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Analytical mechanics of finite homogeneous strains 

J. J. SLA WIANOWSKI (WARSZAWA) 

IT IS SHOWN that the classical methods of analytical, Hamiltonian mechanics provide a con­
venient frame-Work for studying finite homogeneous strains. The geometric structure of the 
configuration space of a homogeneously deformed body is investigated in detaul. In particular, 
kinematical symmetries and non-holonomic velocities related to these symmetries are studied. 
The phase space of deformable body is constructed and investigated. The kinetic energy of a ho­
mogeneously deformable medium is calculated and expressed explicitly in terms of the strain­
parameters in two versions:, I) assuming that the physical space is endowed with some Euclidean 
metric; 2) in an amorphous space without any metrical concepts. Both these variants are dis­
cussed in detail. The general methods of describing interactions are presented. The general 
ideas concerning quantization are formulated and developed. 

W pracy wykazano, i:e klasyczne metody hamiltonowskiej mechaniki analitycznej SCl dogodnym 
n~em do badania skonczonych deformacji jednorodnycb. Zbadano szczeg6lowo strukturct 
geometryCZQ'l przestrzeni konfiguracyjnej ciala deformowalnego jednorodnie. W szczeg61-
no8ci zbadano symetrie kinematyczne i nieholonomiczne quasi-pre(dko8ci zwillzane z tymi 
symetriami. Przedstawiono konstrukcje( przestrzeni fazowej dla o8rodka deformowalnego. 
jednorodnie i zbadano j'l szczeg6lowo. Energia kinetyczna osrodka zostala obliczona w dwu 
wersjach: 1) zaldadajllC w przestrzeni fizycznej wyr6:Znionll metryk~ euklidesow'l, 2) w prze­
strzeni amorficznej pozbawionej jakichkolwiek poj~ metrycznych. Zbadano szczeg6lowo 
obydwa warianty. Przedstawiono og6lnll metodct opisu oddzialywan. Sformulowano i roz­
winictto gl6wne idee odnosnie kwantyzacji problemu. 

B pa6oTe noK83aHo, 1.JTO KJiaccuqecKHe Mero.Qbi raMHJibTOHOBOH aHIUIHTHtiecKoA MexaHHKH 
RBIDUOTCR XOpOliiHM annapaTOM WUI HCCJICAOBaHHJI KOHCtiHbiX OAHOPOAHbiX Aecl>opMai.Urii. 
MCCJieAOBaHa noApo6ao reoMeTplflleCKaR CTpfKTYpa Koact>urypaiU~mmoro npOCTpaHCTBa TeJia 

Aecl>opMBpyeMoro OAHOPOAHb!M o6p830M. B tiaCTHOCTB HCCJICAOBaHbl KHHCM8TiflleCKHe CHM­

MeTpHB B HeroJIOHOMHble KB83HCKOpocTB, CBft38HHbiC C 3TIIMH CHMMeTpBHMB. llpeACT8BJICHO 
nOCTpoeHBe cl>aaosoro npOCTpaHCTBa WU1 cpeA&I Aecl>opMBpOBaHHOH OAHOpo~IM o6p830M 
H OHO HCCJieAOBaHO nOAPOOHO. I<HHeTBtiCCKaft 3HeprBR cpeAbl paCtiBTaHa B AByx B8pH8HT8X: 
1) npeAnOJiaraft, 1.JTO B cl>B3JflleCKOM npOCTpaHCTBe 38AaHa cnCilHaJibHaft CBI<JIHAOBaft MeTpBiK8, 
2) B &Mopcl>HoM npocrpaHCTBe JIBIIIeHHOM KaKHX-HB6YAL MeTpHtieCKHX noHRTBH. McCJieAOBaHbl 
nOApOOHO o6a sapuaHTa. llpeACTaBJICH o6~ MeTOA onuCaHBR B38HMOACHCTBirit~ Ccl>oPMYJIB­
pOBaHbi B pa3BBTbl rJI8BHbie ftACB, K8C810LQHeCH KBaHTOBaHHJI 38A8tiB. 

1. Introduction 

THE AIM of this paper is to develop analytical mechanics of a homogeneously deformable 
body. 

We assume that the physical space in which the body is placed is endowed with an 
affine geometry. Displacing all material points of the medium according to a certain 
fixed affine transformation, we achieve precisely a certain homogeneous strain. A material 
point, ·the affine coordinates of which are x', then undergoes displacement to the point 
with coordinates y' = a1

1 xi+ b1, where the matrix composed of coefficients ti 1 is nonsingular. 
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570 J. J. Su WIANOWSKI 

Let Kii be the Euclidean metric tensor. Then, the finite Eulerian strain tensor eiJ is as 
follows: 

where a is the reciprocal matrix of a [2, 3, 6]. 
The constants ai1, b1 describe uniquely a displacement of the medium. Components 

of the strain tensor eii are constant, according to the coordinate-independence 
of a1

1• 

In this paper, we are concerned only with the simplified situation in which the trans­
lational degrees of freedom are frozen. This means that b1 = 0, and the body undergoes 
affine rotations around some fixed point (e.g. the centre of the mass). The configuration 
of the · body is uniquely described by coefficients a1i. (Note, however, that in addition to 
pure deformations, a de~cribes also a rigid rotation). Therefore, it is not affine, but rather 
the vector space which should be used as a model of the material and physical space (due 
to the existence of a fixed, non-moving point which will be identified with the null of the 
space of free vectors). Hence, the natural coordinates in the configuration space of the 
body are coefficients aii. A homogeneously deformable body possesses a finite number 
of degrees of freedom. This enables us to make use of the well-known methods of analytical 
mechanics in both the Lagrangian and Hamiltonian forms [4, 5, 9]. 

The analytical mechanics of homogeneous strains is of interest at least from the 
purely geometrical point of view. A homogeneously deformable medium is nothing but 
an affinely-rigid body-i.e., such a one that all internal affine relations between its elements 
ate frozen. (Let us bear in mind that in usual-i.e., metric rigid-bodies, not only affine, 
but also the metric relations have to be frozen). In spite of its obvious attractivet}.ess, our 
treatment seems to be new. 

