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A rigourous derivation of the equations of compressible viscous fluid
motion with gravity at low Mach number

R. Kh. ZEYTOUNIAN (LILLE)

WE EXHIBIT two limiting forms of the Navier-Stokes equations for a heavy, compressible, viscous
and thermally conducting fluid, when the characteristic Mach number tends to zero. Usually
in aerodynamics, gravity is neglected, but, if to take gravity into account, the study of the
flow is fundamentally different from the classical study. This asymptotic theory presented here,
permits, to obtain not only the classical Boussinesq equations but also to define the limits
of validity of the approximations through which these equations are obtained.

W pracy przedstawiono dwie graniczne postacie réwnan Naviera-Stokesa dla cigzkiego, lepkiego
i przewodzacego cieplo phmu $cisliwego przy charakterystycznej liczbie Macha, da:}}mej do zera.
Zazwyczaj ciezko$é jest pomijana przy badaniach aerodynamicznych, lecz wzigcie jej pod uwage
zmienia radykalnie obraz przeplywu w poréwnaniu do obrazu uzyskiwanego za pomoca badafi
klasycznych. Przedstawiona tu asymptotyczna teoria pozwala nie tylko uzyskaé klasyczne réw-
nania Boussinesqa, lecz réwniez okredli¢ granice, w ktérych moina stosowaé przyblizenia nie-
zbedne do ich uzyskania.

Ipencrasnens! ABe rpaHpuHble dopmbl ypasHenuit Habbe-Crokeca ansa Txenoil, BA3KoH
H TEILIONPBOASLIEH , CHMMAEMOil YKHIKOCTH IPH XapaKTepHCTHYeCKOM uncite Maxa crpemaAium-
ca K Hy/mo. O6kIuHO B 23pouMHaMuKe npeHeGperyT CHOM TAXKECTH, HO eI NPHHATE e BO
BHHMaHHE, KAapTHHA TEUeHMA NPHHUMIIHAILHO OTIHYAETCA OT Hiaccuueckolf. [IpencraBnena
B oToif pafoTe acCHMITOTHUYECKas TeOPHA MO3BOJIAET HE TONMBKO IOJYUHTh KJIACCHYECKHE
ypaBHeHHA ByccuHecka HO M YKasaTh IPaHHLB! MPHMEHHMOCTH NPHOIDKEHMH HY)HBIX A
HMX TIOJy4eHMA.

1. Introduction

UsUALLY in aerodynamics, gravity is neglected. Hence we study flows at small Mach
number in the stationary case by means of a classical perturbation method, known as
the Janzen-Rayleigh method, and in the non-stationary case by means of the method of
matched asymptotic expansions (VIVIAND, 1970).

But, if we take gravity into account, the study of the flow is fundamentally different
from the classical study, because there appear two new non-dimensional parameters related
respectively to the variations of the basic temperature T, (z) and pressure p(z), as functions
of the altitude z. Then, when M, = 0, it will be necessary to define the manner in which
these parameters vary with M2,. This is done by writing similarity relations which depend
upon constant parameters called similarity parameters (of the limiting flow).

Once these equations are written in non-dimensional form, one seeks their solution as
expansions in powers of M2,
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The first terms of these expansions are, in first approximation, the unknown functions
which satisfy the limiting system obtained when M2 => 0, and when similarity relations are
verified; then, these functions depend only upon the reduced variables and similarity para-
meters.

It is necessary to notice that the method used here, permits one to determine not only
the exact form of the expansion in powers of M2 of the different characteristic functions of
the flow, but the similarity relations as well and also the domain (D) of validity of these
expansions and relations.

One of the results of this work is the rigourous definition of the limits in which
Boussinesq approximations are valid.

This validity has been the object, during the last years, of rigourous works like those
of SPIEGEL and VERONIS (1960), MIHALJAN (1962), PHiLips (1967). However, their approach
is implicitly based on the physics of the problem which differs it from ours. Note also the
works of DutToN and FicHTL (1969), DRAZIN (1961) and ZEYTOUNIAN (1972a and b).

2. General equations

P, 0, T, a and s are respectively the pressure, density, temperature, sound speed and
specific entropy; po, 0w, Tws @ and s, denote the corresponding variables relative to the
unperturbed flow. Perturbations of the non-stationary flow of heavy viscous compressible
and thermally conducting fluid are to be considered as a non-linear phenomenon in the
space-time E* of the four variables x, y, z, t, where x, y, z are defined with respect to a rec-
tangular frame fixed to a portion of the unperturbed flow.

The Coriolis force is neglected, but the force due to gravity g in the fluid is taken into
account.

