CHAPTER- VIIIL

FORM IF(w, VR)dx, WHERE R IS QUADRATIC.
275, The integration of expressions of the type

J‘ dz
xJy
can be effected in all cases for which X and Y are rational
integral algebraic expressions of degree not greater than the
second.

There are four Cases :

I. X and Y, both linear. JT
II. X quadratic, Ylinea,r.} Put i b

III. X linear, ¥ quadratic. Put X =%.
IV. X quadratic, Y quadratic. Put —XZ= yory?

The general substitution A—I; =1 or y* will effect the integra-

tion in all cases. But the simpler substitutions noted, viz.:
VY= in Cases I. and II

and X =$ in Case IIL, are better.
Case IV., in which we employ the substitution
Y 2
F=9 or ¥
is much more troublesome, but includes the previous ones.
We shall, in all cases, assume the radical ~/¥ to be real.
276. Case I. X linear, Y linear.

(az+b)Wpz+q
275
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276 CHAPTER VIIL

Putting ~T=Vpr+q=y,

pdw S
2Jpz+q "
and aa;+b=— (y2—q)+b.
Thus I becomes 2jm
which being of the standard form y
2( dy g_ bp~ag
EJW , where A% = S

is immediately integrable, viz.:

2 L) o & ay
= tan or " coth X

an A

according as bp;—aq is positive or negative,
- Jh 2 an-1Va(pr+9)
.e. =

Ja(bp—aq) Vbp—ag
or = _.__? coth-1 Y UPZ+9q) ‘I)

a(aq bp) Jag—bp

i.e. = n-1 \/> \/ pr+q

Va(bp—ag) a(bp aq) az +b
or a [pr+q + q

e €08 -1«/

~ Ja(ag—bp) a(aq —bp) az+b’

with other forms, the real one to be chosen in each case.
277. Another Method.

The last form shows how the factors of the integrand are
involved in the result of integration, and indicates that the

substitution m % =42 mentioned above as the general sub-

stitution wou]d have led directly to this result.

If we elect to proceed in this way, viz. putting Feta =/,

ar+b
we have
s G, dy.
(p:c+q ax+b)dx 2y
dax 2 d_y e 2 dy

(@) (prtq) bp—ag y
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b gicee SO b fopenigh

Now w=p—ay* d prtq= Doyt af—p
When bp —agq is positive,
das 2 dy
I(az+b)Jm+q Wbp —aq JVp -ay*

=Va(bp 'W)JL/%_f

- ———2—— sin"‘J é Y,
Va(bp -aq) »
or other forms.

When bp —aq is negative,
J‘ da igudet o dy
(aw+b)Vpa+q  Jag-bpIay'-p

by 2 dy
Ja(aq—bp) J.\[s_p

2 @
0 il S MR D
Ja(a,q bp) COS. ,J y

= < ¥ et of 3y

or other forms, the real form to be chosen in each case.

278. Illustrative Examples.

dz
Ex. 1. Integrate ook Adjadestama
i Dk (22+3)V4z+5
2dx
Put N -y s b e Y.
by Wib=y;. -~ Tore
Also 2.z+3_-'ﬂ1

I=fy,+l=tan“~/h:+5.

+5 : 3z-5 dz
Again, if we put 2x+3_z’ ne. z=m and dz=-2(2—_‘),,
ol z
2[ Ve =sin IVQ (Art. 87),
; m | 4.z'+5
Le. =sin=1—-=
! V2 Verya
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278 CHAPTER VIIIL

which is the same as before, but exhibits the result as a function of both
the factors of the integrand.

Ex. 2. Integrate I= f #‘
- -z

dz
Let ‘ N2 —z=y; . \/T———__—;:=—2d?/;

egf [0 ~log¥=l1
Py 2.[ f(?/ 1 _1/+1 dy= log;y+l
% . AB—z+1 !
=log y—_‘j—l g SR or other forms.

279. An Extension.

The same substitution, viz. JY:y, will suffice for the
integration of () do

Xy’

where X, ¥ are both linear and ¢(z) is any rational integral
algebraic function of .

g,
Forif Y=pz+q=9y?% then z=ypq, and pde=2ydy;

po)ds f # (559 ,

th I
i (az+bWpot+q J @f—aq+bp’

il -
and if ¢<y—p—g> be expanded in descending powers of y? and

then divided by ay?+ (bp — aq) till the remainder is independent
of y, we have to integrate with regard to y an expression
of form

Ayt A Ayt b A b

ay®+(bp—aq)’
n being the degree of ¢(x) in #; and each term is at once
integrable, after which operation y is to be written back as

vpT+q

980. Ex. Integrate If
P x1)~/x+2

dz
Writing ~/z+ 2=y, we have Tois =2dy and r=y"-2, so that
)

o 2—9)t e
m:(';z_i) =y°—5y‘+%’_6+3}'_1—-§ by division.

\ A YT a ( - N |
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THE FORM X-1¥-3dz, 279

Thus
f( 8 — 54+ 9y2 )dJ
="/7—-3/‘+3‘1/‘—5;1/—7:§cot,h“~/—l5
* ———
=M((x+2)3—7(x+2)’+21(x+2)—35}—;/1—§cot ~l\/”T+2,
ie. 1_2*/”+2(x¢ 4B —13)4 L 1og VEXE=V3

V3 % Usra+3
if the logarithmic form be preferred.

281. Forms reducible to Case I

The student should note the variety of forms reducible to
the case considered, viz. X linear, ¥ linear, by a proper sub-
stitution. For example,

(l)f(aoosﬂj-i:)f/iecos 0+q, put cos =z, z.e. f=cos~1a.
~cosec O df 2
p) E t cot O=2, r.e. f=cot—1z.
( ).”(a,cos(9+bsin0)\/pcos(i+qsin0 IRl o Qe lencotin
cos fdf 2 5 —
(3)j(acos’0+bsin’0)~/}’ cos?@+gsin?f’ put cot*9 =3, ie. f=cot'z.
( )f L cos 0+ Msin §d6 separate into two integrals,

J (acos?@+bsin?@)Wp cos? G+ gsin®h’ put cot?f=z in one and
tan®@=y in the other.

7
(5) f(ae'+be:):1/xpe’+qr" put e*=y, i.e. z=4%logy.
dx ;
(G)fm, put logz=y, t.e. z=e".
dz 1
1) [ ————— t ==
( )f(ax+b)«/x(px+q)’ e 3y
ete.
282. Ex. Integrate
14+2cos*f sin @
= dé.
$ f(1+12cos=0)~/l+3cosﬁ cos* 6/
Put tan?0=y ; o 2tanfsec?0df=dy;

sec'0+2 mn0m|9d9_2fm

I=f(sec’0+l2)~/sec’0+3 (y+13)Wy+4
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280 CHAPTER VIIL

Now put Ny+d=2z; . y=2'—4, dy=2zdz;
A— 6z’+1] t1q 146)
S L e "f( e~ e
2 146

—5—15 +—-ta.n— 3, wherez= Ny +d=ntan?G+4;

. Jlr=(t'.am 30+4) 15 (tan? 0+4),}+146 Jtan30+

or

(———m’;’ +3" 15 (sect +3)3+ lz;ﬁ P st .54 “e";o“. :
283. CAse II. X quadratic, ¥ linear.
Let I E.‘. fudin ol
(aa®+ba+c)v/pr+q
The terms Mxz+N now existent in the numerator do not
introduce any difficulty and make the result more general.
The same substitution being made, viz. V¥ =1y, we put

Vpe+g=y; 2\/px+qu =dy.

aa®+ b+ ¢ reduces to the form Ay*+ By*+C
and Mz+N  reduces to the form My?+ N’
2 My*+N
Thus 1 ta,k’es th; form 3 Im dy.
Y+ N . ; ;
Now A9+ Byi0 can be thrown into partial fractions

of the form Y+ P Ny+u

ay’+By+y  dY+BY+Y’
and each portion is integrable by earlier rules (Arts. 155
and 156).

dx, M and N being constants.

