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A kinetic equation of reacting loops 

U. BAHR and H. -A. BAHR (DRESJ?EN) 

MANY electron transmission microscope studies have been made of the annealing behaviour 
of defect clusters in quenched or neutron-irradiated crystals. In order to calculate the time­
dependent size spectra of loops, Zorski's statistical theory of dislocations [1] can be modified. 
A kinetic equation is derived for the distribution function representing the loop density per unit 
radius range. 

Przeprowadzono wiele badan dotyc74cych zjawiska·wyi:arzania skupisk defekt6w w krysztalach 
poddawanych obr6bce cieplnej lub napromieniowaniu neutronami. Dla wyznaczenia zaleinych 
od czasu widm rozmiar6w ~tli zmodyfikowano statystyczn~ teori~ dyslokacji Zorskiego [1]. 
Wyprowadzono r6wnanie kinetyki dla funkcji rozkladu, przedstawiaj~cej g~stosc ~tli obli­
czan~ dla obszaru o promieniu jednostkowym. 

IlpoBe,z:teHO MHOro HCCJie,z:tOBamrii:, KacaiO~CH HBJieHHH OTH<Hra CKOWieHHH ,z:te$ei<TOB 
s KpHCTaJIJiax, no,I:tBepmyTbiX TepMHtieCKo:H: o6pa6ome HJIH o6.rryqeHHIO He:H:TpoHaMH. ,[(.rrH 
onpe,z:teJieHHH 3aBHC~ OT BpeMeHH cnei<TpOB paaMepOB ITeTeJII> MO,z:tH$HI(HpOBaHa CTaTH­
CTJAeCKaH reopHH ,z:tHCJIOKaiUlH 3oPcKoro [ 1]. Bbme,z:teHo ypasHeHHe KHHeTHI<H ,z:tJIH <I>~HH 
pacnpe,z:teneHHH, npe,z:tcrasmnom;e:H: rmoTHOCTL nere.m., pacqHTaHHYJO ,z:tJIH o6nacru e~-

Horo pa,I:tHyca. 

1. Introduction 

MANY electron transmission microscope studies have been made of the annealing.behaviour 
of defect clusters in quenched or neutron-irradiated crystals. Aluminium [2] and molybde­
num [3] are the crystals mai:u.ly observed. There has been found a decrease of the loop 
density and a corresponding growth of loops during a thermal annealing. Basically two 
mechanisms have been proposed for explaining the experimental results. The first one 
explains the loop growth or shrinkage by diffusion of point defects to and from the loop 
via the matrix [4]. For the second mechanism it is assumed that the motion of loops in 
the climb direction is caused by the diffusion of atoms along the dislocation lines of the 
loops (the so-called pipe diffusion [SD, which has a small activation energy. The driving 
force for the coalescence of loops is provided by the elastic interaction existing between 
loops. 

The experiments by MAHER [3] indicate that the interstitial loop growth observed 
in molybdenum can only be interpreted in terms of the second mechanism. 

All informations about the experiments are hidden in the time-dependent size spectra 
of loops. In order to calculate the size spectra it is necessary to develop a statistical theory 
of dislocation loops. ZoRSKI [1] has proposed such a theory. Based on an equation of 
motion for loops interacting by a pure elastic force, ZoRSKI obtained a coupled system 
of hydrodynamical equations for the determination of the averaged values of the loop 
density, loop velocity and the averaged displacement field. 
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This theory can be modified for an application to the experiments. Because of the 
relatively weak elastic forces between the loops, the loop motion in the crystal lattice 
can only be caused by a diffusion mechanism and inertial forces can be disregarded. 
Furthermore, loop reactions are to be taken into account. 

Proceeding on this basis, a kinetic equation can be derived for the distribution func­
tion representing the loop density per unit radius range. The main assumption is that 
the density of the loops must be low enough to ensure that the mean path of the free 
diffusion is large compared to the effective range of the loop interaction defined below. 