In what follows, we do not take into account the causes of the perturbation, which de-
pend upon the physical problem to be considered.

The unit vectors of the x, y, z axes are denoted i, j, k, the flow velocity V = ui+vj+wk.

The heavy viscous fluid is treated as a perfect gas with ¢, and ¢, being constant
(y = —Z‘i, R =c,-—c.,).

(]
The thermal conductivity and the viscosity parameters 4, and y, are constant, satisfying
Stokes hypothesis:

k is the upward vertical and the Navier-Stokes equations can be written as:

2
S +V Vote(V-V) =0

3
eyz +V: V}V+Vp+ggk - po{V2V+%V(V-V)} :

2.2) c,g{aa— +V.VT— ——m-( +V-Vp)} - k°V3T+po{¢—%(V'V)Z},



A RIGOUROUS DERIVATION OF THE EQUATIONS OF COMPRESSIBLE VISCOUS FLUID MOTION 501

P = ReT,

o=l + (5] (3} 2lE %)

ow v\ [ow ou ’}
+(‘a}7+a +(E+E) -
where ¢ is the viscous dissipation.

In the problem which it suffices to suppose that p,, 0., T, 4, and s,, are functions of

the altitude z only; then

dpo
; +0o8 = 0; Po = ngTw;
(2.3)

— GRT)2, s, = c,Logvg;‘E.

For the unperturbed flow, (2.3) verify the general equations; we shall suppose that:
d*T, T,

= ——— = 0 =5
(2.4) 12 = 0= & I'3 = const,
and
2.5 Uy, = UJ = const, 9, = V2 = const,
w = 0.

In the perturbed flow, we write

(2.6 P=Pu(1+7m), ¢ =0x(l+w), T = T,(1+0),
and if we take account of the relations‘
l
Qm

1 41, ylla‘pw
To @ Y Po

={- /R+r::}i,
2.7 1

T »
we obtain for V, @, w and 0 the followmg system, consequence of (2.2):

et

(2.8), n=w+0+wl;
(2.8), (1+m){V—V+[-—g,’R+P£]—;,P—} + %— +V:-Vo = 0;

(2.8); a -l--:o){-i;;i +(V-V)V—g8k} = —RT,Vn+ % =V’V+ %V(V-V)};

(2.8)4 (1+w){— +V. V@} ————(— +V. V:n:) +(1+u)[ yT‘Ig/R]Tl
s 1 0 2 F aa Ho { _3 5 z}
—FQQ{VB 2T 221 CponTy ¢~z (F-Vrfs
where Pr = ﬁc,, is the Prandtl number.

ko
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3. Reduced equations and dimensionless parameters

Let L and H be the horizontal (along x and y) and vertical (along z) characteristic di-
mensions of the domain (D); then we define reduced coordinates:

(€2 2 e U %: X3 =77

Also let £° be a characteristic time of the perturbed flow in (D), different from the character-
istic times deduced from L, H and U2, W2; U2 and W2 = USH/L being the order of
magnitude of u, v and w in (D). Finally, we define

u > v = w
2 Ugs 3 Wg,

=1 o=

(3.2) s’

where p2, 0% and T are reference values for p,, 0, and T,,.
With the reduced variables 7, x;, we obtain for the dimensionless functions v;, =,
 and 6 the following system:

(3.3), 7 = w+0+wb;
DN (o) T+~ ool 22+ fo g +oi g = 0
(3.3 (1+m){ﬁ.;. +v.§’;} 7%—%:—
* e gttt i 5+ S (o
(¢ =1,2);

393 1 50 } _ 1 ?w on
s “*“’"ﬂ" ov YU ax T M T T E MY axy

11 1 %0, 11 3 &v;)}_
+R—ea{"ﬂ”=+s= a2 T3 (FE ;

(33)s r1+w)(ﬂu——+ :gz = (ﬁo =T =§l’)

re
2
+(I+n)|-—a +7— 15] = 1 {Aue.{_iig.__z_.%_ie_}

T Fﬁ"@m 3 S g
oz )
+o-DM2 o li- (5 |
where we have noted:
2 &

de=agtag
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and 5 the non-dimensional form of ¢ = (U&}L)’&S_. The following dimensionless para-
meters appear in the reduced system:

RTS _ H To _ H
o=H EH:,’ ¢0=Fg/—ﬂ_-=-m-,
3.9 Bo = LJUSt° (Strouhal number),
e= HJL (form parameter of (D);
M2 = U22/yRT2 (Mach number),
UL
Re = =2 Reynolds number),
Hol 0% e )
Pr=22C, (Prandtl number).
0
In writing (3.3); we have taken into account the relation:
M
(3.5) ?1:2—- = 60,

where Fr? = U%/gH is the Froude number.
We can also define the Scorer-Dorodnitsyn number:

Mo 4,
— Frr T Mg

do and a, are the two new parameters mentioned in the Introduction.