284. Extension.
Further, it is evident that the same substitution will effect
; : d(x)dz :
the integration I , where é(z) is an
- (ax®+ bz + ) pr+q © g

rational integral algebraic function of . For when pz+q=1y?,

and i —gdy
Jpz+q P

reduces to the form

2
z.e. P B |

ek . )

az?+bz+c

Aoy*n+4,yPr 24 4,y 4.+ 4,
Ay*+By*+0
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where 7 is the degree of ¢(z) in «; and therefore, by division
and our rules for partial fractions the integrand may be
expressed as

A+ Xy+u
2n—4 2n—6
Poy n +P1y +...P“_'+ay2+ﬂy+‘y+a1y2+ﬂ/y+‘y',
and each term is integrable.
i b(z) do
A . E['_‘ )
gain = A

where ¢ and x are any rational integral algebraic functions of
z, may now be seen to be integrable by the same substitution,
for it becomes

and the new integrand can be expressed by partial fraction
methods (Art. 152, ete.) in the form

Q R Ay +p
IPy" o
Y 2y 2y gy T 2y By O
Ny +p
+ @ By + 0y
and integrals of the expressions of the first four terms can be
obtained by the rules given before, and the integral of the
last by aid of the reduction formula established in Art. 238,

z+2

Ex. 1. Integrate /= fx’+3.z:+3) e
Putting ¥z +1=y, we have J_'_ =2dy,

and 1_2]y.+y a2ty

2_1/+1 S iaty=108 m_,fdxﬂ

NERY

=—7= tan~!

~/§ t75

= J5o0sV3 ‘/m‘f‘”““-

ol dz
Ex. 2. Integrate 15‘[::—__75_:_‘—33; Nz—1
Py dx
Put e S SR ot Pt 7 B
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282 CHAPTER VIII.

o [+ -5(149%) 37
- 1=2 = 7(1+3/‘) 30"

“2.{.1/‘ 592~
P 3y= a
@2+49@-9) 9)

1
=2f<1+ ’+4+y’—9)d‘y

o —12 —2 oth-1Y
2y +tan 3cot;h 3
=977 =1 +tan—1 __”"2_1 —§ coth"lﬁ/f:s_—.l.

286. Forms reducible to Case IL

The student should again note the variety of forms which
may be brought under the foregoing rule by suitable substitu-
tions and integrated.

‘Thus
/sin 6 d6
1 f t O=cot~1z.
(a cos? O+ bsin O cos O+ csin?f)n/p cos B+ gsin 6’ b i
@) f A~ sin G+ Bnfcos O a0 separate into two
a cos?f+bsin @ cos @+csin? § Vp cos 0+ ¢sin 6’ integrals. ~ Use

O=cot~1x in the

one and

f=tan—ly

in the other.

3 [ An/sinh z+ B~/cosh = dx Similar]
) a cosh?z+ bsinh  cosh 2+ ¢sinh?x N/p cosh z+¢sinh z -
(4)f Affsin.r+B\/c?sx dx S, from (2).

A+ pcos 2z + vsin 22 Mpcosz+gsinz

®) Ansinz+ BaJcosz dz from (4).

a+bcos (2z+a) a/cos (x+B)’
287. CasE III. X linear, Y quadratic.
The proper substitution is now X =-

N do .
J.(ax+b)\/px2+qx+r

Putting ar+b=

Let

, we have, by logarithmic differentiation,

1
y
o AP

az-b ay
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Bh (AWK 70
and pa;’+qa:+r—az(§ b) +a(y b)—i—r,
A4y*+2By+C
.
Hence the integral has been reduced to the known form
5 B 4w il g
a)JAy+2By+C’

which has been discussed in Art. 80.

t.e. of form

Ex. Integrate
I f gl . itk
RACE Nz

Let: .1:—1=1, and therefore " b .—d_-’/,
4 z-1 y

-

= dy 17t1
]~/1-2y—z/’ VE-@rDE B

Hence I=

.
(x-1WT
288. Forms reducible to Case IIL
Again we note the varieties of integrals which may be
reduced to the present form by a suitable transformatlon,
for instance:

(l)f(“°“0+b)5:czg‘80+qcos 0+7 put cos f=a.
o J (@ cos +bsin G)Np mfg+qsiu Py put cot f=z.
®) ,[ (acos?@+b sinﬂg)j;ncic‘(:f:fin’ SaTTTry | P
(4) .t(ax"+b-z""):d/:z&+q+rrm' put 2% =y.
n °°3(9+a)\/a‘i-obcos2(0+ﬂ) from (2)

ete.
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284 CHAPTER VIII.

289. Remarks,
It will now appear that any integration of the form
¢ (z)dz
(az+b)/pz*+q2+7

can be effected, ¢(z) being any rational integral algebraic

function of . For by division we can express ¢(+)b in the
fom ‘

M
4@+ A+ ATt A B+ At
where 7 is the degree of ¢(z) in ,
da '+ .. +4, o+ 4,
is the quotient, and M the remainder independent of .
We have thus reduced the process to the integration of a
number of terms of the class
_ Eamdx
I pat+gatr

M dx
(ax+b)\/px’+qz+r.
The latter has been discussed in Art. 287, and integrals
of the former class may be obtained by the reduction formula
of Art. 240, viz. -

and one of the class

@1,/ pa + qu+ 1= (m— l)flm-z+ qu—l+'”pI""
I, standing for _z_"'__‘__dm__;
VpeP+qz+r
that is,
Lo VPEr@tr M-lg; m-lr,
mp 2m p P Eles
42242
Ex. Integrate —f(r+1)m
i 2+ a2+2
By division SET it e & 2 e +1'

I Ve AR 2
I—f(«/wul Jx-“T1+~/.m_l+(x+1)~/W1)d”
a"dw

Let Iy= | ——.
Nzt 1
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Then
Iy=sinh—1z,
11=~/z-’ )
Iy= % 1—%smh~‘x, by the reduction formula (m=2),
3./ 2
G Tl _2ELEVERE L k]
.z-’\/x’-fl 3, 2VaA+1 3 1 8y S,
ILi= N 412— i ‘J.z‘”+l+z §smh g
d for the 1 £ the integral, vis: [ty , put 241 1
and for the last part of the integral, viz. [($+1)‘Jmapu z+ il
'1”___‘?2.
" z+l

f(x+1)J—1 f,\/ +1.1/ f~/2f 2y +1

szJ(y D+ ~/2smh-l(2y R

A e ) ol
= N/ésmh 137
Thus I=I‘—I,+I,+2f—d‘”,—..ﬁ
(z+1)N2+1
=.1,3»\/.z‘3 +1 ,z3~/1'3+1 1 st+l+2~/——

4 3

-z
g smh—lx /2 sinh— < T

290. Extension.

Further, we are now in a position to effect any integration
of the form

b(2) dx
x(@) Jpz?+qz+r’

where ¢(x), x(%) are rational integral algebraic functions of z,
and all the factors of y(z) are real and linear.

For putting (@) into partial fractions, as described in Arts.

O
140 to 146,

) % ice
7 i 4 i b+z(z—c)"
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286 CHAPTER VIII

Hence the integration can be performed when we can
integrate

Jpaifqrr’ J@—b)/prPfqztr’ )(z—c)nW/pattqztr’
The first species of integral is reduced as already explained
by the formula of Art. 240.
The second species was discussed in Art. 287.
The third species can be reduced as explained in Arts244,
or obtained from

dz
(@—c)Wpa+qztr
by n—1 differentiations with regard to ¢, as will be explained
later.

EXAMPLES.

Integrate the following expressions :

1 1 zr+1 x=+x+1
" aoNa+ 1 (x- 1)~/.7:+2 (x-1)Vz+2' (z24+2)Wz—
g kRt i S
(@4 1)Wz (22 +22+2)Wa+1
z 2241
(22 +20+2)Wo+1 (2242z+2)Wz+1

3 1 1 & rl 2+ 2+1
D et 4l (e+1)Waertl (e )Wzl (e +1)N2P+20+3
4. Prove that

f de '8 1\/.} 1 J‘—J_
4

A S e L e —
(@+c)Wz e = it A= ve Vot —e¢
according as ¢ is positive or negative. [C. S., 1904.]
5. Integrate - e
cos @ (cos 6 + sin §) N2 cos 6 + 3sin 0
6. Integrate Nsin § + yJcos (a>b>0).
. T
(a2 cos? @ — b%sin? §) '\/cos (0 - Z)
tan 26 (a2 +1)2
b Irtlgtate o e 8. Tntegrate e,
A ~cosP@ + sin®f i 5 (z—1)"22+1
9. Integrate
1 1 1 1

Na-2)(x-0)" (a—2)Wz-0" (z-bWa-z" (1+z)Wlta®
[ST. Jonx’s, 1890.]
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THE FORM X-1Y~}dz. 287

1

e e ez —aya—b) [CoLEaEs, 1876.]