We also feel that it will be possible to apply our approach in many physical and mechani­
cal problems. The recent paper is considered as a starting point for developing these appli­
cations. Let us quote the most important of them: 

1) oscillations of molecules; 
2) finite deformations and oscillations of monocrystals, and small deformations super­

posed on finite deformations; 
3) statistical mechanics of systems with internal degrees of freedom; 
4) micromorphic solids (media composed of granules which undergo homogeneous 

strains); 
5) large deformations of vulcanized rubber. 
We develop our treatement simultaneously on both the classical and quantum levels. 

The quantum theory of homogeneous strains is unavoidable when studying problems 
1, 2, 3, especially at low temperatures. 

No approximation methods of infinitesimal elasticity are used. We are rather dealing 
with finite deformations only. 

It is possible to take relativistic phenomena into account. We shall investigate · this 
problem in subsequent papers. 

Familiarity with elementary linear algebra [1], differential geometry [8, 11] and ana­
lytical mechanics [4, 9] is assumed. 
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2. Degrees of freedom and the phase space of a system. Kinematical symmetries 

Let M be a physical space. We assume it to be endowed with an affine structure; the 
space of free vectors (translations) will be denoted as V. As was pointed out above, homo­
geneous deformation results from displacing all the material points of the medium, accord­
ing to some fixed affine transformation of M. 

In this paper, we investigate only the special case in which the body is fixed at one 
point. In imposing these constraints we exclude translations from our treatment. The 
existence of a distinguished non-moving point p e M enables us to identify the manifold 
M with the vector space V by means of the one-to-one mapping tp: M-:-+ V, where tp(q) 
= pq, andpq denotes the translation (free vector) carryingp over into q. 

In this way, the finite-dimensional linear space V models our physical space. We assume 
the material points of the medium to be distinguishable and "mark" them by means of 
the points of auxiliary vector space U, called material space [2, 10]. We assume that the 
dimensions of U and V are equal. When our "marks" are initial positions at the moment t0 , 

then U =V. 
When using linear bases in U, V, we shall denote them throughout this paper as {Ett}, 

{ei},respectively. Matrix elements of linear mappings cp: U ~V, 1p:V ~ U, A: U ~ U, 
B: V~ V with respect to these bases will be denoted as cpiA, 'IJlA.h ABc, Bib respectively 
(i.e.: cpEA = eicpiA, 1pei = Ett1J1Ah AEc = E8 A8c, Be1 = eiBii). 

Arbitrary configuration of a body which undergoes affine rotations (homogeneous 
deformations without translations) is uniquely described by means of a certain linear 
isomorphism cp: U ~ V. This should be understood in the sense that the material point 
"marked" by u e U occupies the position cpu in the physical space V. The non-singularity 
of cp means that different material points occupy different physical positions (no "glueing" 
of the particles [2, 3, 6]). 

In what follows, L(U, V) denotes the space of linear mappings of U into V. Its subset, 
composed of isomorphisms, will be denoted as LI(U, V). Obviously, LI(U, V) is an open 
submanifold of L(U, V). Finally: 

The configuration space of our system is given by Q = LI(U, V). Obviously, dimQ = 
=dim Udim V= n2 , where n = dim U =dim V. Throughout this paper, n is quite arbitra­
ry. Obviously, only the special cases n = 1, 2, 3 (the linear, plane and space problems, 
respectively) possess physical meaning. In relativistic investigations, four-dimensional 
spaces will be used. 

The motions of a system are described by smooth curves e: R --. Q; obviously, e(t) 
denotes the configuration of the body at the moment t e R. 

In this section, no metric structures in U, V are presupposed. Hence, arbitrary cp e Q 
describes a general affine injection of the matter into physical space and it makes no sense 
to factorize it into a metrically-rigid and a purely-deformative part. 

In the linear spaces U, V, the automorphism-groups-i.e., full linear groups GL(U), 
GL(V)-act in a natural way. These actions give rise to the natural action of GL(U), 
GL(V) on the configuration space Q. The corresponding transformations of Q are defined 
and denoted as follows: 
(2.1) A(p =A o cp, 

def 
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(2.2) fPB = fP oB, 
def 

J. J. Sl.AWIANOWSICI 

for arbitrary A e GL(V), Be GL(U), fP E Q = Ll(U, V). With actions so defined, GL(V) 
acts on Q on the left, and GL(U)-on the right. This justifies the notations Aq;, fPB used 
above. Obviously, all actions of GL(U) commute with all actions of GL(V). 

Transformations of the group GL(V) possess a direct physical interpretation: they 
are physical mappings (symmetries) acting in the physical space V. Hence, they move the 
material points of the medium in V, which is in agreement with natural, operational 
intuitions concerning the word "deformation". In all formulas, the physical fields acting 
on the medium (e.g. electromagnetic field) are coupled with geometric objects of the 
"left" homogeneous space (Q, GL(V)). Roughly speaking, any transformation of the group 
GL(V) on Q can be realized as a consequence of some external physical interaction. By 
contrast, the action of GL(U) on Q may appear rather as a purely mathematical construc­
tion. It describes certain, rather abstract, initial deformations and rotations. However, 
the kinetic energy of a system becomes a much more simple expression when given in 
terms of geometric objects related to the "right" homogeneous space (Q, GL(U)). 

