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Dynamic incompatibility problem 

E. KOSSECKA (W ARSZAWA) 

THB MBDWM with incompatibilities depending on time is considered. With the help of the idea 
of plastic deformations, the constraint equations for the elastic strain and velocity fields are 
derived. Constraints equations lead to definitions of the incompatibility tensor 7J and the new 
quantity-the incompatibility current tensor F. Next, the dynamic problem for the anisotropic. 
infinite, linearly elastic medium is examined. The strain field e and velocity v ate obtained in 
terms of 7J and F. In the expression for e the dynamic Green potential K = - L1- 1G appears. 
The explicit expression for K for the isotropic medium is found. 

Rozwai:a si~ osrodek z niezgodno8ciami zalemymi od czasu. Posluguj11c si~ po~em deformacji 
plastycznej wyprowadza ·si~ r6wnania wi~z6w dla sp~stego pola odksztalcenia i pr~oSci. 
R6wnania te prowadzll do definicji tensora niezgodno8ci 7J i nowej wielkoSci, tensora pflldu 
niezgodno8ci F. Nast~pnie rozwi11zuje si~ problem dynamiczny dla anizotropowego, nieskon· 
czonego o5rodka liniowo spr~stego - znajduje si~ pole odksztalcenia e i pr~ko8ci v wyra· 
zone przez niezgodno8ci 7J i F. W wyrai:eniu dla e wystctpuje dynamiczny potencjal Greena 
K = -L1- 1G. Znalezione jest jawne wyrai:enie dla K dla osrodka izotropowego. 

06cy>KAaeTCH cpe.Qa C HCCOBMecTHOCTHMH 3aBH~ OT BpCMCHH. llOJIL3YHCL DOIDITHCM 
nnacmt~eCKoii ~ecP<>pM~ a&moW~TCH ypaaHeHHH caHaeii wm ynpyroro noJIH ~ecP<>pM~ 
H CKOpoCTeH. 3TH ypaBHCHHH npHBO~ I< onpe~CJICHHIO TCH30pa HCCOBMCCTHOCTH 7J H HOBOH 
BeJIHliHHbl TeH30pa TO:Ka HCCOBMCCTHOCTH F. 3aTeM peiii&CTCH ~HliCCKaH ~aqa WU1 aHH· 
30TpODHOi, 6ecJ<OHCliHOH, JIHHeiiHo-"ynpyroii cpe~I- BblliHC1IHIO'l'CJI DOJIH ~ecPopM~ e 
H CKOpOCTeH V, Bbipll>KCHHbiC qepe3 HCCOBMCCTHOCTH 7J H F. B Bbipll>KCHHH ~ e BbiCT}'li8CT 
):UIIIIlMHlleCKHii nore~aJI rpHHa K = -L1-1G. B~CJieHo HBHoe Bbipa>KeHHe wm K ~ 
H30Tp01IHOH cpe~I. 

1. Introduction 

THIS article treats the problem, which appears to be a generalization of the static incompat­
ibility problem formulated by KRONER in [1]. We consider linearly elastic, infinitely 
extended, homogeneous medium. The sources of incompatibility in the medium may 
be arbitrary defects distributions. To them correspond plastic deformations, which produce 
incompatibilities. To a discrete defect corresponds singular plastic deformation, having 
character of a delta function (see [2, 3]). 

The state of the medium is represented by the elastic stta.in field e and the elastic veloc­
ity field v. They have the good physical interpretation, irrespective of kind of defects 
to be found in the medium. 

The constraints equations are developed, being the relations between the elastic and 
plastic strain and velocity fields. These equations lead to the definitions of the two source 
quantities: incompatibility tensor YJ, which describes geometric incompatibility and is 
the basic source quantity in the static theory, and the new quantity-incompatibility 
current tensor, which describes kinematic incompatibility. 
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We solve the equilibrium equation for the dynamic incompatibility problem for the 
case-of general anisotropy using the Green function technique. The strain field is expressed 
by the Green potential K, to find which the Green tensor G of the dynamic Lame equation 
is necessary. For the isotropic case, the K tensor is calculated explicitly; for anisotropy, 
the difficulties are of the same kind as for the tensor G. 

The static incompatibility problem was discussed in details in the paper [5] of Simmons 
and Bul1ough, see also [6, 7]. 

2. Defect kinematics 

Before we proceed to the general formulation of the dynamic incompatibility problem­
few remarks about defects theory. 