= D, = gHJUS(yRTg)"?;

4. Fundamental hypothesis

In what follows we suppose an infinitely small Mach number
4.1) M2 < 1= U2 < (yRTQ)'?
and we will obtain limiting forms of the reduced system (3.3) when M2, = 0. This system
contains the dimensionless parameters (3.4) and with MY:
(4.2) 8o, o, Po, & Re, Pr and y.
It is necessary to specify how the dimensionless parameters (4.2) depend on M2, We
shall assume some relations of the form:
(4.3) Fi{8os 0os Pos 85w MO} =85 = 1,2, s
in which S; are constants independent of the fact “M% = 0”; (4.3) are called “similarity
relations” and the S; similarity parameters (of the obtained limiting flow).
We postulate, for M2, < 1, the existence of asymptotic expansions of the following
form:
;=0 +MP o7+ ...;
n=MCm+ ...
(44 c
o=Mw.+ ...;
6 =M2L0,+ ...,
where a, b, ¢, d are positive numbers.
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The functions v?, @, ., and 0, are, in first approximation, the reduced unknowns and
depend only on x;, = and S;.

In (4.4) we implicitly make the hypothesis that M% < 1, the perturbations #, @ and 6
being also small; in a precise manner, we shall assume that they are respectively of order
MO M® and M%. When MQ = 0, we shall keep certain parameters (4.2) fixed and
independent of the manner in which Mg, tends to zero; in this case, the similarity relations
relative to these parameters are simply identities.

5. Boussinesq equations
Let
(5.1) ME =0, d8,=0, a=0,

so that the similarity relations:

é
(5.2) M—-‘; =yD, =8;, —S-=325,
are satisfied.
In obtaining the solution of the reduced Eqs. (3.3) in the form (4.4) with the hypothesis
(5.1) and taking into account the relations (5.2), one sees that a minimum singularity of
Eqgs. (3.3) occurs for:

(5.3) a=1, b=2, c=d=1.

That is to say, one may seek a solution of the reduced equations (3.3) in the form:
v; =) +M%ol + ...
n = Mg)znz"' i

(5.4)
w=Mlw,+ ...

The functions v?, 7,, w,, 0, satisfy the following limiting equations:

(5.5, w, = —0,,
(5.5), o _ o,
ax;
vl 1 o= 1 1 3290}
0 5 2 0 ot O Ve —

(5.5); ﬁo 5 7 =, 0 + e{Al,m,+ = a2 | 1,2,

502 1106m 11 1 s 6"02}
(5-5)4 ﬁo a axi 83 y ax3 +£_2 Slel+ R {.41203 2 'a_xg‘ 3

» 00 y—1 i 1 1 8%
(5.5)5 ﬁo ar ﬂ 1 +Sl [T o Sz}ﬂg = FE%41281+ 'é'z'__a“x"; }.



A RIGOUROUS DERIVATION OF THE EQUATIONS OF COMPRESSIBLE VISCOUS FLUID MOTION 505

The limiting system (5.5) is called the “Boussinesq equations” or “Shallow convection”
equations. These equations contain the parameters f,, ¥, Re, & and Pr, as well as the
two similarity parameters:

(5.6) Sy =yD,, 8= vf:-rg.

In (5.5)5 the expression in brackets is the stability parameter of the unperturbed flow;
three cases are possible:

e = %% (neutral),
-1
5.7 re >5Y""  (unstable),
R ( )
]
s EY™0  (stable).
R ( )

If §; =5, =0, (5.5) is the classical system for incompressible fluid flows.
If S, alone tends to zero, the parameter D, = S,/y is the unique fundamental one,
depending on gravity, in the shallow convection equations; then, if S, < 1:

TO
(5.8) 2k S Y o H,

i.e., the characteristic scale which is related to the variation of the basic temperature
T,(2) with altitude z, is much greater than the altitude H? of the homogeneous
atmosphere corresponding to the reference temperature T2 .

Note finally that, in obtaining (5.5), we have used the following fact: when oy = 0
then g, = 1 and T, = 1; this follows from Egs. (3.4), making use of (2.4)(*)

(59) Tw = l_aﬂxSs ém = T:JJ‘S;—I.

