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Dynamic incompatibility problem

E. KOSSECKA (WARSZAWA)

THe MEDIUM with incompatibilities depending on time is considered. With the help of the idea
of plastic deformations, the constraint equations for the elastic strain and velocity fields are
derived, Constraints equations lead to definitions of the incompatibility tensor n and the new
quantity—the incompatibility current tensor F. Next, the dynamic problem for the anisotropic,
infinite, linearly elastic medium is examined. The strain field e and velocity v are obtained in
terms of v and F. In the expression for e the dynamic Green potential K = —A4~'G appears,
The explicit expression for K for the isotropic medium is found.

Rozwaza si¢ osrodek z niezgodnosciami zaleznymi od czasu. Postugujac si¢ pojeciem deformacii
plastycznej wyprowadza si¢ réwnania wiezéw dla sprezystego pola odksztalcenia i predkosci.
Réwnania te prowadza do definicji tensora niezgodnodci n i nowej wielkodci, tensora pradu
niezgodnoéci F. Nastepnie rozwiagzuje sie problem dynamiczny dla anizotropowego, nieskofi-
czonego orodka liniowo sprezystego — znajduje si¢ pole odksztalcenia e i predkosci v wyra-
Zone przez niezgodnodci n i F. W wyrazeniu dla e wystepuje dynamiczny potencjal Greena
K = —A-'G. Znalezione jest jawne wyrazenie dla K dla o$rodka izotropowego.

Cpefla C HECOBMECTHOCTAMHM 3aBHCAIMMH OT BpemeHH. ITonb3ysch MOHATHEM
IIacTHYecKoH Aedopmalui BRIBOOATCA YpaBHEHHMA CBA3eH s ynpyroro mons medopmaryumii
H cKopocTelf. ITH ypaBHEHHA NPHBOAAT K ONpeNeeH IO TEH30pa HECOBMECTHOCTH ) H HOBOH
B&JIMUMHE] TEH30pa ToKa HecoBmecTHocTH F. 3areMm pemuaerca guHamudecKas 3afaya [UIA aHH-
3oTponHO#H, GeckoHeuHoH, NMHHeHHOYIPYTOM Ccpembl — BLHMUCLTOTCA monA nedopmanmit e
H CKOpOCTeH Vv, BRIpO)KeHHEIE Yepe3 HeCOBMECTHOCTH 7] H F. B BrlpakeHMH [UIA € BBICTYTAeT
Jaramadeckmii norerman Fpuna K = —A~'G. Berucneno ssHoe Bripawenwe A K mma
H30TPOITHOM CpefmEl.

1. Introduction

ThHis article treats the problem, which appears to be a generalization of the static incompat-
ibility problem formulated by KRONER in [1]. We consider linearly elastic, infinitely
extended, homogeneous medium. The sources of incompatibility in the medium may
be arbitrary defects distributions. To them correspond plastic deformations, which produce
incompatibilities. To a discrete defect corresponds singular plastic deformation, having
character of a delta function (see [2, 3]).

The state of the medium is represented by the elastic strain field e and the elastic veloc-
ity field v. They have the good physical interpretation, irrespective of kind of defects
to be found in the medium,

The constraints equations are developed, being the relations between the elastic and
plastic strain and velocity fields. These equations lead to the definitions of the two source
quantities: incompatibility tensor w, which describes geometric incompatibility and is
the basic source quantity in the static theory, and the new quantity—incompatibility
current tensor, which describes kinematic incompatibility.



666 E. Kossecka

We solve the equilibrium equation for the dynamic incompatibility problem for the
case of general anisotropy using the Green function technique. The strain field is expressed
by the Green potential K, to find which the Green tensor G of the dynamic Lamé equation
is necessary. For the isotropic case, the K tensor is calculated explicitly; for anisotropy,
the difficulties are of the same kind as for the tensor G.

The static incompatibility problem was discussed in details in the paper [5] of Simmons
and Bullough, see also [6, 7].

2. Defect kinematics

Before we proceed to the general formulation of the dynamic incompatibility problem—
few remarks about defects theory.

When constructing a defects theory, although in principle we tend to deal with “physical”
quantities as the fields of stresses, strains and velocities, and the sources in the form of
densities of some defects, we often introduce some subsidiary quantities. The quantity
of this kind is the displacement field; it is specially convenient when describing a single
defect.

In the displacement description, the surface defect has the clear geometric interpreta-
tion. It is the surface S, on which the displacement field u suffers the discontinuity U.
We express this fact:

@1) I[@, 01l =UE,0; Tes.
The double bracket denotes here the discontinuity of the function u(x) at the point §
of § at the instant ¢.