When constructing a defects theory, although in principle we tend to deal with "physical'~ 
quantities as the fields of stresses, strains and velocities, and the sources in the form of 
densities of some defects, we often introduce some subsidiary quantities. The quantity 
of this kind is the displacement field; it is specially convenient when describing a single 
defect. 

In the displacement description, the surface defect has the clear geometric interpreta­
tion. It is the surface S, on which the displacement field u suffers the discontinuity U. 
We express this fact: 

(2.1) I [u(~, t)]l = U(~, t); ~ e S. 

The double bracket denotes here the discontinuity of the function u(x) at the point ~ 
of Sat the instant t. 

We assume then that the surface can move in an arbitrary way. For the purpose of 
the theory of linear defects--dislocations and disclinations-this model is slightly too 
genera]. It is sufficient to assume that the open "defect surface" was formed and changes 
in time only through the motion of its boundary. But for the purpose of the theory of point 
defects, which we obtain by the limitary transition to the infinitesimal closed surfaces, 
this generality is necessary (see [4]). 

To the discontinuity U of the displacement field u(x, t) are associated (see [3]) the 
singu1arities of its derivatives with respect to space variables and time. We denote them 

appropriately ~ and v. The fields u1,k and u1 we write in the form: 

For the strains, we introduce the denotations: 

(2.3) u<i,k> = eik+ eik• 

~and v are given by the formulae: 

(2.4)1 Pik = J ds}Ui<53(x-Q; ~ e S, 
s 
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(2.4)2 vi= - J ds,itui~3(x-Q . 
s 

For the case, when the normal velocity of the points of the surface S is equal to zero, 
e.g. when it is the real surface outlined by the dislocation line, v = 0. 

The state of the medium in the defect's surrounding is represented by the fields e and v; 
we call them elastic. We also call ~the elastic distortion, however, one should point out 
that, in the presence of disclinations, ~ is not uniquely defined, and plays the subsidiary 

role, like the u field [7]. The fields ~' e and v we call plastic (or initial). They describe 
the constrained deformation, leading from the ideal medium to the medium with incompat­
ibilities. The name "plastic" is in some sense conventional because the constrained de­
formation needs not be the real deformation. The quantities e and v, which we shall use 
further on, can be obviously generalized to the case of continuous distribution of defects. 

3. Incompatibility tensor and incompatibility current tensor 

We now proceed to the general formulation of the incompatibility problem, e.g. to 
the derivation of the formulae, being the relationships between the elastic fields e and v 
and the plastic fields e and v. We make use again of the subsidiary quantity, the total 
displacement field u, in the ideal medium subjected to the elastic and plastic deformation. 
The total strain is then the sum of the elastic and plastic strain, the same applies to veloc­
ities: 
(3.1)1 
(3.1)2 

U<i,k> = e;k+ e;b 

u, = v;+v;. 

Let us elimiJ?.ate from the system of Eqs. (3.1) the field u. Second derivatives of u can be 
represented in the following way: 

(3.2) 
1 1 1 

Ui,km = 2 [ui,km + Uk,fm] + 2 [ui,mk + Um,ik]- 2 [uk,mi + Um,kil • 

Thus, from (3.1)b we obtain: 

(3.3) 

Differentiating once more, we obtain: 

(3.4) 

Simultaneously: 

(3.5) 

ui,kml = e;k,ml + e;m,kl- ekm,il + e ik,ml + e im,kl- e km,il. 

Subtracting (3.5) from (3.4), we obtain: 

(3.6) e;m,kl + ekl,im- ekm,il- e;l,km = - [e im,kl + ekl,im-e km,il- eil,km]. 

In view of the antisymmetry in the indices (i; k), (/, m), it is convenient to write (3.6) 
in the form: 

(3.7) 
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This is the basic constraints equation for the e field in the static theory. When there are 
only elastic deformations in the medium (e = 0), (3.6) is the classical de Saint Venant 
compatibility equation for the strain field. However, in the dynamic case, the second 
equation appears, being the relation between the time derivative of the strain and the 
symmetric part of gradient of the velocity. Differentiating with respect to time equation 
(3.1) 1 , we obtain: 

(3.8) 

Differentiating Eq. (3.1h with respect to x" and symmetrising the result, we obtain: 

(3.9) 

If we subtract now (3.9) from (3.8), we come to: 

(3.10) 

Equations (3.7) and (3.10) lead us to the definitions of the two quantities: the incompat­
ibility tensor l) and the incompatibility current tensor F: 

'YJ;i = e;"'ei,.,.e,,.,""'' 

File = - [J;"-v<i,k>]. 

l) and F will be the sources of the elastic deformation. 
From the definition (3.11)1 results the symmetry and vanishing of the divergence 

of the tensor 'l· 
Differentiating twice the Eq. (3.11h, we obtain: 

(3.12) 

Contracting (3.12) with e11uebmk gives: 

(3.13) 

The system of equations: 

(3.14)1 

(3.14h 

'Y}ab,b = 0, 

is the system of compatibility equations for the tensors 'I and F. 