Now, let us construct the mechanical state-space of our system. It is well known that 
the mechanical state of a system is fully described by its configuration and generalized 
velocity, or equivalently, by configuration and generalized momentum. As we have pointed 
out above, Q is an open subset of the linear space L(U, V). This enables us to avoid the 
general mechanical formalism of the tangent and cotangent bundless, [5, 7, 8]: Generalized 
velocities are elements of L( U, V) itself. Similarly, generalized m omenta become elements 
of the dual space L(U, V)*. Moreover, let us notice that L(U, V)* can be identified with 
L(V, U). An element of L(U, V)* corresponding to f e L(V, U) via this identification 

will be denoted as f, and given as follows: 

(2.3) <], g) = TR(( o g) = JA1g1.4 

for arbitrary g e L(U, V), where Tr(f o g) denotes the trace of the linear mapping fog: 

U -+ U. Instead of F = J, we shall write also f = F. 
This simplifies all formulas and eliminates misunderstandings. 
Let us briefly sum up these preliminaries: 
The Lagrangian state-space of our system is a differential manifold Q x L(U, V). When 

e: R -+ Q describes a certain motion, then e' (t) = ~; (t) is the generalized velocity of 

the body at time t e R. 
The phase-space of a system-i.e., its Hamiltonian state-space-is a manifold P 

= Q x L(V, U). Linear bases in U, V give rise to canonical coordinates Qi.4, P8
1 on P 

such that: 

(2.4) Q1.4(q;, n) = fP1
A, 

(2.5) P8 i(fP, n) = n8 i. 

Poisson brackets of the coordinates above will be given by the usual formulas: 

(2.6) {QiA, Qi8} = 0 = {P';, P8j}, 

(2.7) {Q'A, pBj} = - ~~jc5BA; 

(Obviously, it is possible to give them also in terms of absolute symbols). 
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Instead of the usual, generalized velocities e'(t) e L(U, V), we shall make use of 
what are called quasi-velocities (non-holonomic velocities), i.e., combinations of the corn- · 
ponents of e'(t) with coefficients depending on the configuration qJ e Ll(U, V). They 
wiH enable us to separate the rotational and deformative behaviour of the body. In e'(t), 
these two types of behaviour are non-physically mixed. Similarly, what are called quasi­
momenta (non-holonomic momenta) will be used. The non-holonomic velocities and 
m omenta we use below are strictly related to the action of kinematical symmetries G L( U), 
GL(V) on the configuration space Q, in the same way as angular velocities and angular 
momenta are connected with the action of the corresponding orthogonal groups on the 
configuration space of a rigid body. This is because this action enables us to identify 
L(U, V) with L(U), or L(V) (where L(U), L(V) is an abbreviation of L(U, U), L(V,V), 

respectively). 
The external, or left quasi-velocity form is defined as a mapping D,: Q x L( U, V) -+ L(V) 

such that: 

(2.8) 

This mapping identifies the Lagrangian state-space with Q x L(V): 

(liJ, g)-+ (lf, D,(liJ, g)) = (liJ, go liJ-t). 

When e:R-+ Q is a motion, then D,(t) = Dr(e(t), e'(t)) is the external (left) quasi­
velocity of a system at timet. 

The internal, or right quasi-velocity form is a mapping D,:Q x L(U, V)-+ L(U) such 
that: 

(2.9) D,(liJ, g) = liJ- 1 
o g. 

In the next section, we shall show that the Eulerian and Lagrangian velocity fields are 
uniquely described by the quasi-velocities (2.8) and (2.9), respectively. 

Let us take the matrices D,'l(t) = Dl"(t)ffl, and D/8 (t) = !J,Ac(t)YJcs, where g"i, YJAB 
are the contravariant components of some fixed metric tensors g, YJ in V, U, respectively. 
Independent elements of the skew-symmetric part D,Wl(t) are simply the components 
.of the angular velocity at timet, with respect to the laboratory system of reference. Simi­
larly, D,£ABJ is the angular velocity referred to the eo-moving fr~me. This example justifies 
the terms used above: external and internal quasi-velocities. All physical quantities re­
ferred to the physical space V (given by geometric objects in V) describe the medium in 
laboratory terms. Similarly, quantities referred to the material space U, describe the body 
in terms of the eo-moving frame: they are internal characteristics of the body. 

Both D,Wl, D,£ABJ describe the rigid-rotational behaviour of the body. By contrast, 
symmetric parts D,Oi>, D, <AB> describe the deformative behaviour (they are non-holonomic 
disiorsion-velocities). Note that our separation of these two phenomena is valid for 
arbitrary, large deformative motions. 

Analogously to non-holonomic velocities, we define the quasi-momenta: 
The external, or left quasi-momentum form is defined as a mapping: 

.E, : P = Q x L(V, U) -+ L(V) such that: 

(2.10) .E,(qJ, f) = lp of. 

SimilarJy: 
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The internal, or right quasi-momentum form E,:P = Q xL(V, U)-+ L(U) is a mapping: 

(2.11) E,(qJ,/) = fo qJ. 

In the definitions above, we identified L(U) with L(U)* and L(V) with L(V)*, according 
to the formula: 

(k, 1) = TR{k o 1). 

As already indicated, the Lie groups GL(U), GL(V) act on the configuration space via 
the formulas (2.1), (2.2). These kinematical symmetries can be "lifted" in a natural way 
to the state-spaces, both Lagrangian and Hamiltonian. The corresponding transforma­
tions are defined as follows: 

(2.12) A(qJ, g) = (A o qJ, A o g), 
(2.13) {f!J, g)B = (f!J oB, go B), 

(2.14) A(qJ,f) = (A o f!J,f o A- 1), 

(2.15) (qJ,f)B = (f!J oB, B-1 of), 

for arbitrary A e GL(V), Be GL(U), qJ e Q, g e L(U, V), fe L(V, U). Obviously, 
(2.14) and (2.15) are canonical mappings; moreover, they are known as extended point 
transformations of the phase-space P [4, 9]. The infinitesimal generators of these trans­
formations can easily be found: 

To arbitrary et e L(V), {3 e L(U) (linear mappings in V and U, respectively) we attach 
the functions F1[et]:P-+ R, F,[{J]:P-+ R, given by the following formulas: 

(2.16) F,[et](qJ,/) = (E,(qJ,/), et) = (qJ of, et) = Tr(qJ ofo IX) = qJ1A.fA.JetJt, 

(2.17) F,[{J](qJ,f) = (E,(qJ,f),{J) = (foqJ,{J) = Tr{foqJo{J) =fA.t(/J1sf38A.· 

Let us assume some metric tensors g, 1J in V, U, respectively. When et, {3 are skew­
symmetric with respect to these tensors, then F, [et], F, [{3] describe the corresponding 
components of the angular momentum of the body in the laboratory and eo-moving 
frame, respectively. 

