl, v 2

, H) and RI, R2 are Riemann invariants, parametrized by two Riemann 
invariants, is described by the following system of partial differential equations: 

(3.1) 

(3.2) 

f},Ri = V;f], 

A; 
= -vic5l1J, 

where i=F j; i,j = 1,2 and v;, /lii• vu are arbitrary functions. From the Eqs. (3.1) we 
obtain the following relations: 

(3.3) P = Ae"' H = Ce' 

(3.4) A; = - _e __ u Ri , i = I , 2, IA.d = I , 
f5(],Ri ' 

where A, C are constants of integration. 
The Eqs. (3.4) imply the conditions: 

(3.5) 

(3.6) 

where lu,R; I are the magnitudes of the vectors u,Ri. The conditions of involution Eqs. (3.2) 
for covectors 
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receive the form: 

(3. 7) ( d: (/,RI + 0 'D,al) ,RI = l'ii( ~2 1/ ,RI + U' U,al) +vlj( ~
2 

1/ ,RI +u' D,RI), 

(3.8) U,RiRi = f.ljjU,Ri +Pijll,Ri, 

i =1= j, i, j = I , 2 and the summation convention is not used. 
From the Eqs. (3.8) it follows that p 12 = P.z_ 1 , p 21 = P12 , so the set of Eqs. (3.7), (3.8) 

reduce to three independent equations. 
After eliminating the c;trbitrary functions /-lih Pih the Eqs. (3.7), (3.8) are reduced to 

one equation of the form: 

(3.9) 

where 

C2e 
~2 = Aue"-1 + ~. 

The system of Eqs. (3.5), (3.9) describes the hodograph interaction of two magneto­
acoustic waves, for which there exist Riemann invariants and the condition (3.6) must 
be satisfied. 

From the Eqs. (3.5), (3.9) we eliminate the Riemann invariants R1
, R2 by exchange 

of independent variables R1 , R2 --+ v1 , v2 ; thus we obtain one equation of the form: 

for the unknown function (!. 

The condition (3.6), which assures the existence of characteristics, takes the form: 

(3.11) ~2 ( 2 2 
-2 evt +e v2) ~ 1 · (! , 

Thus the hodograph of the double wave determined by the Eqs. (3.1), (3.2) is described 
by a system of functions: 

(3.12) v1 = vt, v2 = v 2
, e = e(v1, v 2), p = Ae"(vt, v 2

), H = Ce(vt, v2
), 

where A, C.are constants and(! satisfy the Eq. (3.10) and the condition (3.11). Equation 

( 
2 ~2 1 ) (. 1)2 • 1 • 2 ( 2 ~2 1) (. 2)2 0 (!vt ? - V + 2evt(!v2V V - (!v2 ? - V = 

determining a characteristic curve (e(s), v 1(s), v 2 (s) from the Eq. (3.5) has the same form 
as the equation defining characteristic curves for the Eq. (3.10). Then the Eq. (3.10) is 
a hyperbolic one on a hodograph surface determined by the Eq. (3.12). This suggests the 
Theorem 5.1 from paper [7]. 
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THEOREM. If rl, r2 are two characteristic curves in the hodograph space (with the excep­
tion of the case in which F 1 , F2 lies on a plane Av1 + Bv2

- C = 0) passing through a point 
(eo, V~, V~) i.e. (eo, V~, V~) E Fl () F2 -then 

1) in some neighbourhood of the point (eo, v~, v~) there exists a solution of the Eq. (3.1 0) 
which passes through the lines r1' r2. 

2) this solution is uniquely determined. 
This theorem may be understood as the solution of the problem of simple wave- simple 

wave interaction for system (2.1). 
It is useful sometimes to seek solutions in the implicit form: 

(3.13) 

and 

(3.15) 

The set of solutions of the Eq. (3.14) contains the set of solutions of the Eq. (3.10) 
and solutions of the form: F = q;( v1

, v2
)- e. If we put C = 0 (otherwise H -+ 0) in the 

Eqs. (3.14), (3.15), we obtain analogous equations for gasdynamics, which can be found 
in paper [7]. 

The equations, which possess only magnetoacoustic simple elements, have the form: 

(3.16) de d. o - +fl IVU = dt 1:: ' 
rotu = 0. 

The system (3.16) is the Q1-system; hence every solution of one may be constructed 
from simple magnetoacoustic elements. Moreover, the double wave is a solution of this 
system and also a set of solutions of this system contains some non-linear superposition of 
three and more magnetoacoustic waves. 