11. Show that
xr—3 3 4 -3z
—_———— do=cosh—1(22—-3 +—:cosh—‘( )
fxdx’—3x+2 ? ( ) N2 z
[St. Jonn’s, 1883.]

12. Integrate f -8 z"+2_px+q (p*>9)- (a, 1887.]
13. Integrate ’
@ f eregi [Co, 1870 & f e b [e, 1883.]
(iii) f(1+w2)~/1 ot [L C. S., 1888.]

14. Integrate

$ dz y
® f (1- z‘)«/ 1—2? i g [TriniTY, 1890.]

(i) s 2x)J1+4x' [CoLL., 1892.]

15. Integrate
22dx dx x
f(.x-A)JE',I’ 22427 (@ +1)(x+2)(z+3)
[MaTH. TrIP., Pr. 1., 1920.]
291. Caske IV. X quadratic, ¥ quadratic.
The integral is now of the form
: Mz+ N
J (0,2 +2b,x + ¢, )/ ayz® +2b,z + ¢y
where a linear factor has been inserted in the numerator, as
in Case IL, for the same reason. [See also Art. 1894, Vol. IL]

Before beginning the integration we make the following
preliminary remarks:

t

292. (1). The numerator of the subject of integration is for
the present linear. We shall consider later, as in previous
cases, a numerator which is any rational integral algebraic
function of =z, viz. ¢(z).

293. (2). The cases b,®2=a,c, and b2=a., are excluded.

For (a) if b2=a,c,, the expression /a2 + 2bx+ ¢, becomes
rational as regards z, and such integrations have been already
considered.
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288 CHAPTER VIIL

Mz+N
2 A
(B) It b= aey, a2+ 2b 7+,
would be resolvable into partial fractions either of the form
4 B s
Fore ek W b >00)
4 Bk
i Fotg TGy U B'=a0)

and the forms of integral resulting have already beén con-
sidered in Articles 287 to 290.

294. (3). @, may be regarded as positive without loss of
generality, for in any case in which this is not so, we may
change all the signs of the factor aaz®+2bx+-c,, and finally
change back the sign of the result when the integration has
been effected.

Hence we assume: (1) a, positive, (2) a,c,—b,2 positive.

295. (4). We shall assume the subject of integration real. If
b2 >auc,, the expression a,2%+ 2b,x+c, has real factors, and
may be written

=ay(x—A,)(®—Xy), say, where A\ <A,.
In order that the radical should be real, we must therefore
confine both the limits of integration to lie
either between — o and A,
or between A, and + 0
or between A, and A,,  when a, is negative.

If b2<a,c, the factors of a,2%+2bx+c, are unreal, and
the condition a, positive is all that is necessary that the
radical may be real for all values of #. The limits of inte-
gration in this case may therefore be any real quantities
whatever.

} when a, is positive,
3

296. REDUCTION TO A CANONICAL ForMm.
(5). LEMMA. Any three expressions of the forms
Mxz+N, a2242bx+c,, ax*+2bw+-c,
can be in general simultaneously thrown into the forms
PE+Q6 miEP+H0d b+ 06t
where £, £ are linear expressions of forms z—z,, z—,
respectively.
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In order to do this it is necessary to determine the eight
quantities (z,, z,), (P, @), (p1, ¢1), (Ps, ¢5); and we have eight
linear equations to find them, viz.

P+ = a6, pp +9 = a, P +Q = M,
P® +4%, =—b,, P&y +¢%, = —by, Pz, +Qz,=—N,
PGS = 0, PAHgE= €.
It follows that

4 alymaleg Mpaeuleds sy

z, &, —b |=0 and z, ®, —by|=0.
g 3 2 2

ghd et oy AN R

Also, as the consideration of the cases in which X or ¥ are
perfect squares is to be rejected, we may assume z, not equal
to x,.

The determinants give at once on division by z,—z,,

“l’lx2+bl(”1+’”z)+cl=°’} .................. (1)
A2, Ty+by(@, +-T5) +0, =0,
ii o, _ otw, 1 ¥
bie,—bse, cja,—ca,  ab,—ab,’
whence «, and #, are determined, being the roots of
(a0, —aghy)p* — ()8, —40,)p+(byC —bye,) =0, ...... (2)
ie. sz—Bp—}-A =0,
where A4, B, (' are the co-factors of @, b, ¢, in
A=la, b ¢ |=ad+bB+4c0.
a, b, ¢
a;, b, ¢,
That is, p is given by | 1, —p, p?
as,' byt =0,
a5, by ¢

The remaining six quantities are found at once by solving
the equations

p+q=al’ } ay, } M: }

T, +q2, = —b,, or " or 5 b (3)
which give

(P 00), (Py22)s (P, Q) respectively.
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290 CHAPTER VIII.

297. It may be remarked that the equations (1) may be
reproduced immediately from the functions
a2 +-2bx+-c;, ax’42bx+-c,
by the simple rule:
“For a? write z,x,; for 2z write (z,4,) and leave the
coefficients unaltered.”

In the case when a~1=lzl equation (2) has one root infinite.
a, by q

Now therefore the general theorem of our Lemma fail§, and
the case must receive separate consideration.

298. (6). In this case, viz. &—Z , the three expressions are:

Mz N, a1<w+a~:) +61—%I2, a2<'v+ >+c2—l~)—z,

and putting .al:—i-lh =f=2 + ==
b E b,
thay are: i (5——) +N, afite—L, afite—r,
a 2
and therefore are simultaneously reducible to the forms

PE+Q, 2,249, PefP+qs,

%.c. the same as if we put £,=1 in the former transformation.

299. (7). When aﬂ=lﬁ=c—1, the two quadratic functions are
ay by ¢
the same function, and-the integral takes the form
J‘ Mz+N o
(aa®+2ba+-c)*
and a reduction formula may be used to connect with
Mz+N’

(aac*—{—2ba;—{-c)1lr g
which has been considered before (Art. 85). Or the integral
I may be deduced from the latter integral by differentiation
with regard to c.

300. ILLUSTRATIVE EXAMPLES.
Ex. 1. In the case
3z—-11
(72*— 462+ 103)A/112% — 702+ 155"
Ta,220 — 23 (2, + 25) + 103 =0, } whence 2, +2,=6,
1122 — 35 (v, + 2,)+ 1556=0; 22y=0,
and therefore z;,=1, ,=>5 (the order is immaterial).

vl

(@)
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Also p+a= 17, or =11, or = 3,
p+5g=23, =35, =11,
giving p= 3\ or p=25, or P=1,
a= 4, %= 6, Q= 2.
And the transformed resalt is therefore
bl
(BE2+4EANDEA+662

Ex. 2. In the case N

z—3
(32%— 302+ 79)N/52° — 50w + 131’

we have o %
ay by
302302+ T9=3(z—b)*+4,
522 — 502+ 131 =5 (v — 5)2+6.
Putting 2 —5=§, the transformed result is
e

B+ Vb +6

)

301. Taking the general case then, we suppose for the
=0,

X =a,22+2bx+c, = p, &2+ 0,62

Y = a22+4 205+ ¢, = pofi2+ 4,63
where L=2—2), £H=T—2,
so that f fl T, —T, and dfl= dfz= dz.