It is easy to show that the assignment et -+ F, [et] is a Lie algebra-representation in the 
sense of matrix commutators and Poisson brackets [9, 4]: F1[£et1 , et2l] = {F1[et1], F1 [et21}. 
By contrast {3-+ F,[{J] is an antirepresentation: F,[£{31 , {32]] = - {F,[{J1], F,[{J2]}. This 
is because F1[et], F,[{J] generate the groups (2.14), (2.15) of canonical mappings on P: 
For arbitrary smooth function G on P, we have: 

where: 

a 
at(G o ht) = {F1[et], G} o ht, 

a 
at(G o kt) = {F,[{J], G} o ktJ 

ht(fP, n) = (e«t o qJ, no e-a.t), and: 

(f!J, n)k, = (qJ o t!', e.;..llt on). 

It was mentioned above that the groups GL(U), GL(V) commute when acting on Q (and 
on P): Consequently, infinitesimal symmetries also commute: 

(2.18) {F1[et], F,[{J]} = 0. 
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3. The kinetic energy of a homogeneously deformable body 

Let the medium, moving with generalized velocity E e L(U, V), pass the configura­
tion q; e Q. It can easily be shown that the Eulerian velocity field v in Vis then given as: 

(3.1) 

Carrying this vector field by means of q;- 1, we obtain the eo-moving velocity field "Y 
on U: 

(3.2) 

When there is no danger of misunderstanding, we shall write simply: 

(3.1a) 

(3.2a) 

v1(x) = D/ixi, 

'f"A(X) = Q,.AsXB. 

The kinetic energy of the material point is proportional to the scalar square of its 
velocity. Hence, to be able to introduce the notion of the kinetic energy, we should have 
some :fixed Euclidean metric. From the purely mathematical point of view, we have, 
a priori, two opposite possibilities: 

(i) The physical metric fixed. This approach consists in endowing the physical space V 
with some distinguished metric tensor g. 

(ii) The material metric fixed. In this approach it is the material space U which is 
endowed with a fixed metric 'YJ· Distances in V are measured by means of the configura­
tion-dependent Cauchy deformation tensor g,, where: 'YJ = q;* • g, [2j. In such a way, 
the geometry of the physical space would be determined by configurations of the matter. 
This is to some extent reminiscent of the situation we encounter in general relativity. 

Obviously, in the usual theory of elasticity and its applications, we have to use the 
physical metric g in V, when calculating the kinetic energy. Nevertheless, it would be 
advantageous and instructive to know also what results when the material, eo-moving 
metric 'YJ is fixed and consequently used-i.e., when the geometry of the physical space V 
is given by the configuration-dependent Cauchy tensors g,. Obviously, the "kinetic energy" 
so obtained is rather a "non-physical" quantity; nevertheless, it of is interest for its elegant 
geometric structure and properties. For example, it possesses high dynamical symmetries­
namely, it is invariant under GL(V) and under certain subgroups of GL(U). Moreover, 
when expressed by the quasi-velocities Q1, or !J,, it becomes a very simple quadratic form. 
This is not the case of "physical" kinetic energy. This fact is of interest in view of the 
profound physical interpretation of quasi-velocities via velocity fields (3.1), (3.2). Hence, 
the "eo-moving kinetic energy", although non-physical, seems to .be an appropriate (and 
indispensable) tool for understanding the dynamical and geometrical structure of the 
theory. Provided that we are interested in infinitesimal theory, both forms of the 
kinetic energy are asymptotically equivalent. 

Let us notice that, in addition to the above "philosophical" reasons used to justify 
the study of the "comoving kinetic energy", there exist certain more physical ones. In 
fact, the theories of continuous media in amorphous spaces without any metrical notions 
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are mathematically possible and, perhaps, physically reasonable. Observe for example 
that in general relativity theory and in -the theory of continuum based on it, there is no 
fixed metric geometry at all; rather, the components of ·the metric tensor are included 
in physical degrees of freedom and dynamicalJy coupled with matter and its distribution . 

. The kinetic energy of the medium equals the sum (integral) of the kinetic energies 
of its infinitesimal elements. Let the measure p, describe the mass distribution of the m~tter 
in U (in the reference configuration).- It can easily be shown that the physical kinetic energy 
in the Lagrangian state ( q;, ~) is given as: 

(3.3) 

where J is the comoving quadrupole moment of the mass distribution: 

(3.4) J = jX®Xdp,(X), i.e.: JAB= JXAXBdp,(X). 
u u 

The configuration-independent tensor J describes the inertial properties of the body. 
(3.3) is a configuration-independent quadratic form of generalized velocities. Unfor­
tunately, when expressed by quasi-velocities, it becomes a configuration-dependent form. 

In appropriate coordinates, (3.3) can be reduced to: 

(3.3a) 1 ~A • 2 
T,(q;, ~) = 2 L.,; J (~'A) . 

i, A 

Particularly interesting is the special case of the full spherical symmetry of the quadrupole 
tensor: JAB = v<5AB. We· have then: 

(3.5) T,(q;, ~) = ; 2 (~1A) 2 = ; TR(§Ti), 
I, A 

(where §is the matrix of~; the lowering and raising of indices is understood in the trivial 
sense of the Kronecker symbol). 

It is often possible to treat deviations from the exact spherical symmetry as a small 
perturqation of the spherical term (3.5). 