4. Incompatibilities as the sources of deformation in the linearly elastic medium 

Vfe calculate now the strain and velocity fields, produced by incompatibilities in the 
infinite, linearly elastic medium. In his basic work [1], KR()NER gave the exact solution 
of the static problem for the isotropic medium. SIMMONS and BuLLOUGH have discussed 
the case of the anisotropic medium in [5]; the incompatibility soutce tensor which they 
defined is given in terms of the Green tensor of the Lame equation. 
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Here, we consider the general anisotropic medium; the elastic strain and velocity 
fields e and :v satisfy the equilibrium equation: 

(4.1) 
a 

(!Tt'VJ-Cjklmelm,'k = 0. 

c is the tensor of elastic moduli of the medium. 
At the same time the constraints equations are to be satisfied: 

(4.2)1 

(4.2)2 

eikleJ,.,eln,'km = -"'ib 

ei'k-v<,,i:> = File. 

The above three equations we replace by two equations, from which the strain field e 
and velocity v are to be determined. We are not making use any more of the ideas of the 
u, e and t fields. 

The Eq. (4.1) will be submitted to the following subsequent transformations. First, we 
differentiate it: 

(4.3) 

Then we add and subtract appropriate terms: 

(4.4) 
iP a . 

(! at2 ej.,-Cjldmels,'km = .CJtlm[elm,ks-el:tkm)+(!at (ej_.-'Vj,s). 

Next, we act with the La place operator: 

(4.5) 
a2 a . 

e at2 Aejs-CjklmLJe, •• 'km = CJlclm vk V,[e,,.,.,- e,,,mo] +e Tt V,[ej,,o-'Vj,so] 

and complete the equation to the form: 

(4.6) 
()2 • 

e ot2 [Aejs+e)II,IIS-eSII,IJj] -Cjklm vk V mLte,,+ CJklm V A: V,[e,,,rn-elfiii,Js1 

= Cjklm vlc: V.,[e,m,so + e,,,,,.-e,,,ma-emo,ls] + (! ! V.,[ej,,o+ej,,s-eSQ,j-'Vj,sol· 

From (4.2)h2 follows: 

(4.7)1 e,.,.,,,+est~,lm-els,mll-eiiUJ,II = e,mrEt~fpSrbcEJ1f1gebd,gc = -E,mrEt~lp'T}rp' 
(4.7)2 e)s,tl +ejii,S -e,ll,}-'lJj,SII = e}/J,II +ejti,S -eSQ,j -'lJ<)oi>G-'lJ< ),II>:S+'lJ<I,II>) 

If we take into account (4.7)h 2 , (4.6) takes the form: 

(4.8) 
a2 

!! at2 [iJei,+eJ,,II,-eso,aJ]-cJklm V~: V m[L1e1,+e,,,,,-e,11 ,,1] 

Denoting by i the Lame operator 

(4.9) 
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we write (4.8) in the form: 

V a 
(4.10) Lji[L1e,s+e,a,as-esa,arl = -Cjklm vk VaesmrBalp'YJrp + e 7it Va[Fjs,a +F}a,s-Fsa,J1· 

We are considering the infinite medium, so we are interested in the particular solutions 
~f the above equation only. This is the equation of the Lame type, and its solution, given 
in terms of the dynamic Green tensor G, has the form: 

(4.11) Lie,+ e ••.•• - e ..... = - GIJ * { Cjtlm V. v •••• , •• ,, 'f},.-e :, V .[F",. + F,,,,- F ... ,] } . 

Here, the star denotes the convolution with respect to four variables x1 , x2 , x3, t; G 
satisfies the equation: 

(4.12) 

Symmetrising (4.11) with respect to indices i, s, we obtain: 

(4.13)1 Lie,, = -G;f* {cJllm v. V,e_,e.1,'f},,-e :, V,[F,,,.+F,.,,-F.,,,]} <"» 

(4.13)2 e., = -LI-'Gii * {c,.,. V, V,e,.,e,,,'f},,- e :, V,[F,,,.+F,,,,-F,.,,]} <<•>. 