It is easy to see that the Eqs. (2.1) are invariant under the following homotetia 
transformation: 

1(-1 

(3.17) 
(e,p, u, H)-+ (ae, bp, a-2- b112 u, b112 0"''2H), 

"-1 "-1 
(t, xl, x2) -+ ({Jt, {Jb1f2a_2_ xl, {Jb112a-2- x2), 

where a > 0, b > 0, fJ =1= 0 are constants. 
For the Eqs. (3.16), the general homotetia transformation (3.17) reduces for ~ =I= 2 

to one parametr group: 

(3.18) 
(e, p, u, H)-+ (e, p, u, H), 

(t, x1
, x2

) -+ (/Jt, {Jx1, {Jx2), 
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and for u = 2 to: 

(3.19) 
(e, P, u, H) --+ c (Xe, 1X2 P , v~u, 1XH), 

(t, x 1
, x 2

) --+ ({Jt, {3x1
, {3x2

). 

For u = 2 the Eqs. (3.16) reduce to hydrodynamic equations of the form: 

(3.20) da 1 d" 0 dt +Ta IVI:l = , 

where a = 2 (A+ ;~) e, p = Ae2
, H = Ce. The Eqs. (3.20) were analysed in paper [7], 

where a plays the role of sound velocity. 

4. Cylindrical hodographs 

Now we shall seek solutions to the basic Eqs. (2.1), hodographs of which are described 
by the Eq. (3.14), and which have the form of cylindrical surfaces. First, we restrict our 
considerations to the function F of the form F = v 1

- q;( v 2
), substitution of which into 

the Eq. (3.14) yields: 

(4.1) ;p = 0. 

Here, dots denote differentiation with respect to v 2
• Thus, besides the planes (describing 

one-dimensional flows), there are no hodographs in the form F(v 1
, v 2

) = 0. 
In a manner similar to [7], we may consider the hodograph given by the relation F = 

= v 1 -q;(e); substituting v1 -q;(e) for the function F(e, vt, v2) into the Eq. (3.14), we 
obtain the following ordinary differential equation: 

(4.2) [ 2 J [2 ]" c )C- 2 •• c )C- 2 (/J • 2 -- +Aue q;+ -- -Au(u-3)e - -2q; = 0, 
4n 4n e 

where the dot denotes differentiation with respect to e. This equation which is known as 
an A bel equation of the first kind, has solution: 

vl = q; = ± J 1X+Auex-2 de 
+C2 for u=l-3 

e VC 41X 4Au x-3 1+-----e 
e u-3 

(4.3) 

vl = q; = ± J 1X+3Ae de 
+C2 for "'= 3, 

e 
VC,+: -3Aine 

where 1X = C 2/4n and C1 , C2 are arbitrary constants of integration. This solution contains 
two arbitrary constants. We may put C2 = 0, since the equations are invariant under 
the GalilleJian transformation. 
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The characteristic vectors in the hodograph space for solutions (4.3) may be expressed 
in terms of cp(e): 

Yl = (I' q;, + 1/, ae + ~liif:_·i - ~-~-~)' 
. ' f.! 

(
, . -. / ae +-Axg;c:_-i - ~~) 

Yz = I' <p, - V ----QZ - ·- -qJ ' 

(4.4) 

and the characteristics covectors A, }, in physical space knotted with y, y, respectively, 
I 2 I 2 

take the form: 

:· = (a+ Axe•-' +v'V' +v'V ae + A;g"-' - (v'-)2, -V1 , -V ag+ ;,"g<-~ (V' )2 ), 

(4.5) ---f}---~-
~· = (a+Axe"-'+v'V'-v'V ae+ :,"e·-·- (V')', -V', +V ae+ :,"e·-·- (V')'). 

where the dot denotes differentiation with respect to !.!· 
The direction a( all A x A) on which the solution must be constant is given by 

I 2 

(4.6) ( 
a + A Y.f]"-

2 
) 

a = I, ip + v 1
, v 2 

• 

The construction presented has sense if the following conditions are satisfied: 

Y.-1 
4C1 f}+3oc+x Y.-

3 
e"- 2 > 0 for Y. =j:. 3, 

(4.7) 

4CI +3a-e(1 +4lne) > 0 for x = 3, 

where C 1 is an arbitrary real constant and a is an arbitrary nonnegative constant. The 
conditions (4. 7) assure the existence of two families of characteristics and thus define 
the area of hyperbolicity of the Eq. (3.14). 

The double waves considered are constant over the direction a; hence the operator 

a ( a+Axo"- 2 ) o o d a+Axo"- 2 o 
(4.8) a·V=-+- .<;;: +v1 -+v2-= -- + ."" -

at 9? ax ay dt cp ax 

must vanish on the solutions. 
If F is the solution of the Eq. (4.2), then a double wave with hodograph F is described 

by the Eq. (3.16) and equations: 

(4.9) a·Ve=O, a·Vv1 =0, a·Vv2 =0. 

Therefore, using the Eq. (4.9), the Eqs. (3.16) take the form: 

- a+~xe"-2 ~ +e (-a:~+ avz) = 0, 
q;(e) ax ox oy 

( 4.1 0) a+Axo"- 2 ov 1 o (a ) 
ip(e) e ox-+ ax Te2+Ae" = 0, 

a+ Axe"-
2 

ov
2 

o ( a 2 ") 
ip(e) e -·a-x +ay 2 e +Ae = o. 
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The Eqs. ( 4.1 0) are linearly dependent; hence we obtain two equivalent forms: 

(4.11) [ 
a+A"e"-

2 J 1 2 [ a+A"e"-
2
] . 2 - ~2!! +I v,x+v,y = 0, or 1- ~2e tp(>,x+v,y = 0, 

V,~-V~x = 0, Cp(,>,y-V~x = 0. 