To calculate the comoving kinetic energy, we replace the metric tensor g by the Cauchy 
deformation tensor giP. Then we obtain: 

(3.6) T'l(~, ~) = ~ ('YJ, (fJ ® P)J) = ~ 'Y/ABPAcPBDJcD, 

where P = !Jr(q;, ~). 
Hence, when expressed by quasi-velocities, T'l is a configuration-independent quadratic 

function. That is why the comoving energy, although "nonphysical", seems to be more 
"elegant" and geometrically interesting then the physical. In fact, it is quasi-velocities 
rather than generalized velocities which possess a direct physical interpretation (velocity 
fields and separation of the deformative and rotational behaviour). 

In the special case of spherical symmetry, JAB = vf.5AB, we obtain: 
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(lowering and raising of indices in the sense of the Kronecker symbol). When expressed 
by external quasi-velocities, Q1 , T17 becomes configuration-dependent. It is internal, geo­
metric objects in U (material objects) which m(!ke both T9 and T17 configuration-independent. 
The same situation occurs in the theory of rigid body, where T9 and TTJ become equal. 
(The theory of a rigid body results from our theory by imposing certain holonomic con­
straints). 

4. Interactions 

In what follows we assume the existence of the potential energy "f'": Q -+ R, which 
describes the static interactions. To find "f'" it is necessary to postulate some interaction 
potential between material points of the medium, and the potential of external forces 
which act on such points. Obviously, summation (integration) over material points should 
be performed in order to express the full potential energy as a function depending on the 
configuration cp E Q only. When some non-static-i.e., velocity-dependent-interactions 
are pr.esent (e.g. magnetic ones), then the formulation of the problem within an analyticalt 
Lagrangian framework is possible if, and only if, the generalized potential "f'" :Q x L(U, V) 
-+ R doe~ exist. Obviously, magnetic interactions satisfy this requirement. 

In this paper, we do not go into details of interactions in real solids (crystals or rubbers). 
Rather, we restrict ourselves to presenting the general outline only. In addition, some 
academic, but computationally simple and instructive examples are presented. 

Let us assume that the body consists of identical material points distributed in material 
space U according to the positive, regular measure (mass distribution) p.. (Both continuous 
and singular, in particular pointwise distributions are admissible). Then. taking into 
account the physical homogeneity of the space V, we can express the potential energy 
of internal, binary interactions, 'JI·p> , as follows: 

1 j"' 1 f' (4.1) 1'"/2>(cp) = 2 w< 2> o cp(X- Y)dp.(X)dp.(Y} = 2 w< 2>(x-y)dp.'l'(x)dp.,(y), 
U x U VxV 

where the primed integration symbol f' means that the integration has to be performed 
MxM · 

over the set 
LI(M) = {(m1, m2) :m1 '# m2, m1, m2 eM} 

(the "diagonal" consisting of pairs (m, m) excluded). This point is essential in the case 
.of discrete, pointwise mass distribution · p.. Obviously, when p. is absolutely continuous 
with respect to the Lebesgue measure, then the primed integral is equal to the usual one. 

The function w< 2> in (4.1) describes the· density of potential energy per unit mass-square. 
Similarly, the potential energy of internal m-body interactions "f'"[m> is given as follows: · 

(4.2) "f'"[m> = _1, J' w<m> o cp(X -X1 , •.. , X -Xm_ 1)dp.(X)dp.(X1) ••• dp.(Xm- 1) 
m. 

xU 
m 

3* 
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where the primed integration over M is performed over the subset J<•>(M) c: x M suoh 
m 

that no "coordinates" coincide: 

L1<•>(M) = {(pb ... ,p,.): Pt #: Pb i,j = 1, ... , m}. 

When the body consists of non-identical material points, then it is advantageous 
to replace the formulas (4.1), (4.2) (although they remain valid) by others involving den­
sities per unit "charges" of physical properties of points. For example, the energy -;rrt 
of internal electrostatic interactions is . given as follows: 

a J' 1 a J' 1 (4.3) -rrt(VJ) = 2 I X_ YJ, de(X)de(Y) = 2 lx- I defJ(x)de,(y), 
UxU f{J f{J YxY y I 

where g is the physical metric tensor and lvl, = y (g, v ® v), 1J is the material metric 

tensor; lul'7 = V(1J, u®u), e is-a regular measure which des~ibes the distribution of 
electric charge in the material space U (obviously, e need not be positive). e, results from 
e via f{J-transport and describes the physical configuration-dependent charge distribution, 
a is a certain constant depending on the choice of units. 

External interactions are described in a similar way. When the body consists of identical 
material points, then the external potential energy is giyen by the following expression: 

(4.4) "Yex(fP) = J Wex 0 f{J(X)dp(X) = J Wex(x}d,u.,(x), 
u y 

where Wex: V-+ R is the density of external potential energy per unit mass. 
Similarly, an interaction with external electrostatic field is given by: 

(4.5) .Y:!'(VJ) = J Fo f{J(X)de(X) = J F(x)de,(x), 
u y 

where the regular measure e describes the distribution of electric charge in lj, and F: V -+ R 
is the usual potential of electrostatic field (i.e., the j>otential energy per unit charge). 

When the external magnetic field is present, then the corresponding generalized ( velo­
city-dependent) potential energy is given by: 

1 ·f 1 f (4.6) "J"':fn(f{J, ~) = c (A(x), D1(ip, ~) · x)de,(x) = c (VJ* A(X), D,(VJ, ~) · X)de(X), 
y u 

or, in a more symbolic way: 

(4.6a) rr:tn(f{J, ~) = ! J (A(x), dj,(x)) = ! J (f{J* A(X), dj(X)), 
y u 

where the field A: V -+ V* is a vector potential of external magnetic field, and the vector 
measures j,,j describe the electric current connected with the deformative motion 

(dj.(x) = D1(VJ, ~) • xde.(x), dj(X) = !J,(VJ, E)· Xde(X)). 