-Also, we are to use the transformation

present |, . 2

1’2

_Y, e SfEtBata ity
X’ 7 a@?42bx+cy P& 06
and 1 dI’/ Pbitebs  PiEiH06

2.’/‘17’ Yo+ 06? P1512+91fzz

- [P 24l g0 8

_ebif—_oxbs

X2’ say.

dy 'Pv}’z
] %,
d$ b q2 (

Now™ L SRggit= alv} e T g az:}

P&+ %= —by, P11 qs%2 by;
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292 CHAPTER VIIL
<o O=a10—a5h, = (po+42) (P11 + 01%0) — (P19 (P21 1 4%0)
= (P1g2—pat)) (@1 —5) = + K,

ay, ) _ o

2.€. K=+ b

12 ¥
when expressed in terms of the original coefficients.
The points on the graph of
' _a,02-2bz+cy
y_ala:2+ 2b,x+-c,’ ‘
where the ordinate has a maximum or a minimum value,
.. the “ turning-points,” are given by

d ;
d—‘Z:O, s.e. by ££,=0,

and are therefore at £,=0 and £,=0, t.e. at z=2, and z==,;
and the values of the corresponding ordinates, viz. ¥, and y,,
are plainly

0 Ps

=22 and =<2,

B 71 Be P1
We shall suppose the graph such that ==, gives the
minimum ordinate and =2, the maximum, and that z, >z,.

i

Again, clearly g is an asymptote, and the curve cuts
p !

the y-axis where y=2. It cuts the z-axis where

a,02+2b,x+cy =0,
se. in real points P, Q if b,2> a,c,,
in unreal points if b,2<< ayc,.
It cuts the asymptote where
4522+ 2b,z+-cy _ay
a2+ 2bz+c,  a,
; __lacy—a,, 1B
7.e. where T 2a——1b2—a,b1— 50"
ue. at a point R at a finite distance from the y-axis, unless
a;b,—a,b, =0, a case for the present excluded.
There are three cases with which we are concerned, ze. in
which some portion of the graph lies on the upper side of the
z-axis, otherwise /Y would be unreal.
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) y m

-tn a,y~ag=o0

a, positive (:ﬁo) (z,B,o)

Fig. 17.

(2) ! M

P, B St 8 S ek AN TRRTR P (.~
\ A(x1,0)
%
a, positive § B /Q (_,s 0)
b3 >a,c, L
Fig. 18
(3) y
P/T%a E
B(x,,0)
"""""""" &} Jogedp % T PIKITICTNE ey
L a, negative
b3 >a,e,
Fig. 19.

302. These are typical cases. It will be seen that we have
taken z, >z, and the turning-points both on the right-hand
side of the y-axis, v.e. , and z, both positive. The student
will have no difficulty in making the necessary modifications
for any particular case in which the numerical values of the
several constants are given. It is to be observed that p, and
¢, are necessarily both positive, for @, has been taken positive,
and the roots of

a2+ 26,2+, =0, te p&i+0:162=0,
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are imaginary ; also that p, and ¢, cannot both be negative, for
VpaiiFq.é,? is to be real. Moreover, p, is the positive one,
for p,/p, is being regarded as the mazimum ordinate.

As unreal values of XY (ie. X¥/y) are to be excluded,
and X is to be regarded as positive, it will be clear that we
shall only be concerned with those portions of these graphs in
which y is positive, and the limits of integration of

Mz+N
e :
must be such as to lie within the boundaries of such regions
as make this true.

In Fig. 17, y is positive from = —o0 to =+, and the

limits may therefore be any real quantities whatever.

In Fig. 18, y is negative between z=O0P (=),) and

z=0Q (=X,); therefore the limits may be anything
between —co and A,, or between A, and -co, both
limits to lie in the same region.

In Fig. 19, y is only positive between 2 =2, and z=2X,, and

the limits must both lie between these values of .

303. The Integration after Preparation.
We are now in a position to proceed with the integration of
Ma: +N
XJY i
which we shall, to begln with, suppose to have been trans-
formed as explained to the form

P S ¥

(P1512+(I1$22)\/P2§=12+Q2522
Putting 7Y=y we have dz= — L dy ;
b O s 2K &L, 7

T _&~p2£12+q2£22 _ P T fz - K fz

s, iy = p PEHGE P X @y—e, p X

y—y,= pzflz‘i‘%fz T _|Po] &K fl 4
PéPH g ¢ P> Gl X “’2 —x 1 X

@_f:ij_ TR ., | the signs of the
J-l a:z—xl\/y, ambiguities being

F governed by the signs
,__= B » | of d g,
& ‘\/91 LN N/I'/ i % Feti
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i both -7 if o, <z, <z,
first —", second " if z, <z <z,,
both —ve if o < <.
As the typical case we take z, <z,<x and both signs positive,
VBE—440

o if expressed in terms of the

and note that z,—z, =
original coefficients.
Substituting in the integral

P4 +Q86 X*

ZK X‘~/y &G

xt
ot 21(I _> T/; ay
d Q d,
= 2K z,—a, L/p1 IJy(yi/ ¥) +~/91 I Jy(yyyl)]
JK(%—%) [ '~/p1 b zz _\—ﬁgl — EZ_I]

if , be 4'¢; or,
—— sin—! y___Q inh—1 \/_?/ Y
“/K(xz_%) [ Jp, ! v Vo p ~—H%
if y, be negative.
And the suitable modification is to be made in these general
results as to signs of radicals and reality of form in each
numerical case which may present itself.

304. THE INTEGRATION WITHOUT A PRELIMINARY TRANS-
FORMATION.

If it be preferred to pass directly to the integration with-
out the preliminary transformation, we proceed as follows:

7 j Mz+N
(a

122+ 2b,z+ ¢,)Nax?+2b,z+-cy
_ ax*+2bztc,
Tt - a@*4-2bz+c,
1dy_ ax+b, a2+ by
2yde  ag?+2bgx+cy, ai+2bate,
(az+by) (byz+c,) —(a,:2+-by) (b +-cp)
XY

Then

J
X

|

1J
4X)

www.rcin.org.pl



296 CHAPTER VIIL
where J is the Jacobian of the two quadratic expressions
a,22+42b,x ¢y, ax?+2b,x+c,,
_| 2a,2+42b,, 2b,x+2¢

vis. J=, 2a,2-+2b,, 2byx+2c, |.
dy J
Hence | 2= —3%"

Let «,, z, be the roots of the equation J=0, and y,, ¥, the
corresponding values of y. Then the points (z,, y,), (@,, ¥,)
are the “ turning-points” of ¢, s.e. the points of maximum or
minimum ordinates of the graph. Let y be the minimum
ordinate, y, the maximum.

The equation giving z,, z,, %.e. J =0, is obviously

(@163 —a5h,) 22— (183 —Cy0, )T+ (bycy —bye,) =0,
z.e. Cz®2—Bzx+4+A4=0,
where A, B, C are the cofactors of @, b, ¢ in the standard

determinant
A=|a; ‘b, e
G, 0, R0}
[, S R

and we may write J = +4C(z —z,)(x —x,).
Again, any straight line y=u will cut the graph of
g=a2:v’+ 2b,x ¢,
a,2%+2b,x ¢,
in two points which are coincident in the two cases u =1y,
and p=1y,.

Also y—u= x—u= (az—a,u)2?+2 (b§—bl.“)x+02 O

Hence, when u=y, or y, the numerator must contain
(x—=,)? or (x —x,)? as a factor, and the equation

(a3 —ayu) 22+ 2 (by—byu)@+C; —C,u =0
must have in these cases equal roots.
Hence, the necessary values of g, viz. y, and y,, are the
roots of the quadratic
(by—byu)?=(ay—ayu)(cs—C1u),
te (518 —010)) pP+ (@185 + 0901 —2b1bg) p+ (BgP —a4c,) =0,
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T —2
and Y—Yh= (“z"‘“lyl)‘(Tl),

=(a,y2—a,) @:_-_—Xaﬁ)_’

a, supposed positive, ¥, < -2, Yy > s, y intermediate between
s SUppoBed. pog h<g, a,
4, and y,, Figs. 17 and 18].

3
Thus T—x, = ﬂ:-‘X—}'\/y_yp
(@ —ayy,)
xt
T —Ty=+ —————in,,—31,
(@,9s —a,)
the signs of the right-hand sides
being both positive, if o, <z<w;
the first positive, the second negative, if z, <z <u=,;
both negative, e e <,

Substituting in the original integral, and taking z, <z, <2
as the standard case, we have

7o (Mz+N,  (Mz+N 2X*,
it B 5 Aqeowyd 15 s A g
o (Mz+N X}

e e

I Mz4N Xt
4 (w—%)(w—wz)ﬁ

L (|MatN 1 X} MaiN 1 XH,
T 20) | ny -, s Jy ' 73—, T2, ]y

ol Mo N o dy
20 2 —a, ‘yl.‘:/y(y—yl)
1 Mot N oo dy
T30 gz, Y Is/y(yg—y)

=4F cosh“\/z +G cos—? «/!—I‘Z, if ¥, be positive,
% p

or = F sinh-? A —G sin-l\/yz, if y, be negative,
2

—Y%
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where F and @ are constants, viz.