We introduce the tensor K, which may be called the Green potential, satisfying the Poisson 
equation: 

(4.14)1 

(4.14)2 

LJK,J =-Gib 

KiJ = -LJ-1GtJ· 

At the same time it satisfies the Lame equation of the form: 

(4.15) 

The expression for e, in terms of K, is given as: 

(4.16) e., = K,J,•* {cJtl• Vtt;.,e.,,'f},,-e :, [F,,,.+F,,,,-F,.,,]} <I<>. 

If we are to calculate the v field, we differentiate (4.1) with respect to time: 

(4.17) 

and complete to the form: 

(4.18) 

Hence 

(4.19) 

For F equal to zero, vis equal to zero, and e is given by the static expression discussed 
in [5]. 

http://rcin.org.pl



DYNAMIC INCOMPATIBILITY PROBLEM 671 

S. The dynamic Green potential for the isotropic medium 

We calculate now the dynamic Green potential K for the isotropic medium. For comple­
teness, we calculate the dynamic Green tensor G. For the isotropic medium, the tensor 
of elastic moduli has the form: 

(5.1) 

The Lame equation for the u field produced by the force distribution X is as follows: 

(5.2) 

We introduce wave velocities: 

(5.3) 

then 

(5.4) ( 2 2) 2 •• 1 X Ct -c2 uk ki+c2U; kk- U; = -- i· . . e 
We denote by 0<1>, 0<2> d'Alembert operators: 

(5.5) 

Equation (5.4) yields: 

(5.6)1 

Taking the divergence of (5.4), we obtain: 

1 1 { 1 } uk,lc = 2 O(i> - -X1c,1 . 
cl e 

Hence 

(5.8) 

Because 

(5.9) 

G is equal to: 
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It is of importance to have (5.10) in a slig~tly different form; we make use of the follow• 
ing formal transformation: 

(5.11) 

Hence 

(5.12) 

Here, we deal with the expressions o- 16(t)63(x); these are the Green functions of the 
wave equations. Because in what follows we are going to calculate the retarded Green 
tensor of the Lame equation, we make use here of the retarded singular solutions of the 
wave equations. So we take: 

(5.13)1 
6 (t- _!_) 

1 e o- 1 6(t)63(x) = --4 ' 
n r 

The retarded Green tensor has its support in the region t ~ 0; in what follows, we shall 
always assume t ~ 0 without pointing out this fact expliCitly. 

The La place operator acts on the function depending on r only in the following way: 

(5.14) 1 iJ ( iJ ) L1f(r) = r a,: or rf(r) ; 

so its reverse is: 

r r' 

(5.15) L1- 1/(r) =-} J dr' J dr"r''f(r"). 
0 0 

( r) 6 t--
It acts on the generalized function 

2 
e in the following way: 

er 

(5.16) 
d(t<) l fr rr' ( r") 1 fr' 

Ll- 1
---:.--_..;... = --. dr' . dr"6 t-- =- dr"O(r'-et) 

e2r re2 e re 
0 0 0 

r 

= _!_ Jdr'O(r-et) = (_!_- ~) O(r-et). 
re · e r 

et 
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() is the Heaviside function: 

(5.17)1 

(5.17)2 

(5.17)3 

O(x) = {~ x>O 

X< 0, 

8(x)+0( -x) = 1, 

O(ex) = O(x) for c ~ 0. 

From (5.13)2 , (5.16) and (5.17)1 , 2 , we obtain (see also [8, 9]): 

(5.18) 

We perform now calculations importaqt for the evaluation of the K tensor. 

1 1 fr fr' 1 Jr { "21 c t . 
(5.19) LJ- 1-8(et-r) =- dr' dr"r"O(et-r") =- dr' ~ O(r' -et) 

e re re 2 0 0 0 0 

673 

I 
' r r"2 r • 1 e2t2 r'2 

+- O(ct-r')} =- Jdr {-8(r'-ct)+-8(ct-r')} 
2 o re 2 2 

0 

=- r' _c_O(r-et)+!.___ 8(r-et)+!__ 8(ct-r) 1 { I r 2t2 '31 et '31 r } 

re et 2 6 0 6 o 

1 {[ rc2t2 c3t3] r3 } =- ------ O(r-et)+-O(ct-r) . 
re 2 3 6 

Proceeding in the same way, we obtain also: 

(5.20) t 1 {[ e
3
t

3 
] r

2
et } LJ- 1 -0(ct-r) =- re2t 2--- 8(r-ct)+--8(et-r). 

r re 2 2 
Hence: 

(5.21) 

So, up to a constant, the tensor K is equal: 

(5.22) 

9* 
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