In many practical problems, . it is convenient to describe electromagnetic interactions 
in terms of multipole moments. For example, when the body is endowed with an electro­
static dipole moment, then the corresponding potential energy is given as follows: 

(4.7) 
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where E(O) E V is a value of external electrostatic field at the immovable point V E V, 
and d e U is the comoving dipole moment: 

(4.8) d = f Xde(X) 

in linear coordinates: 

(4.8a) 

Obviously, d is configuration-independent. 
We conclude this section with a simple example. It is non-physical, nevertheless it 

does help to understand how our method work_s. We shall omit all non-interesting details 
of easy proofs. The more detailed analysis will be given in subsequent papers. 

Let us consider a material which consists of identical material points distributed 
continuously in space. The measures p., p., are absolutely continuous with respect to the 
Lebesgue measures in U, V, respectively; the corresponding densities will be denoted as 
(!, (!,. Moreover, we assume the ~ensity e to be consta_!lt all over the body. Then, e, is 
also constant. This means that the body is completely homogeneous. The potential energy 
of intefnal, m-body interactions "f""t'"> is given by (4.2). Assuming short-range forces and 
disregarding the surface-energy_ we can obtain some explicit results concerning ~~·> ~ 
Obviously, these results are valid for such conjiguratio.ns q;.e Q, only that the linear size 
of the body in an arbitrary direction remains much larger than the range of forces. In par­
ticular, they are drastically wrong in the neighbourhood of "collapsed" configuration 
qJ = 0---i.e., for a highly compressed medium. It can be shown that when our assump­
tions are satisfied, then: 

(4.9) 

where lfJJI is the determinant of the matrix of qJ with respect to some orthonormal bases 
in U and V. The details of the shape of functions w<"'> are not very essential-these func­
tions influence the constants C,. via the integral formulas: 

(4.10) 
Mem-1 

C,.=--­
m! 

J w<111>(x1 , ... , x,._ 1)dxt, ... , dx"'- 1 , 

m:_lv 

where M is the mass of the body, e is its undeformed (comoving) density per unit (Le­
besgue) volume in U. Therefore, the full internal pot~tial energy is given by 

N N 
- ~ - '\-, C,. 

~i(f{J) = .£..J ~flll)(f{J) = ~ lfPim-1 ' 
m=2 m=2 

(4.11) 

where the integer N characterizes the dynamical structure of a system (in the theory of 
continua, N need not be finite). 

Thus, our assumptions (the large body-configurations) imply that: 

(4.12) 

where f: R -+ R is some real-valued function of one variable, vanishing at infinity (dis­
sociated body) and singular at zero (collapsed body). Obviously, the singularity mentioned 
is non-physical, because our approximation then becomes wrong. 
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The potential energy (4.12) leads to the following stress-strain relation [2, 3, 6]: 

(4.13) i =J'(yl&'l)g~, 

where r is the stress tensor measured per unit area of the deformed body, &' is the so­
called Pioli deformation tensor [2] (i.e., the reciprocal of the Cauchy deformation tensor), 
and l&'l denotes the determinant of f!J in some orthonormal basis. Making use of the 
usual Eulerian strain tensor e, and denoting the reciprocal tensors by a tilda, we can write 
(4.12) in the following form: 

(4.13a) 

or, equivalently: 

(4.13b) rik(gki-2e~ci) = /'( . 
1 

) . 
Jllg-2el 

1 
The quantity 1(/JI = yl&'i = ---is often denoted as y/3 (cf. [6]). Hence: 

ylg-2el 

(4.13c) rii-2-rilceki =f'(a/13). 
Obviously, in physical applications we make use principally of the model of binary inter­

actions. The physical properties of ip> = l~l can be improved by taking the surface 

terms into account. In general, the surface . term is rather involved. However, in some 
special cases it can easily be evaluated. For example, let us assume that the natural, un­
deformed shape of the body is given by a cube in the material space U. Then, assuming 
that the sizes of deformed walls are still large as compared with the range of interactions, 
we have: 

3 3 

(4.1 4) (2) ( ) _ De
2
E ~ .. ; -•A -u 11 _ De

2
E \ 1 .. ;- AA 

"f";, surface (/) - ~ L.J J1 (/) i (/) jg - ~ ~ J1 'f/rp ' 
A=l A=l 

where E is the undeformed area of a wall and the constant D depends on the shape of 
w< 2> and on the radius of interactions. The full internal energy of binary interactions 

is a sum of (4.15) and -ff2 >: 

(4.15) -.y<2) - -f<2) ..1/"(2) 
i - i +' i, surface• 

S. Legendre transformation and Hamiltonian dynamics· 

The full information about the dynamical structure of a system and its equations 
of motion is cont8.ined in its Lagrange function L: Q x L(U, V)--. R. In the case we 
consider here, L = T- (/J, where T is the kinetic energy and (/J-the potential energy of 
a system. 

Similarly, as in previous sections, J e L(V, U) denotes a linear mapping identified 
canonically with a linear function f e L( U, V)*, according to the formula: 

(5.1) <J, g);::: Tr<fog). 
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The Legendre transformation!l':Q x L(U, V)-+ P = Q x L(V, U) maps the Lagrangian 
state-space into the phase-space P of a system. The Lagrangian L gives rise to the follow­
ing Legend re trahsformation: 

(5.2) .ft'(q;, ~) = (<JJ, D~L(q;, o )) 

for arbitrary (q;, ~) e Q x L(U, V). 
Hence, the arbitrary point (q;, ~), linear coordinates of which are (q;iA, ~iA), is trans­

formed into the point (q;, n) with coordinates f/J1
A, nAj, where: 

(5.3) 
A aL 

n i = O~IA (q;, ~). 

In what follows, we restrict ourselves to the special, but super-important case in which 
It' is a diffeomorphism. When L = T- (/) where T equals either T11 or T9 and (/) describes 
static or magnetic interactions, then, for arbitrary q; e Q, !l'l {q;} x L(U, V) is an affine 
mapping. Hence, !l' possesses the inverse if, and only if, the quadruple tensor .I e U ® U 
is algebraically non-singular (i.e., the matrix of components JAB is non-singular). In 
what follows, ·we assume that this is the case and the corresponding reciprocal tensor 

will be denoted as j e U* ® U*. In linear coordinates: 

AB - A (5.4) ./ ~BC= c5 C• 

Physically, this means that the · matter occupies some n-dimensional region in U (where 
n = dim U = dim V). The special cases of singular distributions concentrated on sub­
spaces of U call for separate treatment (for example, the generalized Dirac mechanics 
with irreversible Legendre transformations might be used). 

