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Uaiftueness theorem for stress efluations of isotioric motions 
of linear elasticity 

R. WOJNAR (WARSZAWA) 

A UNIQUENESS theorem for the stress equations of motion of the linear elasticity was established 
in [1) under the assumptions that the density function is strictly positive and the elastic energy 
is positive definite. This note gives an extension of this theorem to an incompressible elastic 
solid. 

Introduction 

A UNIQUENESS theorem for the stress equations of motion of linear elasticity was established 
in [1] under the assumptions that the density field is strictly positive and the elasticity 
field is symmetric and positive semi-definite. For an isotropic solid whose elastic properties 
are described by the Young modulus E and the Poisson ratio v, these assumptions read: 
(! > 0, E > 0, -1 < v < 1/2, where (! stands for the density of the solid. 

In this note we prove a uniqueness theorem for the stress equations of motion under 
the assumptions (! > 0, E > 0, v. = 1/2, i.e. for an incompressible solid. 

We believe that up to date no uniqueness theorem for an incompressible body subject 
to motion has been proved (cf. [2D. It was shown in [3 and 4] that for an incompressible 
body undergoing static deformations and for the displacement problem the stress tensor 
is determined to within a uniform pressure only. 

Uniqueness theorem for stress equations of motion of a linear incompressible solid 

Assume that an incompressible elastic body occupies three-dimensional region V 
bounded by a regular surface S. Let the Young modulus E and the density (! be strictly 
positive and smooth functions of position x. 

In [1] it was established that the stress field of linear elastodynamics is characterized 
by a single tensorial equation of motion. If we set v = 1/2 in this equation, we obtain 

(1) E- 1 (3niJ- <Tu ~,1)- (e-1utl,1c),J- (e- 1 u1~c,1c),i- (e-1Ji).J 

-(e- 1jj),, = 0, (x, t) e Vx (0, oo) (1). 

Assume now that ulJ(x, t) satisfies the following initial and boundary conditions 

(2) CTij(X, 0) = CT~(x), ifiJ(X, 0) = ir~(x), X E V, 

(3) u11c(x, t)n~c(x) = q1(x, t), (x, t) e Sx (0, oo), 

(1) Equation (1) for i = J is compatible with isochoric motions of an isotropic solid subject to the 
body forces fl. 
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where O'~(x), a~(x), qi(x, t) are prescribed functions and nk(x) is the outward unit normal 
to S. 

We are to prove the following 
THEOREM. If E > 0 and e > 0, then there exists at most one tensor 0'1j{x, t) satisfying 

Eq. (1) in the four-dimensional region V x (0, oo) and subject to the conditions (2) and (3). 
P r o o f. It is sufficient to take into account the homogeneous equation associated 

with Eq. (1) (fj = 0): 

(4) -1(3"" .. .i ) ( -1 ) ( -1 ) 0 E O'tJ- O'kk uu - e O'ik,k .i- e O'Jk,k ·' = , 

and show that Eq. (4) subject t<Y the homogeneous initial and boundary conditions 

(5) O'ij(X, 0) = 0, o-,j(X, 0) = 0, X E V, 

(6) 0'1t(x, t)nk(x) = 0, (x, t) e Sx (0, oo), 

has only zero solution 

O'u(x, t) = 0 for (x, t) e Vx (0, oo). 

To this end we multiply Eq. (4) by iru and integrate the result over the domain Vx (0, t). 
Using the following identities 

we obtain 

or 

(8) 

(tF 10''"·") .Jail = <e-10'ik,k aij),j- e- 10'tk,k aij,J, 

<e-10'Jk,k),i o-il = (e- 10'Jk,k i1u),,- e-1 O'fk,ko-i},h 

J ((!- 10'tk,k;,iJ),JdV = J e-10'ik,kaiJn1dS = 0 by virtue of (6), 
V S 

t 

J dV J d-r: 
0

°-r: [(2E)- 1 (3ir,1iri1-iruirkk)+e-10'ij,JO'ik,Jcl = o. 
V 0 

Equation (8), by virtue of the. homogeneous initial conditions (5), reduces to 

(9) f dV[(2E)- 1 (3ir,1iri}-<1uirkk)+e_; 10';J,jO',k,k] = o. 
V 

Define now the traceless tensor s11 : 

(10) sii = 0. 

Then 
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and 

(11) 

Substituting (11) into (9) we get 

(12) f dV[3(2E)-1susii+e-1aii,Jaik,k] = 0. 
V 

Since E(x) > 0, e(x) > 0, Eq. (12) implies 

(13) su = 0 for (x, t) E Vx (0, oo), 

(14) O'iJ,J = 0 for (x, t) E Vx (0, oo). 

From (13) we conclude that si1 must be constant in time. By virtue of (10) and (5), we 
have 

(15) 

thus 

(16) 

i.e. 

(17) 

su(x, 0) = 0, 

sij(x, t) = 0, (x, t) E Vx (0, oo), 

ai1(x, t) = 0 for · i =1- j, (x, t) E Vx (0, oo). 

On the other hand, Eqs. · (10) and (16) lead to the system 

(18) 

with the coefficient determinant 

20'11- 0'22- 0'33 = 0, 

- 0'11 + 20'22- 0'33 = 0, 

-0'11-0'22+20'33 = 0, 

2 -1 -1 
w = -1 2 -1 = 0. 

-1 -1 2 

If (a11 , a22 , a33) is to be treated as an unknown three-dimensional vector satisfying 
Eqs. (18), the components of this vector satisfy the relations 

(19) 

and it is readily seen that the set of simultaneous algebraic equations (19) is eqmvalent 

to the system (18). 
Consider now Eqs. (14) which can be rewritten in the form 

0'11,1 +a12,2+0'13,3 = 0, 

(20) 0'21,1 + 0'22,2 + 0'23,3 = 0, 

By virtue of (17), Eq. (20) reduces to 

(21) 0'11,1 = 0, 0'22,2 = 0, 0'33,3 = 0. 
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Thus 

{22) 

{23) 

(24) 

O'u = C1(x2, x3, t) 

0'22 = C2Cxu x3 , t) 

0'33 = C3(x1,x2,t), 

R. WOJNAR 

where Ci (i = 1, 2, 3) are arbitrary functions. If we combine (22)-(24) with (19) we are 
led to 

{25) 

(26) 

{27) 

C1(x2,x3,t) = C2(x1 ,x3,t) = C1(x3 ,t), 

C1(x2 , x3, t) = C3 (~1-, x2 , t) = Cu(X2 , t), 

CI(x3, t) = Cu(x2, t) = C(t), 

where C1 , Cu and C are also arbitrary functions. Therefore, Eqs. (19) and (21) are 
.satisfied if, and only if, 

{28) aik(x, t) = C(t)~ik for (x, t) E Vx (O,·oo), 

where C(t) is a function of time only. 
Inserting (28) in the boundary conditions (6) we get 

{29) C(t)ni(x) = 0 for (x,t)ESx(O, oo). 

:Since !nil = 1, Eq. (29) implies that 

{30) IC(t)l = 0, or C(t) = 0. 

Hence, by virtue of (28) and (17), we obtain 

aik(x, t) = 0 for (x, t) E Vx (0, oo). 

This completes the proof of the theorem. 
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