We assume then that the surface can move in an arbitrary way. For the purpose of
the theory of linear defects—dislocations and disclinations—this model is slightly too
general. It is sufficient to assume that the open “defect surface” was formed and changes
in time only through the motion of its boundary. But for the purpose of the theory of point
defects, which we obtain by the limitary transition to the infinitesimal closed surfaces,
this generality is necessary (see [4]).

To the discontinuity U of the displacement field u(x, ) are associated (see [3]) the
singularities of its derivatives with respect to space variables and time. We denote them
appropriately p and v. The fields »;; and i we write in the form:

2.2), i = Ba+ B
.2, W = v,+9;.
For the strains, we introduce the denotations:

2.3) Ueiks = €+ €.

@ and v are given by the formulae:

@4, Bu = [dsUidsx-%); Ees,

8
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Q.4), b= — [ dsbUi8:(x~9).
My

For the case, when the normal velocity of the points of the surface S is equal to zero,
e.g. when it is the real surface outlined by the dislocation line, v = 0.

The state of the medium in the defect’s surrounding is represented by the fields e and v;
we call them elastic. We also call @ the elastic distortion, however, one should point out
that, in the presence of disclinations, @ is not uniquely defined, and plays the subsidiary
role, like the u field [7]. The fields [;, ¢ and v we call plastic (or initial). They describe
the constrained deformation, leading from the ideal medium to the medium with incompat-
ibilities. The name “plastic” is in some sense conventional because the constrained de-
formation needs not be the real deformation. The quantities e and v, which we shall use
further on, can be obviously generalized to the case of continuous distribution of defects.

3. Incompatibility tensor and incompatibility current tensor

We now proceed to the general formulation of the incompatibility problem, e.g. to
the derivation of the formulae, being the relationships between the elastic fields e and v
and the plastic fields € and v. We make use again of the subsidiary quantity, the total
displacement field u, in the ideal medium subjected to the elastic and plastic deformation.
The total strain is then the sum of the elastic and plastic strain, the same applies to veloc-
ities:

(3.1), Ueiks> = €kt i,

(31)2 I.J; =9 +€'g.

Let us eliminate from the system of Eqgs. (3.1) the field u. Second derivatives of u can be
represented in the following way:

1 1 i
32) Uikm = = [t4; km + Ui 1m] + 5 [t41,mi + Umin] — -5 (vt mi + thm 1] -

Thus, from (3.1),, we obtain:
(3.3) Uikm = €ikym+ Cimk — €um,i + Eikm+ €imk— €iom,i-

Differentiating once more, we obtain:

(34) Uikm = €ik,mi+ Cim,kt — Ckm,it + €ik,mi + € imkt — Clom,it -
Simultaneously:
3.5) Uikim = €ik,im+ €if,km — €kt im T €ik,im T € it ,km — €kl im-

Subtracting (3.5) from (3.4), we obtain:
(3.6) Cimk1 F €kt im— Ciom,it — €ighm = — [€imx1 + Ext,im— € km,it — it km) -

In view of the antisymmetry in the indices (i; k), (/, m), it is convenient to write (3.6)
in the form:

a
3.7 = ErikEpimChm,il = ErikEplm€km,if -



668 E. Kossecka

This is the basic constraints equation for the e field in the static theory. When there are
only elastic deformations in the medium (& = 0), (3.6) is the classical de Saint Venant
compatibility equation for the strain field. However, in the dynamic case, the second
equation appears, being the relation between the time derivative of the strain and the
symmetric part of gradient of the velocity. Differentiating with respect to time equation
(3.1);, we obtain:

(3.8) Ueips = ent+éau.

Differentiating Eq. (3.1), with respect to x, and symmetrising the result, we obtain:
(39) Ueih> = Ocik>+0cik>-

If we subtract now (3.9) from (3.8), we come to:

(3.10) tu=9 1> = = [Bu—S 14>].

Equations (3.7) and (3.10) lead us to the definitions of the two quantities: the incompat-
ibility tensor n and the incompatibility current tensor F:

(3.11), Nij = EikiEjmninkm>
(3.11), Fa = —[Eu—boixs).

n and F will be the sources of the elastic deformation.
From the definition (3.11), results the symmetry and vanishing of the divergence

of the tensor n.
Differentiating twice the Eq. (3.11),, we obtain:

1 o
(3.12) = I:é im = 5 B 1kim +ék.fl'u)] = Fi,im-

Contracting (3.12) with ;& gives:

(3.13) ~Tab = Eali Eomk Fik,im-
The system of equations:

(3.14), Nabs = 0,
(3.14), Nab = = Eali Eomk Fi,im>

is the system of compatibility equations for the tensors n and F.