2. Loop motion in the crystal lattice 

We consider a system of circular prismatic dislocation loops characterized by space 
vectors x, radii R and identical Burgers vectors b (Fig. 1). 

z 

y 

FIG. 1. Prismatic interstitial loops. 

Loop motion in the crystal lattice can only be understood as a result of thermally 
activated processes. We have to distinguish between glide parallely to b due to nucleation 
of kink pairs and self-climb perpendicularly to b occuring by short circuit diffusion of 
atoms around the loop perimeter [5]. 

Correspondingly, the motion of loops is determined l>y different diffusivities being 

(2.1) 2
L u 

D, =a -Y0 e-lfT 
w 

in glide direction [ 6] and 

(2.2) 

in climb direction [3], where 

a the lattice constant, 
L = 2nR the length of the loop, 

w the critical .length of a pair of kinks, 
Y0 the jump frequency, 
U the activation energy for a pair of kinks, 
Q the activation energy for circuit diffusion, 
T the annealing temperature. 
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Because of U ~ Q, loops are moving much faster in glide direction than in climb direc­
tion 

(2.3) 

The motion of interacting loops can be determined by the Einstein drift equation 

(2.4) 
dd x = K

1
T (D9~ F9+De~ Fe). 

t a. a. ({J) a.{J a. ({J) a.{J 

The forces F 9 and Fe are parallel and perpendicular to b, respectively. The sum is to 
be taken over all the loops. We do not- take into account external forces. 

Using the infinitesimal loop approximation for the elastic interaction energy, analytical 
expressions of the forces exerted by one loop having the position x and the radius R on 
the other loop having the position x' and the radius R' can be derived [7] 

BR2R'2 

Fg = -I '14 h(O), x-x 

z 

(2.5) 

c:.z:, 
~/ ck /x-x'/ 

where 

(2.6) 

3np,b2 

B = 4(1-Y) ' 

h(O) = cosfJ(3-30cos2fJ+35cos4fJ), 

g(O) = sinfJ(1+10cos2fJ-35cos4fJ). 

X 

FIG. 2. 

The climb force Fe has the direction of the projection of x-x' on the climb plane. 

3. The kinetic equation 

lj 

Let e(x, R, t) denote the distribution function such that e(x, R, t)dr:dR is the number 
of loops having the positions x in the range dr: and r~dii between R and R + dR. Following 
Boltzmann's idea a kinetic equation can be derived 

a ( o2 a2 ) a2 ( ae ) (3.1) Tte(x, R, t)+De(R) ox2 + oy2 e(x, R, t)+Dg(R) oz2 -e(x, R, t) = Tt COil. 

The left-hand part describes the change of e by diffusion without any interaction. 
Now, an explicit expression must be developed for the right-hand term caused by the 

interaction of the loops. The calculation of ( ~e ) is based on the assumption that only 
t coli 

binary encounters need to be taken into consideration. Higher order encounters can be 

disregarded if the loop density is sufficiently low to ensure that the mean path of the free 
diffusion is large in comparison with the range of the interaction defined now. 
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3.1. The effective capture radius 

In order to calculate binary encounters, it is necessary to study the coalescence of two 
loops moving by drift and diffusion. This problem cannot be solved analytically. But 
it is possible to disregard the diffusion of the loops for small distances and the only motion 
is a drift along the lines of force (drift approximation [8]). Correspondingly, the random 
diffusion is the essential part for large distances. 

Determining the capture radius or the range of interaction of the coalescence process 
for two loops, we consider at first loops in the same climb plane, specially a pinned loop R 
at the origin, and the other loop R' at the distance r. The force Fe is reduced to (0 = n/2) 

(3.2) 

and is attractive only. 
The range of interaction can be characterized by the path r0 , defined by the require­

ment, that the loop be moving _by drift in the same time as due to diffusion only. That 
means, the radius r~ is determined by 

(3.3) 14rm(ro) = tdut(ro), 

where t4ur is the time in which a diffusing loop situated at x = 0, at t = 0 will be found 
in the root-mean-square distance r0 , given by 

The time t4,m(r0) is the solution of the drift equation 

(3.4} 
dr De BR2R'2 

di = -KT r 4 

r(O} = r 0 , 

r(t )(drift) ~ 0. 