In the course of the analysis by means of which (5.5) was found, four characteristic
length scales are used: L and H are related to the characteristic dimensions of (D), the
domain of validity of the Boussinesq equations, and H3 and Hr_ related, respectively,
to the variations of the pressure p,(z) and temperature T,(z), as functions of the
altitude z.

The fact that the parameters 8, and a, are infinitely small with the Mach number MJ,
imposes the following constraints on the domain (ﬁ) of validity of the Boussinesq
equations:

G10) Hr > H < HS.

We then conclude that the vertical characteristic dimension of (f)) must be much less than:
i) the altitude of the homogeneous atmosphere corresponding to the reference tem-
perature T.2;

(*) One can easily convince oneself that, in the case where S; = 0, ao = 0 implies that g = 1. More-
over, in (5.9) we have assumed T = To (0).
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ii) the characteristic vertical scale related to the variation of the basic tempearture
T,(z) as a function of the altitude z.

Moreover if one wishes, within the framework of the Boussinesq Egs. (5.5), to
differentiate a perfect fluid region and a boundary layer in the vicinity of a wall bounding
the limit flow described by (5.5), the characteristic vertical dimension of (13) must also
satisfy the inequality:

0 L e
(5.11) H»l/";}o =& > )/1[Re,
v L ;
where H,o = ]/4;75— (»% = po/0%) enters as a characteristic vertical scale related to

viscosity: (5.11) gives a lower bound for H.

6. Deep convection equations

We shall obtain, in this section, the limiting equations (when M2 = 0) which describe
the flow in a domain (D) of characteristic vertical dimension of order HY; these equations
become precisely the “Deep convection” equations.

Since we suppose H to be of the same order as H), = RT2/g, we must assume, at
first, that d, is bounded when M2 = 0. We do not know, a priori, the manner in which a,
is related to M2, and d,.

We shall consider the reduced system (3.3); equation (3.3), implies, for d, bounded,
the necessity of imposing in the expansions (4.4):

(6.1) a=1 and b=d=2,

and, (3.3),(?) implies also that:

(6.2) ¢ =2,

We are then led to seek the solution of the reduced Egs. (3.3) in the following form:

o = o +MAot+ ...
n EA

©3) o|=M23, |+ .
0 0,

then, (3.3)s gives, when M2 = 0:

a1,
64): B 2+ 1662 I ( oy +of 6n2)+ i y ° 08
’ dt

ox; . Moz T
y=1,1. % _ 1.1 1 .
et R = B R g el g T
1_ 03
+P1'}’T ¢o— 3(50—%)2( > ) }

(*) Indeed, if ¢ = 1, the state equation (3.3), gives w, = 0 and, if ¢ > 2, it is easy to verify (since (3.3),
implies 7, = 6,) that the limiting system is over-determined; that is, there are more equations than
unknowns.
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where @; is the viscous dissipation written in a non-dimensional form by means of the

velocity components o7 . In equation (6.4), the following expression appears:
-1
(1?‘ do— ‘10)1" Mgz

and if we require it to be bounded (for M, = 0), then

(6.5) ”;l 8o—tg =0 vhen M =0
so that

y_ 1 60—a°
(6.6) -—y‘ﬁa‘zf"—" =8

remains bounded; S; is a similarity parameter for the limiting flow so obtained.

Hence we shall impose the following condition on o :

6.7) & = ”—;1— Bo—M22 S,

in order to obtain a compatible limiting system.
Hence, when:

(6.8) M® = 0, with 8, bounded, ao = ”;1

with §; bounded, we obtain for the reduced functions 9}, 7,, @, and 8_2 in the expansions

(6.3), the following limiting system which follows from (3.3)

- — & o % o5
7, = Wy+0,, T '}Eva’
002 L3 002 T, 0%, 1 { 0 1 %02 1 652}
Po g ot ' ox; ~_;y ox. | Reon Reg, 4129 e 6x§_+3y?m %0xe |’
o= 1,2,
+59 693 T, 07, & =

1 ~0
L ﬁo 6 Yox, &%y ox, * ey 2 L Reo,, IA”%

L aZang 8o O (ﬁ”
e 0x3 3y oxs\T /I’

a0, e a0, _y- ( 3‘.’:2 - aiz) Ssco_ 1|y
hogs %5, P gy PO |+ 5 % pogn e
1 3392 'y—l 50 682 Y= 2 63( ) ;
o~y e b TR |

The limiting equations (6.9) are those of deep convection where 8,/y and S, are similarity

parameters.
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Naturally, it may occur that S; = 0, i.e.,

-1
(6.10) e ="""gg.
i
In any case, relation (6.7) indicates that I'S must be very near the “dry adiabatic gradient”
of temperature: I'y = % i In the deep convection equations (6.9), we have:
(6.11) ?w=1-£;0£x3, 5, = Tir-1.