Mz, +N Mz,+N
F=—2"_J\a, M o T g,
B —4a40 %1y TBe— 440 Ja,y,—a,
for it has been seen above that C(z,—2,) =~/ B2—44C.
The suitable modification is to be made in these general
results as to sign of radicals and reality of form in each
numerical case which may present itself.

305. Comparison of the Processes. Construction of Examples.

Considerable arithmetical simplification accrues from the
treatment shown in Art. 303, but of course at the cost of the
_ initial reduction to the canonical form.

The method there shown indicates a method of construction
of such examples, for the values of p;, ¢;, »,, 45, P, @, ,, @,
are there all at choice, due care being taken that p,, g, are
both taken positive, and that p,, g, are not both negative, as
explained in Art. 302.

[See a paper by Russell, cited by Greenhill, Chapter on the
Integral Calculus.]

306. Various Forms of the Coefficients.
The two coefficients may be thrown into various forms:

(a2 —alﬂ)xz+2(bQX_b]#)x+c2 _01# (Al‘t. 304‘)

for since y—u=

is a fraction with (z—x,)? as a factor in the numerator when
w=1,, or with (x—,)? in the numerator when u=y,, we have
by comparison of coefficients

(@g—ayy,) 2+ (b, —byy,) =0

and (@3 —0,Y5) %o+ (by—byy,) =0,
- atb, ayy+b,
S0 Y= a2, 15, and %= o
a.b,—a.b a,b,—a.b
Ay—0 Yy = — ;1;1 _H;TI and ay,—a,= ;1;;2 +12)11
and a,b,—ab,=K=C (Art. 301).
Also nte = a,) |, _aZ+b __ a2 +b,
P&+ %= — 1[ il By M v—a, ’
Pockds i T az’} aoxz"“b gy = _‘iﬁib‘l;
Pofty gy = —by; e Zy—Ty
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whence we have the following modifications of the coefficients
in Art. 303, viz.:

TR iR
JEp(@,—x,) JEKaw,1b,) ~p, VB—44C K Vayy,—ay
Mzx,+N Mz,+N \/_—_C—
(xz—zl)\/K (a,25+b,) Ja1z2+b B2—44C

Mz,+N
= JBi—ado Vit % oo

And similarly for the coefficient involving @.

307. Convenient General Form of the Result.
It appears then that if y, and y, be respectively the
minimum and maximum ordinates of
_az*+2bz+c ( = 4
" aw@?4-2bz+c, X) d
and «,,%, the corresponding abscissae, and if Mz+N be
written in the form P(z—z,)+Q(z—,), then the integral

Mx+N
I= dx
xXJY
can be written, amongst many other ways, in the convenient
form 7 m
EP; co5-t \/ B QQ, cosh—! \/:
Y2 %
or —PP, sin-! \/ Y _QQ, sinh-14/-L,
Y2 T
according as ¥, is 4+ or —",
where Py _Vay—a, ,ng Q,= —a,—ay,
a,by,—ab, a,b,—a5h,
provided a,b,—a,b, 0.
308. Remark.

It is further to be noticed that the two quadratics involved
in this discussion, viz.
(by2—a,6,) y®+ (a,0y+a50; —2b1by) y +- (by>—a,0,) =0,
(a1b,—a;h)) 2 — (¢,0,—C,3, )T +(by0, —bye)) =0,
are transformable the one into the other by the homographic
transformation a,z+b,
=‘_‘;z+b1 S
The one gives the ordinates (y,,%,), the other the abscissae (z;, z,)
of the turning points. [See Salmon, Higher Algebra, p. 173.]
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309. A Special Case.
It remains to discuss the case we have so far excluded,

viz. when %1 by
L (B
In this case the asymptote of the graph of

ax?4-2bxtc, (Y S

y= a,x224+-2bx+-c, <_X)’ yond e

does not meet the graph at a finite distance from the y-axis,
and one of the two turning points has disappeared. It has

been seen that the expression can, however, be written

y_zzgig2 ,  where P,=0, =4 by Art. 294,
. . Py =0y b, bl
f=z——x1 ’ z1=_a_g= _""1_1)
QI=01-EI; = 4" by Art. 294,
b.2

0 S Sl A 8
yds pitq, P+ (P%2—P) gy

dy
and 7 =—2pg,—pa) Xi.
Also £=0 gives the turning point, viz. z=x,, y=y,; and y,

obviously is =% The only forms of the graph with which

we are concerned are the four following. Cases, in which
the graph lies entirely below the z-axis, give rise to entirely
unreal values of v/Y. Note the symmetry in all cases of the
graph about an ordinate through the turning point.

y
a1y =ay;=0
Wn\ +o
<
&y =

a, positive

b <ayc,

% >0

a " T,

Fig. 20.



W
iR ot s o B 65 o it e ot o sp ki
\ L /
> ~—_IA 1 x
a, positive » t Q
67 >azc, d
g » of
a "3,
Fig. 21
8 /—\
A R T e T i i VR @ y-az=0 4o
yl
*
a, positive o -
62 <a,c,
a,
Fig. 22.

with corresponding forms if a, be negative, viz.

4

0 Pmﬁ x
——-/ /

-on ayy—ay=0 @
ay negative
bg? > age;

Fig. 23.

In the case a, negative, b,2<a.c, the graph is entirely
below the z-axis.

310. When the graph cuts the z-axis, as in Figs. 21 and 23,
at points P, @, /Y is unreal for the value of z intermediate
between P and Q, .. intermediate between the roots of

a2 +2bz+cy=0,

WWW.ICII
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if a, be positive, but real for such values of z,if a, be negative.
Hence, in the first and third cases (Figs. 20 and 22) the limits
of integration may be any whatever ; in the second case (Fig. 21)
both limits must be in the region from —oo to the smaller root
of the quadratic, or in the region from the larger root to +w;
or in the fourth case (Fig. 23), @, being negative, /Y is unreal
for all values of z which are not intermediate between these
roots. Thus in the fourth case the integration is only to be con-
sidered when both limits lie intermediate between the roots of
ax?+2b,x+-c, =
And in the fifth case, viz. a, —¢, b,><a,c,, /Y is unreal for
the whole range 2= —o0 to z=+.
We have also

0 P80 0 ! &
Dot~ pEi+q, 91 (208 Pz%)q B e

R Y
(PE240)VPE2 40,
L. dg? ¢
T2 (7€%+1) /P252+92 (P E2H-9 VDL,
The first falls under the class discussed in Art. 277, and

=B __._.ﬁ_.—. Sin—l \/-_p__—l p2£2+q2
2 “/Pl(qul —P19s) P2 VP20

d¢ splits up into two integrals, viz.

on e 42'_ Cosh=l b [pL2+4,
2 Jp(pgs—Put) P YD E2+4
P 2 y \/_ f I
or Ll e Rinh ol e S eCE e
2 Vp, (08— ps20) —pg Y0, 204,

the real form to be chosen.
For the second integral,

1 Xt
Q i SR j—.-_—dy
XJ Y™ 2(pg,—pa) )XWy €
8 Q 1 JX,
2(pte—Pat) )y €
. 1 i ; -
2 V0, (p.3i—:92) IWyy—y) | according as
" 1 -y y> or <y,

or =

2 Ja,(pga—put) INy(y—y)’
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ie. = Q— e cosh“lﬁ
V91 (qul pl%) Yy
Q : "y |the real form
or b e U siahst gl
Vg (P11 —P195) —Y% to be chosen.
or = @ ———_1————__—: cos~1 4[4

\/91 (P18>—P:11) %’

Hence we have

(1) (p1ge—pety) +" v and . g, +™ pp +7,

._cosh Mlp‘ + cos-l\/ql :I
Jpﬂz—'pz%[ \/ . ’

(2) (11g—P:9)) — yrand . g, +™, P, +7,

1 . 9 " i
I= - [ __coq"\/—‘y—l--: cosh-l\/—l ] ;
Vog—pgt VP, 22N q y
() (Pga—P2qy) +7 Yy and . g, +7 py —'°,
e e, smh—l\/_p —— sln—l ql :l
5/1'1‘12—192‘11[ \/Pl —P2 ¥ 1 /
(4) (pyg,—P.9,) —" y, and Sps =+

‘\/ 2N _Pﬂo[\/ . \/—T: 7 R '\/ ]

results of similar forms to those obtained when —-i%, and

again the coefficients may be expressed in various forms
311. We note that the first of the two integrals, which has
been referred for its integration to Art. 277, for which the

substitution would be p,£24¢,=%2 might equally well be
obtained by the substitution

Pof? 44, _ y
»éH+e 7

te. the same as used in the second integral. Upon this sub-
stitution being made in the integral I, we get a result of form

G a5
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In the first of these we substitute for /X its value in terms

of y, viz. P19 ‘"P:if .
PY—P,
i 2
In the second we form y,—y= +(£1*qzq 21 %}
1

2

and substitute for J_fz its value, viz. x/]? 19— P "q‘

as shown.