The result is, according to (3.3), 

(3.5) /

_
1 

5B 
0 = 4KT' 

The definition of r0 (3.5) is equivalent to a condition for the elastic interaction energy 
V(r) caused by Fe 

(3.6) 
4 

- V(r0) =-KT< KT 
15 

and means that, if r fulfills the condition (3.6), the potential energy will be less than the 
thermal energy of the loop in the lattice, and the· effect of the potential will be relatively 
unimportant. A more exact definition of the capture radius could be obtained on the 
basis of the idea of HAM [9]. 

In the case that both loops, having the different diffusion constants De = De(R) and 
D; = Dc(R'), are moving, the radius r0 and the drift time t4 ,m satisfy the condition 

(3.7) 
(Dc+D;)R2R'2 

lo lctrut 
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following from the solution of the modified Eq. (3.4). Now, tdiu is the time in which both 
independently diffusing loops found at x = 0 at t = 0 will appear in the root-mean-square 
distance r 0 • Thus 

(3.8) 

and the capture radius (3.5) is not changed when both loops are moving. 

3.2. The effective capture volume 

In general, we have to consider loops in different climb planes. Figure 3 shows the 
direction of the forces as a function of O[Eq. (2,5)]. 

F,(n-0) = F,(O), F,(n-0) = -Fg(O), 

O~l) ~ 30°, 0, ~ 53°, 

0~2) ~ 700. 

z 

r 
FIG. 3. 

A coalescence of two loops is possible due to a combination of glide and climb in the 
angle range 

(3.9) 

Because of D, ~ D, (2.3), the loops move fast in the glide direction in comparison with 
the motion in the climb direction. Therefore a loop moves near 0~2> resp. n-0~2> before 
the coalescence. Thus the time in which a loop arrives at the origin, is approximately 
given by the time of motion along the line 0 = 0~2 > resp. 0 = n-0~2>. 

The result is 

(3.10) 

The calculation of r0 (0~2 >) is quite similar to that of r0 {n/2), but Eq. (3.4) is to be mod­
ified by 

(3.11) 

Thus [instead of (3.5)], we obtain the radius r, for the three-dimensional capture 

(3.12) 

8* 

R2R'2 
r3 = ---

c I 1_1 = 5Bsin40~f>g(O~'t~ 
4KT 
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Defining the boundary of the so-called effective capture volume in the Z-"direction in such 
a manner as r 0 in the climb direction, we find 

(3.13) 

Now, a circular cylinder having the radius re and the height 2z9 can be associated with 
the loops Rand R'. Because of the repulsive forces (Fig. 3), the bases of the cylinder act on 
the random diffusing loops like reflecting walls. Fig. 3 shows that only the loops R' passing 
the lateral area of the cylinder in the range ()e < () < n-Oe coalesce with the loop R. 

Let us note that this approximation of the effective capture volume is rough in the 
surroundings' of the points (r0 , 0~1 >) because the repulsive force vanishes for () = 0~1 >. 

3.3. The collision parts 

It is convenient to introduce 

(3.14) ( 0(!) ( 0(! )+ ( 0(! )-
--at cou = fu con - Tt con ' 

where ( oe I ot);,11 dR is the number of loops deflected out of, and ( oe I ot):011 dR the number 
deflected into, the radius range R to R + dR per unit volume per unit time. 