4. Incompatibilities as the sources of deformation in the linearly elastic medium

We calculate now the strain and velocity fields, produced by incompatibilities in the
infinite, linearly elastic medium. In his basic work [1], KRONER gave the exact solution
of the static problem for the isotropic medium. SIMMONS and BULLOUGH have discussed
the case of the anisotropic medium in [5]; the incompatibility soutce tensor which they
defined is given in terms of the Green tensor of the Lamé equation.
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Here, we consider the general anisotropic medium; the elastic strain and velocity
fields e and .v satisfy the equilibrium equation:

d
(4.1) gﬁvj—cﬂhe,,,; =0.

¢ is the tensor of elastic moduli of the medium.
At the same time the constraints equations are to be satisfied:

4.2), EikiEjmn Cinkm = —Mij>
(4‘2)2 éﬂ-vqi.l'.) = Flk-

The above three equations we replace by two equations, from which the strain field e
and velocity v are to be determined. We are not making use any more of the ideas of the
u, & and Vv fields.

The Eq. (4.1) will be submitted to the following subsequent transformations. First, we
differentiate it:

il
“.3) 0 ¥ 9,5 — Ciuimeimxs = 0.

Then we add and subtract appropriate terms:
o 0
(44) e 'a't_g‘ €)s— Cikim€1s,km = Clkim [elm,h —€)s lm]' +e E [ejs = vj,s] .

Next, we act with the Laplace operator:

o? d .
@.5) g FTEl Aeja ~Cjkim Aeisxm = Cirim Vi Va[Cim,sa = isma] +0 ot Valjs,a—2),5l

and complete the equation to the form:
é? .
4.6 o o [Aejs+eja,0s—€sa,a1) = €juim Vi VmA1s+ jiim Vi Vo [€sa,1m — mais)

= Cykim Vi Val€im,sa + €sa,im— Cisma—Ema,is] + 0 ﬁ_i Valés,at8ja,s— 850, — 5,0l
From (4.2),,, follows:
4.7, €im,s5at+ €sa,lm— Cis,ma— €ma,ls = EsmralpCrocEpdgCbd,gc = — EsmrEalpMrps
(472 &jat€jas—8s0 = Vjsa = €jsatejas—8saj—V<jia>e— V< fa>sHVcs0>)
= Fjs,a+ Fjas—Fuaj-
If we take into account (4.7),,,, (4.6) takes the form:

az
(48) e ? [A €jst€jg,as— em,a)‘} —Cjklm ViV [A €5+ €laas— en,a!]

a
= =Cjtim Yk VaCsmrEalpMrp+ 0 - ValFjsat Fas—Fiajl.
Denoting by L the Lamé operator

2

g P
4.9 Lj = ody a2~ Citim ViV,



670 E. KOSSECKA

we write (4.8) in the form:
7 ]
{4.10) Ly [de;s+ €la,as—Csaal]l = = Cuim Vi vsasmranlp?}'rp +0 ¥ ValFjs,a+ Fja,s—Foa il

We are considering the infinite medium, so we are interested in the particular solutions
of the above equation only. This is the equation of the Lamé type, and its solution, given
in terms of the dynamic Green tensor G, has the form:

d
(4-11) Aela+ €ig,as — Csg,ai = _GU * { Cikim Vkvaesmrenlpﬂrp"g W vu [Fh,a +an.s""FuJ] } .

Here, the star denotes the convolution with respect to four variables x,, x;, x3,¢; G
satisfies the equation:

(4.12) LG = 8;0(1)85(x).
Symmetrising (4.11) with respect to indices i, s, we obtain:

d
(4 1 3)1 Ael‘s - GU'* {cﬂlm Vt Vassmrsalpﬂrp -0 Ef- Va [Fja.a = B F)‘a.s _'Fm,)‘]} <is>»

a
(413)2 €js = —A"’-Gu * {Cﬁgm VkV,,s,me,,,q,, -0 E V,[F_,,,, +Fj¢_,—FuJ]} <is>+*

We introduce the tensor K, which may be called the Green potential, satisfying the Poisson
equation:

(4.14)1 A&J —= —Gu,
(4.14)2 '&J = —A_lGu_
At the same time it satisfies the Lamé equation of the form:

. 1
4, = —-—
4.15) LjiKin = 0;,0(¢) 5
The expression for e, in terms of K, is given as:
0
(416) €is = I(U.u* {cjklm Vkemrealp??rp_ o E’ [Fj.l.s +an,l -an.j]} <is>-

If we are to calculate the v field, we differentiate (4.1) with respect to time:
2

4.17) Q'a_t_g"vj""cjtlmvkélm =0,
and complete to the form:
ik 7
(4.18) e5z —Cuim Vi V1 = Cjiim Yileim—V<t,m>] = Cjxim Vi Fim-
Hence
(419) o= G;j tCJH,,VI.F;M-

For F equal to zero, v is equal to zero, and e is given by the static expression discussed

in [5].