~/y ¥

312. Illustrative Examples.
Ex. 1. Consider the integral

4 3z-1
I=[(3x’-—2z‘ +1)V2aP -2z + 1

(@) without reduction to the canonical form, (b) first reducing it as in
Art. 296.

s —2r+1
(a) Putting y— 2x+1( X)’
_l_ﬂ/ 2x 1 3z—1
yde 20'—22+1 Ba'-2x+1
z(@z-1) z(x-1)
Wil 94 Xty

The turning points are given by z=0and z=1. If2=0, y=1; if =1,

y=% L
log=j_222=20+1_ a2*
¥y=l i+l X

1 22'-22+1 1 (z-1)3%,

Sl ’

Y9 3 oz +1 2 2X

AL mitecil JX 1 :
: __=~7T:7, m=\/§_—_~/ﬂ' assuming x>1;
3.2: Al X'dy

=§f(;+m)‘%%’

i
i (i )

= —cos—1/y + ~/2 cosh-1/2y

2" — 2z +1 \/ 90" — 97 + 1
= — ~1 asa T, ol W -1 o Ml v« NS
cos &,_M+1+J§wsh S
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The graph of the transformation formula in this case is shown in Fig. 24.

Fig. 24.

And the signs selected refer to values of > 1, and we have
Iy=[ ~eor 1y + N coshi 3y |
1

if A, Ay be the limits and both > 1.
If z lie between 0 and 1, we have
2 A W SPRRTTS FHIN
x iy "™ 1RGO

and we shall have

1= - costly ~VB cosh1 3y |

if A;, A, both lie between 0 and 1.
If 2 lie between — @ and 0O,

and we shall have
- Ay
I,=[ + cos—1a/y —~/2 cosh—! J@l‘
1
if A;, A, be both negative.

If one limit, A;, falls on one side of a turning point, say =1, and
0 < A, <1, and the other, A;, on the opposite side, 7.e. A,>1, the
integration should be conducted from the lower limit to the turning
point with the corresponding result, say 7, and from the turning point
to the upper limit with the result 7,.

(b) Next let us transform to the canonical form

f P+ @, ok - 2
(pr&® + @&VPli + 0.6
before integration.

Here, by the rule of Art. 297,
32,2, — (71 + 2p) + l=0,} 3 . 2xe=0, & +.r,=l,}
22y 29— (2 + 29) + 1=0;

n=0, xy=1;
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and PL+4=3, ptq=2 P+@=3,
@=1, =1, Q@=1;

SPp=2 P2=1:} P=2,
il v ol o
LA 25+&,
; 1_-[ (282 + £V, 512+fsgdx
Tt ‘,/__f_li§_ By _ Lt % _51_*‘_§_ &b, gor &-b=1;

262+ &2 Sydx FARY - 2§“+§2 X‘y’

oo des dy.
2“{5, g

£,=0 gives y=1,
£,=0 gives y=%.

1 “.’/=E’

y-i=§f—;;

v g 1RO &JX
! 1_2'[ Zl-gz ‘\/y

1

-2-,[(& 51) A/y dy
by 1 dy
~2 Ty V=D
= —cos—1Wy +~2 cosh-1a/2y,

as before. -

Ex. 2. Asa case where %’ =%‘, consider the integration of
94408

bx—9
I=f(z*—6z+10)~/sx_x-d"
Writing z-3=§, do=d,
2 5£+6 _ [bé+86
I—f(,52+1)~/9_£.d5—fX~/?d£, say.
Py e
Y=F3T
g, 0 1 X2
s 27%=_—§7 Szi_l '—’g and d£=—2_0?dy;

o f;_[zfd

1_f~/7f -3 [JXdy
i) o) EJy

Let
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. 9=y 10
Now  (£2+1)y=9-£2; . §4=ﬁ and X=$2+1__ﬁ‘_y_

=210 sinh~Wy

Therefore f :_//); dy =10 f - (ji‘/+ N

2 9— g’
- = k
=24/10sinh Vl

Also, at the maximum ordinate, £=0 and y=09.

And 9-y=9- ?_'_g: &fz
L NEX_ NI
§ Ny

taking #>3, v.e. £ as +™.
Therefore, in the second integral,

f ng :Z, 1°f J_y—gy—_y)

il 9 _£2 [ e _1 9-£2
1—-— ~/103mh 1'\/”——5—; TFio™e '3 1—'*'_5_52’

—9./1081 —1‘\_@;
=2,/10sin— ¢

; _~10 10( 6.z' “6x—2 .6 T r—at
e, = pnh VAl e e
sz+1o+5s"‘ A—6r+10)"
The graph of the substitution formula,
T Be—=at
Y=r 6z +10
is shown in Fig. 25,
B
9
(o) 3 3 x
TR e e Bytimol b § oo +%
Fig. 25.

¥ attaining its maximum value 9 when =3, and being negative for all
values of z except such as lie between 0 and 6, and as we confine the
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integration to real values of &/ ¥ the limits of integration are to be such

that both lie within the region from 0 to 6. Also the sign of igg changes

as x increases through the value 3. Hence the signs adopted above

when we take JTX =+ J;l_o apply to values of # between 3 and 6.
: Ty

vx ~10

For values between 0 and 3 we must use ——= — ———
3 '\/9—3/

the corresponding change in the sign of the part of the result dependent
thereon.

313. Forms reducible to Case IV.

As in previous cases, Arts. 281, 286, 288, attention is called
to the varieties of form of integrals deducible from the case
just considered, viz. X quadratic, ¥ quadratic.

and make

Lsin@+ M
(1) Thus f aai 0+ 3bain 0+ o 0 Mfiuoss to
Lz+ M dz

m ﬁ, if sin f=z.
Lsin @+ Mcos 0+ N

) asin?@ + 2bsin 0 + ¢ df reduces to
Lz + N dz Mdzx
ar?+2bz+caf1—22 Jax?+2bx+c’
Lsin @+ Mcos@+ N Yk
®) acos®f + 2bcos @+ ¢ a6, simiy;
Lsin 0 + Mcos 0 4
) fa sin2@ + 2bsin @ cos 0 + ¢ cos?d a8, by putting tan f=s.

similarly to (1).

Lsinhu + M
() fa sinh2?% + 2bsinh » + cdu’

du, similarly to (2).

© Lsinhu + Mcoshu + N
)fasinb2u+2bsinhu+c

Lsinhu + Mcoshu
asinh?» + 2b sinh » cosh % + ¢ cosh?u

Mz+ N dx
8) If i F f
WH (412 + 2,7 +¢1) Na,2® +2b,z + ¢,

du, by tanhu=a.

()

we put x=z+;, dx=(1—zl.‘)dz,
[M<z+;)+2v](l—;§)dz
[a,<z2+zl’)+2bl(z+%)+d1] \/az(z”+zlz)+261(z-{;)+d,

I=
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where d,, d, are written for ¢, + 2a;, ¢, + 2a, respectively ; so that
g (M2 + Nz+ M)(2—1)dz
"/ (@2 + 20,2 + dy2? +2by2 + ay)Wagh + 2b,2° + dyz® + 2b,z + ay
Hence, if # be a ‘“reciprocal” quadratic function of z and X, ¥
reciprocal quartic expressions in z, we can integrate

(z2-1)dz by the substitution z+§=x.