The evaluation of the collision parts requires the knowledge of the loop current density 
on the lateral area (Oe < 0 < n-Oe) of the effective reaction volume. We have to take 
into account that, contrary to the usual Boltzmann's equation due to the capture, the 
number of loops near the surface of the reaction volume could decrease in a small range 
in such a manner that it cannot be described by the mean density e(x, R, t). But this 
diluting effect is compensated by the fast diffusion in the glide direction (D9 ~ De)· Thus 
the current density on the surface of the effective reaction volume is determined by the 
mean density of the loops multiplied by their velocity in the climb direction given by Eq. (2.4) 
specified for two loops 

(3.15) 

In order to evaluate (oe/ot)-;,11 , we consider the encounters taking place in the volume 
element d-r between the loops in the radius range R to R+dR and loops of all radii; in 
general, each of such encounters leads to the loss of one loop from the specified radius 
range. 

The number of the loops reacting with a considered loop having a radius R in the 
given interval in time dt is determined by the number of loops of all radii R' passing 
the lateral area of the cylinder associated to the loop R and by a corresponding term 
caused by the motion of the loop R itself into the reaction volume of any other loop. 
Thus 

(3.16) ( ~;L = ( ~;L +( ~; L. 
-+R R-+ 

= e(x, R, t) j dR'e(x, R', t)j j dF'(v(x',R')+v(x',R)). 
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The first surface integral taken over the lateral area of the cylirlder of the radius r c and the 
height 2zc 

(3.17) 

yields with (15), (3.1) and (3.12) 

Zc I 

(3.18) J J dF'v(z', R'} = 2nrc2 J dz' ~~Fc(z', re) 
0 

Thus we obtain from (3.16) 

(3.19} (~e)- = 1X(!(X, R, t)j dR'e(x, R', t)rc(R; R')(D~+Dc), 
t con 

16 tan8c 
IX = -5 76 

• 4()<2> (()<2>) • sm , g , l 

The evaluation of the collision part ( iJe I ot):On describing the creation of loops R due 
to coalescence of loops R' and R" can be performed in the same way, if the condition 
of the conservation of the number of atoms forming the loops is fulfilled; that means 

(3.20) 

It is found to be (appendix) 

(3.21) ( ~; )+ = ~a j dR' V R2~R'2 r,(jl R2 -R'2
, R')x 

con o 

x [Dc(R')+Dc(JI R 2 -R'2 )]e(x,y R 2 -R'2
, t)e(x, R', t). 

Comparing with (3.19), it can be seen that the arguments are changed only because of 

the reaction condition (3.20) except the factor R/~ R2 -R'2 • 

Finally, inserting (3.14) with (3.19) and (3.21) into {3.1), we find 

(3.22) 

xe(:x, VR2 -R'2
, t)e(x, R', t) 

00 

- 1X j dR'rc(R> R')(Dc(R)+ Dc(R')) e(:x, R, t)e(x, R',t ), 
0 
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where 

_ 1 _ lSn sin4~2> g(8~2>) ph2 
,.... 4 pb2 

I - -- --"' ----16 1-v KT l-v KT' 
(3.23) 

16 tim8c 
ex ~ Tn; sin4f12>g(f12>) ~ 10. 

4. Discussion 

The conditions for the validity of the kinetic Eq. (3.22) are the same as for Boltzmann's 
equation. The mean path of the free diffusion must be large compared to the effective 
'range of the loop interaction re; therefore we have to assume 

(4.1) nr: ~ 1, 

where n denotes the mean loop density. 
The structure of the collision parts in the kinetic equation leads to the time 

(4.2) 

characterizing the time of the change of the loop density. The time of a collision of two 
loops is given by tdrllt(rc) = tdiu(rc) ~ r:JDc. This yields with (4.1) 

(4.3) 

Thus the condition for binary encounters is fulfilled because the characteristic time is 
much greater than the collision time. 