The energy of a system is defined as a function E:Q x L(U, V)-+ R such that: 

(5.5) E(<p, ~) = (D~L(q;, o), ~)-L(q;, ~). 

In linear coordinates: 

(5.6) 

When L = T- (/) and (/) does not depend on generalized velocities, then: 

(5.7) 

The Hamiltonian of a system, H:Q x L(V, U)-+ R, is defined as follows: 

(5.8) H = Eo!l'- 1 • 

In what follows, we restrict ourselves to the static interactions only ((/) does not depend 
on generalized velocities). It is easy to show that in this case: 

(5.9) 

In linear coordinates : 

(5.10) 
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or, making use of functions PA1 : P -+ R as defined in (2.5): 

(5.11) 
1 - B .. 

T. 0 !£-1 __ fi pA p .glJ 
g - .,., AB i J • 

~ 

Hence, the kinetic term is a quadratic function of generalized momenta. Simple calcula­
tions show that: 

In linear coordinates: 

(5.13) 

When we identify the phase-space P with Q x L(U), then the kinetic term above becomes 
T':Q x L(U)-+ R, where: 

(5.14) T'( ) 1 ( * d ) 1 tS A B CD fP' (J = 2 (J ' " ' 'Y} = 2" AB (J C (J D 'Y} • 

The function T'l o!t'-1 becomes a very simple expr~ssion when given in terms of generators 
of the group GL(U) acting on P according to (2.15). In fact, let us remember that to 
arbitrary {3 e L( U) is attached the generator F, [,8] such that: 

(5.15) F,[p](<p, n) = (E,(qJ, n),jt} -~(no cp, {3) = Tr(n: o cp o {3). 
~ . 

Let.-{EA} be some basis in U; EDc detio!fS such an element of L(U) that: 

(5.16) 

and 

(5.17) 

when D ¥:. G. 

(no summation over D !) 

The matrix of £De with respect to the basis EA is given as follows: 

(5.18) (EDc)BA = CJ
8clJDA· 

Let us denote: 

(5.19) 

It is seen that: 

(5.20) F,D c('P, n) = E,(cp, n)D c. 

Hence, finally: 

ro-1 1 ti FA -B CD T'l O .z; = 2., AB r C F, D 'Y} • 

When the potential lP depends on the configuration only, then T'~ o!i'- 1 is a quadratic 
form of generators of GL(U). 

When remaining within the framework of Hamiltonian mechanics, the full dynamical 
structure of a system is described by its Hamilton function H: P -+ R. 

http://rcin.org.pl



ANALYTICAL MECHANICS OF FINITE HOMOO£NEOUS STRAINS 58} 

It gives rise to the one-parameter group {g,, t eR} of canonical transformations 
g,:P-+ P. For an arbitrary differentiable function G:P-+ R, we have: 

(5.22) 
d 

-d ( G o g,) :: { G, H} o g,. 
t t 

In particular, we have the following Hamiltonian equations of motion: 

d , oH 
dt (Q .4 0 g,) = oP..ti 0 g,' 

d .4 ) oH Tt (P i o g, = - oQ'..t 0 g, , 

(5.23) 

where Qi..t, p..ti are canonical coordinates and momenta introduced in (2.6) and (2. 7). 
The Eqs. (5.23) describe the deformative behaviour of the· medium after imposing 

on it homogeneous strain-constraints. Therefore, they replace the usual Lame equations~ 
It should be noticed that the Lame equations must not be used literally in the case we 
consider here, because they do not take into account the reactions of constraints. The 
constraints we refer to are described by the following homogeneity conditions: 

where u is the displacement vector. 

6. General ideas of quantization 

At low temperatures, quantum effects should be taken into account. 
The quantization consists in replacing phase-space functions by some appropriate 

Hermitean operators and solving the corresponding eigenequations. 
Let us start with some mathematical remarks. There exist two distinguished measures 

on the manifold Q = LI(U, V). In fact, Q is an open subset of the finite-dimensional 
linear space L(U, V), hence the usual Lebesgue measure [on L(U, V)] can be used. The 
corresponding integration will be denoted as follows: 

In linear coordinates, we have: 

(6.1) 

up to a constant factor. In what follows, we make use of such coordinates only where 
this factor equals one. 

Obviously, such a measure is invariant urrder all affine translations: 

(6.2) 

for arbitrary a e L(U, V). 
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In addition to the Lebesgue measure, we have at our disposal the second distinguished 
measure .d. It is uniquely (up to a constant factor) defined by the requirement of invariance 
under the action of groups GL(V), GL(U) on the manifold Q [7]: 

(6.3) J F(Acp)dL1(cp) = j F(cpB)dL1(cp) = j F(cp)dL1(cp) 

for arbitrary integrable function F and arbitrary A e GL(V), Be GL(U). In linear co­
ordinates: 

where ~ is a matrix of (/) with respect to the chosen basis. 
The measures above give rise to the scalar products in the corresponding spaces of 

square-integrable functions L2(Q, dcp)., L 2(Q, L1). These products are defined as follows: 

(6.5) {1Jlti1Jl2) = J 1Jll *(cp)VJ2(cp)dcp 

for 1p1 , 1J12 e L2(Q, dcp) and: 

(6.6) 

where 1p1 , 1p2 L 2 (Q, .d). 
Let a e L(U, V), A e GL(V), Be GL(U). We define translation operators Ta, LA, R8 

according to the formulas: 

(6.7) 

(6.8) 

(6.9) 

{T4 1p)(cp) = 1p(cp-a), 

(LA 1p)(cp) = 1p(A- 1cp), 

(RB'P)(cp) = 1p(cpB-1
). 