F
- [z 7%
(9) Similarly
f (M2 + Nz~ M)(22+1)dz
(an2? + 20,23 + dy2? — 2b,2 + @)V agdh + 2b,2° + dyz® — 2b,z +ay

integrates by the substitution z—}:x.

314. The Case of ¥ =a Reciprocal Quartic.
Let Y be any reciprocal binary quartic expression
= axt 4 4ba® - 6ex® 4 4bx+ a.

X % reduces at once to the form

22—

Then I=j

d;
by the substitution x+£ =2z, whence ( 1 _a;l’) dz=dz.
For Y =x2[a (x”-{-—mlz)-}—%(x +—}:) +60]

=2?[az? | 4bz+ 6c— 2a]
=aa:2[( 2 2b\2 462—6ac+2a2]

a?
o axz[( +2b KJ where K=2(2b%—3ac+a?);
I=~1- dz o L dz
Ja \/( 2\ K = v—al| [K / %%:
2+3) ~as JVa—(+3)
which, by Arts. 80, 81,

L nh YT i Ko g
Ja z/K
Ja¥ and a4,
or cosh=t if K be —",
» J zJ—K' ' )
1 _N—aY 20
or J_———a JK if be
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Note that if K be positive, the factors of ¥ as expressed in
terms of z are real ;
if K be negative, unreal ;

and that aY + K22 is a perfect square.
315. A Similar Case.
In the same way, if
Y, = axt+ 4bx3+ 6cx’— dbr+-a,
the integration of :
i J' 241 d:z

For ¥, =z2La /\zz-{—ﬁ) + 4b<a:—5>—|— 60]

=a2[az?+ 4bz+6¢4-2a]
r 2b\2 4b%2—6ac—2a
=ax2_<z+;> _Tz]

=az? [(z+g—l—)>z—£—{,‘,—‘], where K, =2(20*—8ac—a?);

a

AL 3 (X2 dz £ 1 dz
.. l—_— F i e s
3 T M) W

a) & P
o %sinh-};/j%, it R by =
or :/%cosh-‘wﬁ:—%, if K, be —, and a +7°,
or Jl——a cos™! ﬁ?/‘;{_ljl, if @ be —"e;

also, ¥, expressed in terms of z has real or unreal factors, as
K,is 4+ or —*, and aY,+ K2 is a perfect square.

In the integrations of these two articles, since the final form
exhibited is arrived at by the conversion of a function of zinto a
function of ¥, or of Y, in which process a square root is extracted

_la,z+2b s | _(az+2b)* )
(e.g. sin Ty i cos \/1 ¥ - =ete. ),
it is desirable to check by direct differentiation the sign of all
numerical results obtained.
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316. Other Forms.

The substitutions
g b i dingd o
2= Tz
respectively reduce
z2—1 dx z2+1 de
e T Jel gy

Y and Y, denoting the same quartic functions as before.
[See Greenhill’s Chapter on the Integral Calculus, p. 41.]

For takin, :I:+1=1 we have, differentiating logarithmically,
o g log Y

jad
x* dz . ' .31 xdz
e A > b X
$+5
and Y=z [az-’+4-bz—1+60——2a]’};
Ia;’—l dz _j' dz
22+1JY  )Jat4abz+(6c—2a)22’
whose integral can be written down by Art. 80.
FATRICTITTRG SO . Tl
e
#2241 , wdz
i g
and ".ﬂi —tli = —I dz F
R A NJa+ 4bz+(6¢c+2a)2?

whose integral can be written down as before.
The integrals

J’ i, ot T G ot AN
ax*+bzx+a, JY’ Ialx"’—}—blz—al Wi
22 —1 x dx 2241 x dz
jx’—i—l ez tbzta, JY' Ja*—1 ag®t+bz—a, JY,’

are reduced to forms already considered by the same sub-
stitutions, and are therefore integrable.
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Similarly, if ¥ =ap%*+4bpa®+6cx®-4bgr+ag?,
Y, = ep*x*+4bpa® +6cx® —4dbgr+-ag?,
the integrations of

pr*—q dz ) ( ..

I PRGN o et =2
pe—g 4 _d_i g 1
pritq JY' | ©n be eﬂ'ecl.;ed oS,

oiq  dz > by the respective < :

IPT s A substitutions po :% 2,

1
peitq  do g 1
pri—q J?l’ g pT )

Ex. Consider the integral
1=f (at-1)dzx
i (x‘+6x"+l)~/z4+x'l+1'

e j (et5)(m)e
Aoes )+:}«/(f+ LEs
421"

g 1
and putting x+;:=z, -—f(z”_
Put 22— 1=w? zdz=wdw;

B f5+w= ~/5 tan”! =

_gin—1 ——— =3 it z:_l

~/5 NN #+4
=—sm-l i"'_”‘il_
V5 7+ 62541

317. Summing up.
It will now be clear that any integration of the form
() dz
V(2) Jax?+ bz +c
can be effected, where ¢ and \ are rational integral algebraic
functions of .

For if $(@) be put into the form

V()
Z A/x—,-ﬂ.’
2 Aw +Z ,8)'+2Ax2+Bz+C
x,’z+l‘"

+2‘(A’:v”+ B'z+C)”
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as explained in the chapter on Partial Fractions, then of the
resulting integrals

is reducible to a lower order by Art.
1) L/W}-?; 240, and integrable.

@) dx has been considered in

_"(z—a)'./@"—i—bx +c Art. 2817.

@) dx reduces by the method
I(z—ﬁ)’Jaz3+bx+é " of Art. 290.

(4) N+ u)dz has been considered in
_“(Az’—{—Bz—}—C)JaZW Art, 291.

(A”x—*‘u”)dx
T j(Az’+Bx+C’)’~/ax’+ba:+c

is best got by differentiation with regard to C of the vesult
for the case where s=1, as will be explained later. This
method may also be adopted in (3).

318. GENERAL CONSIDERATION OF THE POSITION.

We have therefore now completed the integration of the
most general function of z of form

A+BJR
C+DJVFR
where 4, B, C, D are rational integral algebraic functions of
x of any degree, and R is a rational integral algebraic function
of z of degree 1 or 2.
For rationalizing the denominator,
A+BJR _(A+BJR)(C—DJR)
C+DJVR C*—DR
_AC—BDR (BC—AD)R 1
= C-—DR T C*-D'R JvR
B Mkl
o B2 Uik

where P,Q, M, N are rational integral algebraic functions of «.

Now jgdx is integrable by the methods of partial fractions ;

and if M dz can, as has

N be put into partial fractions,

J¥ i
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been explained, be expressed as the sum of a finite number of
such terms as have been discussed in the present chapter; and
each term may then be integrated.

Hence the theory of the integration of

A+BJVR
C+DVJR

is now complete, where R is linear or quadratic. And it will
be noted that the integration has been in all cases effected in
terms of the known algebraic, logarithmie, inverse circular or
inverse hyperbolic functions.

When R is of higher degree than the second, it has been
seen that in some special cases the integration can still be
effected in terms of the elementary functions, but for the
general discussion of the cases where R is cubic or quartic,
we shall require the elliptic functions, and in general for forms
of R of higher degree than the fourth, we should require the
functions known as hyperelliptic.

GENERAL EXAMPLES.
1. Obtain the following integrals :

® Jaraytaian (i) (14021 + 20 b

(iii) jw"l(2 -3z + 9:2)_% da. (@iv) I(l +2) 1 (1 42 +22)~t da,

“(V1+o+a? W [ 2+z-1
(v) I—I—M—dx. (vi) ,‘.(a:+l)\/5—2_
dz
(vid I N () L +a W+ R

§ dx N — 1
. b gouisr it ARy ;
2. Integrate (i) I(w+2)Jz7—l (ii) I i da.
[BArNES ScHoOL., 1887.]
3. Show that

J’ dx 4 1 _l{(a+bx)+p(b+ca;)}
e = sin
(z —p)Na+ 2bz + cx? {—(a+20p+ cp‘-’)}‘ (z - p)NVb? ~ac
where p lies between the roots of @ + 2bx + ca? = 0, supposed real.
[TrintTY, 1886 and 1891.]
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4. Show that

e T A
(@ +a)W2? + 07 anb?-a? b x2+a2’

L cosh-12
anfa® = b2 b\ 2 + 2’
5. Prove that

j‘ (z+1)dz e 322 — 2z + 1

(222 -2+ 1)V3 -2z +1 2x2 2¢+1
3t — 2z + 1

~/§ 227 -2z +1

and =

+2cos™!
6. Integrate
G J’ (3c+4) dx (ii) J' dx
(522 + 82)n/4a® — 2z + § (@ + 20z + b2)NaP + 2az + ¢*
where a<b<e.
7. Integrate (i) I

zdz

(a®+ 0% — 2?)J(a? - 2%) (2 - b‘zj' [St. Joun’s, 1888.]
o (z+b)dz ,
@ I (@ + a’)~/4=2 + L

(@>c). [St. Joun’s, 1889.]