7. Relation between shallow and deep convection equations

From Secs. 5 and 6 we have, in the case of shallow convection equations (5.5), the
expansions:

o~ 00+ ...
n~MPr,+ ..

w~ Mo+ ..

6 ~M26,+ ...

with the assumptions that

M =0, 6,=0, a,=0,

(7.1)

_%‘:,_ =S, . . S;; §; et S, bounded,

do
and for the deep convection (6.9):

2 ~ 9%+ ...
n~ME, 4+ ..

o ~M2w,+ ...

6~ M26,+ ...

with the assumptions that
M2 = 0, &, bounded,

(1.2)

o, 3% 8o—M22S,; S, bounded.

We shall prove that the deep convection equations (6.9) include the shallow convection
ones (5.5) or, more precisely, that the shallow convection equations are the limiting form
of the deep convection equations for 8, = 0.

In fact, let us consider the relations:

(7'3)1 t_a'? = ﬂ?, }Ez = T;, 52 = w,[l"’l&, éz = B“"Ma,

-1 8 y—1 [ M2
7.3 S, =20 _ Y71 _ P30 S =(___s) 2. g
( )2 2 60 ? Sl lo = 3 }’ 2/ S’
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which follow by comparing (7.1) and (7.2). Actually, if we take into account the relations
(7.3) in (6.9), the limiting system, which results from (6.9) when:
(50::“0:“&0 =S:60=:'0,
and
0 )
Mm = 0 = M—g = S 13

is the system which governs the shallow convection [Egs. (5.5) of BOUSSINESQ].

It is interesting to note that: we can write the “deep convection” equations (6.9) using
instead of x,; the outer variable (vertical coordinate):

i z
(7.9 X3 = ™Mo = 0oX3,

and instead of ©3 the outer vertical velocity component:
(7.5) 93 = 6,93.

In terms of the variables x,, x,, X5 and the unknown functions %2, #3, 93, #,, @, and 6,,
the deep convection equations (outer equations) bring in the parameters
do L S
7.6 0g = — = —gand —.
( ) [ H; an 60
For the shallow convection equations (5.5), we can introduce the inner variable
(vertical coordinate):

(1.7) By = Sixs = S0 = 23
60 L]

and the inner vertical velocity component:

(7.8) #3 = §9M.

With the variables x,, x,, X5 and the unknown functions ¢%, 23, 93, 7,, @, and 6,,
the shallow convection equations (inner equations) depend upon the parameter

5 gL
(7.9) = - ?W.
Thus we can conclude that, in fact, it is possible to consider the deep convection equations
as outer ones, in the sense of matching asymptotic expansion (VAN DYKE, 1964), and
the shallow convection equations (BOUSSINESQ) das inner eguations.
The outer equations contain entirely the inner ones and are therefore uniformly valid
everywhere in the domain (D).

8. Conclusion

We have seen that the limiting equations governing the viscous, compressible fluid
flows with gravity at low Mach number [Egs. (6.9) of “deep convection’’] contain the Bous-
sinesq equation (5.5); these latter equations can be considered as “inner equations”
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describing the limiting flow in the domains (5) with vertical characteristic dimension much
smaller than the altitude HS = RT2 /g of the homogeneous atmosphere.

The asymptotic theory presented there, then permits one, to obtain not only the clas-
sical Boussinesq equations but also to define the limits of validity of the approximations
through which these equations are obtained.

Moreover this theory is a rational one; that is to say, it is possible if necessary to go bey-
ond the limiting case.

It is also clear that we could have taken into account, the complementary accelaration
(Coriolis force) in equations (2.2); in this case and in the limiting equations (5.5) and (6.9)
a new parameters is introduced: the Rossby number: R, = U2 /2Q,L, where Q, is the
constant angular speed of the frame R(x, y, z), moving about some axis which can be
chosen as the z axis. Then, it is easily conceivable that in flows at small Mach and Rossby
numbers the ratio Ry/M2 will be essential, and analogously for flows with small Mach and
Reynolds numbers it is the ratio Re/M% which will be important. In these two cases, it is
necessary to re-examine the reduced equations (3.3) and to look for the new corresponding
limiting forms. We hope to do this in a forthcoming work.

Finally, notice that, every change other than (7.1) and (7.2) gives limiting systems
“more degenerate’’ than those obtained in sections 5 and 6.
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