The translations above are unitary operators in the corresponrling L 2-spaces: 

{6.19) 

(6J1) 

(6.12) 

(Ta1Jltl Ta1J12) = (VJti1Jl2), 

(LA 1Jl1 I LA 1Jl2> = < 'Pti1Jl2), 

(RB1JltlRB1J12) = ('P1l1Jl2). 

This follows easily from the invariance properties (6.2), (6.3) of measures dcp, LJ, respec­
tively. 

Now, let us sketch briefly the general outline of quantization. In principle, any of 
the Hilbert spaces L2 (Q, dcp), L2 (Q, .d) can be used to describe the set of pure quantum 
states. The first of them, L 2 (Q, dcp) with the scalar product (6.5), is more convenient 
when studying a system with the "physical" form of the kinetic energy, T, [cf. (3.3), (3.3a), 
(3.5)]. By contrast, the theory of systems with "non-physical", comoving kinetic energy 
T11 becomes simpler and clearer when formulated in L 2(Q, LJ) using the scalar product (6.6). 

Pure quantum states are described by means of wave functions-i.e., normed elements 
of the corresponding Hilbert space (('PIVJ) = 1, or, alternatively, <'PIVJ) = 1). Physical 
quantities are represented by se/f-adjoint operators acting on a Hilbert space. 
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Let us start with the usual . mechanical system the kinetic energy of which is given 
by Tg (on the classical level, of course). Hence, we are working in L 2 (Q, dq;). Generalized 
coordinates are described by the following natural · operators: 

(6.13) 

Generalized moment a are given by the following differential operators pAi: 

(6.14) A... " a 
Pi= i aqiA · 

" " Their domain consists of differentiable functions in L2 (Q, dq;). Obviously, both Qi ... , P-fi 
are formally self-adjoint with respect to the scalar product (6.5): 

(tpljQiAtJ'2) = (Qi...ttJ'tl'l'2), 

('PtiPAi'P2) = (PAi'PtiV'2), 

for arbitrary tp 1 , tp2 e Cgo(Q). The first of the above equations follows from the reality 
of f/Ji...t; the second is an obvious consequence of the unitarity of translations Ta generated 

infinitesimally by pAi. 

Replacing the classical functions pAi in the formula (5.11) by the operators pA;, we 
obtain the following operator of the kinetic energy: 

(6.15) 
" 1 ,.., "A AB • • fi2 - . . a2 
Tg = 2,/ABP ip jg•J = -T.fABg•J aq;iAaf/JjB. 

Hence, in the case of static interactions, we have the following Hamilton operator: 

(6.16) 

where ~is the potential operator the action of which consists in multiplying wave func­
tions by the classical _ potential fP: 

rPtp = fPtp. 

The energy levels-i.e., admissible energy values E of the homogeneously deform­

able medium-are given by the solutions of the eigenequation for the Hamiltonian H: 
(6.17) 

Some explicit forms of Hand the corresponding eigenequations will be discussed in sub­
sequent papers. 

Now, let us consider the medium the kinetic en.ergy of which is given .classically by 
T11 • Hence, as already indicated, we shall make use of the Hilbert space L 2 (Q, LJ), with 
the scalar product (6.6). The classical functions F/D (and, similarly, F/i) as given in 
(5.20), should be replaced by the following differential operators: 

(6.18) 
A j li • li A • a A • "A 

Fl i = --:-X/i = --:-QJA~ = . QJ...tP i• 
l l uq; ...t 

(6.19) F. ...... - lixA - liQAi a - Q"i p"A 
r B - --:- r B - --:- BTf - B i • 

l l uq; A 
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Their domain consists of differentiable functions in L 2 (Q, A). Operators F/;, F/'TJ are 
formally selfadjoint in L2 (Q, A)-i.e.: 

<'Ptlfli'P2> = <ili'P1l1J12>, 
AA AA 

(1f'tiF, B'P2> = (F, B1f'ti'P2), 

for arbitrary tp1 , 'f/J2 e CSO(Q). 
This is implied by the unitarity of translations LA, R8 , generated infinitesimally 

A. A A 
by F/;, F, B• 

Re mark. Operators F,l;, i,..t8 , defined in (6.18), (6.19), are not formally selfadjoint 
with respect to the scalar product .(6.5), although they are with respect to (6.6). To obtain 
the (6.5)-self-adjoint operators corresponding to the classical functions F/;, F,..t8 - it is 
necessary to replace them by the following . operators: 

(6.20) 

(6.21) 

The additional non-differential terms compensate the effect of the non-invariance of the 
measure dqy under. groups GL(U), GL(V) generated infinitesimally by X/8 , X/;, cf. (6.l8), 
(6.19). 

Similarly as in the previous case, the position operators QiA defined by (6.13), are 
also forma1ly self-ad joint: 

< 'PtiQ' ... "P2> = <Q' ... 1J'1 I"P2>· 
Replacing the functions F,A8 in (5.21) by the operators F,A8 , we obtain the following 
operator of the comoving kinetic energy: 

(6.22) 

Similarly as in the previous, "physical" case, the quantum dynamical problem consists 
in the solution of the Schrodinger equation: 

Htp = Etp, 

where H = T11 +·q, (assuming no kinetic, e.g., magnetic interactions are present). 
In a special case of spherically-symmetric distribution of matter,/ = p,ij, we obtain 

the following form of the kinetic energy: 

(6.23) 

or, in orthonormal basis (1J..tB = ~ ... 8): 

(6.24) " - 1 X' A A "..t 
T11 - 2 L.J F, BFr B. 

P, A, B 

Hence, T11 possesses very high dynamical symmetries. In fact, T11 commutes then with all 

the operators F,Jh and consequently, with translations L. Therefore, it is invariant under 
the groups GL(V) [and under 1}-orthogonal subgroup of GL(U)]. 
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