After hodograph transformation, instead of the Eq. (4.11) we have: 

(4.12) [ 
a+A"e"-2] • 

1- 9J2e 9JY.v2 +x,11 = 0, CpX,112 - Y, 11 = 0 

and further 

(4.13) [e9:>2-(a+A"e"-2)]9JY.v2o2 = elf;Y,11 -e~Y.1111 • 

Using the Eq. (4.3), we obtain: 

(4.14) ( =~! A><e"- 2
- C1e-3a) (a+ A><e"- 2

) Y,u2u2 ~ e [ A><e"- 2 (><-3)Ct 

+4A><a (><-~~~-4) e•-• -2><2 A2e2•-• -2a2e- 1
- C1 a JY., 

-(a+ A><e"- 2
) (c. +4ae-•- :~~ e·-•) Y,., for "=/:3. 

This is the linear equation of second order for the function y, and for " = 3, we obtain 
the analogous linear equation: 

(4.15) (a+3Ag)2[Cte+One-1)3Ae]y,.,2.,2 = [2a(Cte+a-3Ae1ne) 

- (a+3Ae)2]y,11 +2e(a+3Ae)(Cte+ a-3Aelne)Y,Q11 • 

The Eqs. (4.11) describe the interaction of two fast magnetoacoustic waves with a hodo­
graph which can be represented by the expressions: 

(4.16) H = Ce, p = Ae~, v1 = tp(e), 

where v 2 is arbitrary and tp is a solution of the Eq. (4.2) (see Eq. (4.3)[9]). Therefore, we 
have a three-parametr (C, A, C1) family of hodographs. Each solution of the Eqs. (4.11) 
presents the interaction process of two fast magnetoacoustic waves for the fixed moment 
of time. Dependence on time is described by the Eqs. (4.9). The Eqs. (4.11) are of mixed 
type; hence we have: 

a+A"e"-2 
hyperbolic type if . 

2 
-1 > 0, 

(>tp 

a+A"e"-2 
• 2 -1 < 0, 

(>tp 
elliptic type if 

The method presented makes sense in the area of the hyperbolicity of the Eqs. (4.11), 
or equivalently if characteristics vectors exist 'Yi, .A.i i = 1, 2. 

Now shall describe the manner of constructing solutions with cylindrical hodographs. 
First, we solve the system (4.11) from which we obtain v2 = v2(x, y), e = e(x, y) and 
the other hodograph functions we have from the relations (4.16). Subsequently, this solution 
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may be prolongated along direction a using the Eq. (4.9), because the solution is constant 
in that direction; hence we obtain time dependence V 2 = v2(x, y, t), e = e(x, y, t). 
This method is described precisely in paper [6]. 

We know in gasdynamics the case in which two simple acoustic waves interact linearly 
u-1 

(8, 9). This interaction is possible if and only if cos q; = - -
2

- , where q; is the angle 

between directions of propagations of the interacting waves. The physical meaning of the 
linear interaction lies in that one wave does not disturb another. The mathematical meaning 
denotes that the hodograph is of the form: 

u = Ut(R1)+u2 (R2
), 

where u,Ri = y and covectors from the physical space ). = .A(R ), so that Rk = q;(). · x). 
i k k k 

The case of linearly interacting waves appears in magnetohydrodynamics for two simple 
magnetoacustic waves only for " = 2, but in this case equations of magneto hydrodynamics 
reduce to equations of hydrodynamics [see (3.20)], [8, 9]. 

Obviously, the angle between directions of propagations of waves is determined by 
cos q; = - 1 I 2 • Of interest is the possibility of this interaction being independent of the 
profiles and amplitudes of the waves. 

5. Entropic waves in the interaction 

Now we are interested in the problem of interaction of two entropic waves. Using the 
form of entropic simple elements in the Eq. (2.4), it is easy to see that e is an arbitrary 
function and p + H 2 f8n = C, where C is a constant of integration. Further, from the 
characteristic vectors in hodograph space, we have the following form for covectors of 
en tropic waves: 

(5.1) 

where R 1
, R 2 are Riemann invariants for entropic waves. 

From the condition of involution, we have the equation 

(5.2) v,~2 v;R'-V.~'v;R2 = 0, so v 2 = 1p(v1
) there .AII.A. 

1 2 

Thus interaction waves are not described by a double wave. 
The process of interaction of en tropic and magnetoacoustic waves is more complicated 

and not yet solved in general, except for a few special examples. 
The results presented in this paper may be used for constructing particular solutions 

of the basic equations and for numerical analysis of solutions. 
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