Finally, the time-dependence of the properties of the loop distribution may be discussed. 
The balance equa~ion for a loop property Q(R) can be found directly from the kinetic 
Eq. (3.22) by multiplying both sides of the equation by Q(R) and integrating over R. 
Thus 

(4.4) :I J dRQ(R)e(x, R,l)+ (a~ + :;. ) J dRQ(R)D,(R)e(x, R, 1) 
0 0 

00 

a2 J + az2 dRQ(R)D,(R)e(x, R, t) 
0 

oo R 

=~"I dR.r dR'Q(R)y'R•~R'• r.(y'R2 -R",R')(D,(R')+D,(y'R2 -R'2 ))x 
0 0 

X e(x, y R2 -R'2
' t)e(x, R', t) 

00 00 

-ex f dRf dR'Q(R)rc(R, R') (Dc(R)+Dc(R'))e(x, R,t)e(x', R', t). 
0 0 

http://rcin.org.pl



A KINEnC EQUATION OJI llEACTINO LOOPS 661 

Substituting R" = l/ R2 -R'2 in the integral before the last one and using the symmetry 
of the integrand, the equation becomes 

(4.5) :, j dRQ(R)e(x, R,t)+( ::, + :;, ) jdRQ(R)D,(R)e(x, R, 1) 
0 0 

00 

(Jl f + oz" dRQ(R)D,(R)e(x, R, t) 
0 

00 00 

= 11 f dR" f dR'[Q(J/ R"2 +R'2)-Q(R')-Q(R")]rc(R", R')x 
0 0 

x Dc(R')e(x, R",,t)e(x~ R', t). 
The number of loops is given by 

00 

(4.6) N(t) = J dr J dR(!(x, R, t). 
0 

Thus Eq. (4.4) yields by integration over x with Q = 1 
00 00 

(4.7) a: = -a f dr .r dR" f dR'rc(R", R')Dc(R')e(x, R", t)e(x, R', t). 
ut o o 

The right-hand side is less than zero, such that 

(4.8) 
oN 
Tt<O. 

The number of loops decreases with the time due to the coalescence. 
The area of a loop is nR2

• Hence 

(4.9) 
00 

s(x, t) = J dRnR2e(x, R, t) 
0 

gives the sum over the areas of the loops at the position x per unit volume. 
Choosing Q = nR2 , the collision parts in ( 4.5) vanish and it follows 

(4.10) :, s+ (:;, + :;, ) j dRnR2D,(R)e(x, R, I)+ !: j dRnR2D,(R)e(x,R,t)=0. 
0 0 

This result is in accordance with the fact that loop reactions do not change the area of 
loops. The loop area in any volume can only be changed by diffusion of the loops through 
the surface of this volume. 

The mean value of R2 is defined by 

(4.11) 

Then 

(4.12) 

00 

R2(t) = N~t) J dr J dRR2e(x, R, t). 
0 
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Taking into account Eqs. (4.8) and (4.10), there follows 

(4.13) N oR2 = -R2 oN > 0. 
at ar 

The area per loop increases with time. 
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Appendix 
The number z of loops produced per unit volume per unit time with the radii R' :::;;; R 

and (oefot):011 are connected by 

z(R) = JR dR' ( ~(! )+ 
0 

t con 

or 

dz(R) = (~)+ 
dR at cou • 

Comparing with the evaluation of (oefot);011 , the number z(R) of loops becomes 

00 00 

z(R) = ~IX f dR' f dR"rc(R', R")(Dc(R')+Dc(R") X 

0 0 

where 

and 

O(R) = {~ 

X B(R-V R'2 +R"2
) e(x, R', t)e(x, R", t), 

R < 0, 

R > 0, 

d~~) = ~(R). 

The additional factor 1/2 results from the fact that the motion of the loop R' toR'' as well 
as the motion of the loop R" to R' are counted twice in the double integral. 
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Thus it follows that 

00 00 

( ~;)+ = ~ C( f dR' f dR" Zc(R', R")rc(R', R")(Dc(R')+Dc(R")) x 
con 0 0 

x ~(R-yR'2 +R"2 )e(x, R', t)e(x, R", t). 

Using the formula 

~ ~(y-yi) 
~(w(y)) = L..; I I , 

i ow(y) 
---ay Y=Y1 

where Yi are the zeros of the function w(y), we find the result (3.21). 
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