DYNAMIC INCOMPATIBILITY PROBLEM 671

5. The dynamic Green potential for the isotropic medium

We calculate now the dynamic Green potential K for the isotropic medium. For comple-
teness, we calculate the dynamic Green tensor G. For the isotropic medium, the tensor
of elastic moduli has the form:

(5.1) Citm = A0ix Otm + 1485t Stom + Oim O] .
The Lamé equation for the u field produced by the force distribution X is as follows:
(5.2) otk — (A+ p) th i — Pt = Xi.
We introduce wave velocities:
A+2
(5.3) ff="9—‘u, C§=?,
then
- 1
(5.4 (Ci—ci)ﬂu.xrl'-’—'i Upgg— Wi = — "é_Xi-
We denote by [y, (2, d’Alembert operators:
1 ¢ 1 &
(5.5) Owm = A”"c_{? » Oa = c’ T
Equation (5.4) yields:
1 1
(5.6), Oy = —cz—{ ¥ 'é"Xt-(Cf -Ci)ul.ki};
1
1 =1 l 2 2
(5.6); U = ?2- Oayy— — Xi—(ci —€2) Uy iy -
2
Taking the divergence of (5.4), we obtain:
11
(5.7, Oty = _'E:?Xk k>
1 - 1
(5.7), Upy = a Omy— ?Xm .
Hence
1
(58) U = _9‘ { = z D(Z; aii"‘ 02 D(_li D(Z) A\ vkl Xx.
Because
(5.9) 4 = G+ Xy,
G is equal to:
1
610 Gu=—t{- 5 0@t S 06 0E V080,
1

9 Arch. Mech. Stos. nr 4/74
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It is of importance to have (5.10) in a slightly different form; we make use of the follow-
ing formal transformation:

3
¢ c3 A
— -2 = (=)

5.11 —_
( ) El(z; D(n D(I)D(Z}

Hence

1 1 1 1
(5.12) Gy = —{“ — O@) b+ Vi Vi 4! [_z_ Oa — P 3 Elﬁ,’]}ﬁ(f)ﬁ:(x)-
e 51 c2 1

Here, we deal with the expressions [J~'d(¢)ds(x); these are the Green functions of the
wave equations. Because in what follows we are going to calculate the retarded Green
tensor of the Lamé equation, we make use here of the retarded singular solutions of the
wave equations. So we take:

P ;-_)
(5.13), C1716(f) 5(x) = __4%___(__"__ ,

r

. -] (,-_) x
(5.13), Gy = L L ( +V,V, 4! ( ’

4np 2 s

The retarded Green tensor has its support in the region ¢ > 0; in what follows, we shall
always assume ¢ > 0 without pointing out this fact explicitly.
The Laplace operator acts on the function depending on r only in the following way:

(514 416 =+ (20

SO its reverse is:

(515 440 = f ar f ar"r ).
-2
e
cr
6(:-——) {
cle a1l L f ' f dr”é( ) - of B —ct)

It acts on the generalized function in the following way:

=— | dré(r—ct) = (— - ——) 0(r —ct).
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0 is the Heaviside function:

1 x>0
(5'17)1 B(x) = {0 x < 0,
(5.17), 0(x)+0(—x) =1,
(5.17)5 b(cx) =06(x) for ¢=0.

From (5.13),, (5.16) and (5.17),,,, we obtain (see also [8, 9]):

e 6(;— ——)
(.18) Gy = — lé‘* +VEV,‘[—-%—B(1-—r— +—:-e(r-L)

47p r 1 ¢

We perform now calculations important for the evaluation of the K tensor.

G619 a1 Lloe-n="L f dr' f dr'r"0(ct—r") = L f dr"r—”i
’ c re s p re o 2

re ;"fi(crar)} - f dr {

X 212 i'3

O(r—ct)+

ct
0(r'—ct)
o

O(r' —ct) i B(r:t - r')}

ct 3

- B(r cr)+-—

rc

'

B(r:t r)

_ % [rc;tz 3;3 ]6( c:)+—9(“ l‘)}

Proceeding in the same way, we obtain also:

G b on L il - et .. }
(5.20) A = O(ct—r) = = {[rct 35— o(r c!)+—2 O(ct—r);.

Hence:

(5.21) 4t [ - ci O(c,2—r)+ %9({!1 t-—-r)] -4t [-— —:— O(c,t—r)+ —;—ﬂ(czr—r)]

= —61- {T:_ (r—c, 1)*0(r—c, t)—- — (r—«- c21)%0(r—c, I)} (—1 -l 2.

Cy (43

So, up to a constant, the tensor K is equal:

ret 1 alt 1
(5.22) K;J' T v 45'[0 {(,‘_ B (l’ sz)e(f—C2f)

+ %V,V,i [—L (r—cu)®0(r—c, r)-i(r—czr)?'ﬂ(r——czt)]}, t20.
r e Cz2
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