¥ Lm 0Jacos20+b51n20+c [TrINITY, 1888.]
8. Find the values of

@) J' sin z dz
(cos z + cos a)+/(cosz + cos B)(cosz +cosy)  [v 1890.]

(ii) j da
cos (z + a)v/cos (z + B)cos (@ +7) [, 1890.]

2 _ g2
9. Integrate I sl | dz,
(a? — az + 2°)(a* + a%c® + o)t
transforming by the substitution
72 + az + a? = y*(2? - ax + a?). [a, 1884.]

: (8z-13)dz
10: Begretesi I(3z2-10z+9)J—x2+10z-13'
(i) -

j(z—l)(z 9V(@-3)(z-4) [Corw., 1892.]
(i) j (@ +9)dz

(@2 -5z +4)W/2? — 2z + 2
: (z—a)dz
() I(x—b)(x-c)(z-d)Jaa-_e'

I (z+3)dz
N .‘(zz+z+ Ve +2+2
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ki b, gl Mo
2Ji+r2+1 [CoLL., 1901.]
PNl B i (s B,

R
ol W s

11. Integrate (i)«

12. Show that
J.\/ sin (2~ a) dx = cos a cos™! (00_5 x) — sina cosh~! (E})

sin (z + a) cos a sina
[CoLy., 1901.]

4

! T342 2 +z’
13. Integrate (i) .[1 & 2:2 zdz. [R. P.]

[R.P.; EvLkr, C.1.,

) I (1 +x4)J(J1 2028 ol iv.]
dx
(iii) J.(as —az-2)Jaz+a*  [Oxr. L P., 1900.]

14. Evaluate the integral

dz
.[(az — tan2) (b2 — ta.n"’a:)y [MaTn. TrIP., 1886.]
15. Prove that

J‘ dx UL osh—1 51 sin (a:+ @)
sinzsint(2z+a)  Vsin g sinz  [CoLL., 1892.]

16. Show how to integrate
I( Jx + g)(ax® + bo + c)”f dw,

where n is any positive or negative integer. [a, 1890.]

(a+br)de _ z
(a+2bx+ czz)*} (a+ 2bz + czz){ [TristTY, 1889.]

18. Prove by the substitution
y? = (ax? + 20z + ¢)/(A2® + 2Bz + C),
where 4 and 4C — B? are positive, that the integral
J' (Mz+ N)dx
(A2 + 2Bz + C)Jaz? + 2bz +¢

becomes of the form

17. Show that

g VA - ; ‘/?/2“)‘2’
where A, and A, are the roots of the quadratic
(@-Ad)(c- AC) - (b-AB)2=0,
and P,, P, are definite constants.
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Integrate completely the function
z+3
(222 - 10z + 17)a/422 - 267 + 49
[Mara. Trrp., 1891.]

19. Prove I Jianh%a — tanh?z do =1 (1 - sech a).
’ 3

(8, 1889.]

20. Integrate J‘(m"’+b"’)"(x2+“’ff”’)4 dz. o IL P., 1902.]

in3z dz
21. Integrate - %
ey I (1 + cos?z)a/1 + cos?z + costz  [St Jomn’s, 1882.]
: dx
and evaluate J.—l m -
dz
22. Show that
iidtiry (@ —o)J Az + 9Bz + C
is transcendental unless 4a?+ 2Ba + C=0. [J. M. Sca. Ox., 1904.]
Establish the results
. dz 1 V2@~ 4z + b)
———— i O h—lh
@ I(z—l)Jx2-4z+5 Ja z-1

dx . N3+ 22— 22

and

(i j(z-zw(s.ﬁz-zz?)_s’" JT@-2)

[CoLL. a, 1890.]
23. Show that

+1 (1 -az)(1 - bz) dz  w2-ab
a(I-2az+ad)(1 =202+ . Ji—z2 21-ab [0 1884]

24. Describe the steps whereby the integral of a rational function
of a single variable, , can be obtained.
Prove that if the sign of summation refer to the suffixes 1, 2, 3
in cyclical order, the integral
: 2] = - ot s o
jdz (@—a)(@-0)=(cy—¢5) I:"(cl IR L e Tl

z— ¢ )% T—c
1 1

is a certain constant multiple of
@~ @-bi@-a)e-o) Nz -o)™
[MaTa. Trip., 1896.]
25.. Determine the degenerate form of the elliptic integral
ds
Vi(s—s)(s—5)(s—s5)

when s, is made to coincide with s, or with s3. [Int. ArTs, LoNpoN.]

8, >3, 8,
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-B

26. Prove, by means of the substitution ~ z—_ =12, that
dx i \/F'y e B
(@-PJa-a@-p) V-7 7)(7 B Ny=B aa
2 e
of hee s aries SEAHRL, 1S Tlend T ﬁ.
V(a-7)(B-7) B-vy z-«a
; [InT. ArTS, LONDON.]
27. Prove that
: ds Sk 1y :
o (1+2)(2+2z)Va(l -z) M2 WS

[Maru. Trip. 1., 1912.]
28. Show that the integral

J' dw

z/322 + 20— 1

is rationalized by the assumption z=(1+%2)/(3 - 4?), and hence, or
otherwise, find its value.

Prove that if m be a positive proper fraction, the value of the
above integral when taken between limits :—1 and
P
m(2+m)

[MATH. Trrp. 1., 1910.]

: is the same
2+m

as when taken between limits SRS and
2+4+m
29. Prove by means of the substitution

e _a-dc—
B—br b=ry—d

that, if m be any positive quantity, and a > b >c¢>d,

{(a-2)(@—c)}mt
f{(a x)(z d) (= — b —c)}m
5 b—c
{(a—=)(c—2)}m1
f{a— z)(z - d) (b @) ( c—m)}m

[MaTH. TrIP., 1878.]

[See Wolstenholme’s Mathematical Problems, Numbers 1900-1903 for a
group of similar examples.]

30. By the transformation pz + =a/2pg/z, integrate

J‘ 22 -q dﬂv_
Pe+q JpPat+ g2 [Cf. EuLer,C.L, iv., p. 22.]
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31. Apply the transformation 2? +/};l = 2/2% to integrate

N1+t 2 du
d.
W [5G j(l T
[EvLEr, C.1., iv.]

32. Show that
2d6 cos 6 cos 6
—  =tanh-? tan=te == .
Ism 0 ¥cos 26 % ,{/cos20+ . ~eos 26
33. Show that the transformation
(@b -ty = (5)

will reduce the integration
1 ~1
f st B to the form IIM

- A, A’
(@+02") {(a+ ba") — Parn i SAEL L

[EULER, C.L., iv., 53 and 56 ; PEACOCK, p. 305.]
34. (i) Show that

_e(2-2%) s /1+x’
(1- m)Jl — 2% Il -2’  [Pracock, p. 309.]
and (ii) integrate (:"':f)——\/%md
35. Integrate
o [2-3z 1+w sin®89 + 2 cos® 6
@ I? + 3z :cdw' o I “cosfsindf .

[St. Jonun’s, 1881.]
36. Show that

. a? —c%tdr 1 y-1(y+oy
@ J‘\/az—:ﬁ z —'210g.{y+1 (y—cyJ

. T
where V=N

2+ 1 1 _l:t;.,/a—2

(ii) jx‘ 170 -a:52+a:4 'Jd“‘ cosT —5—-

[HaLy, 1.C., p. 325.]
37. If F(z, y) be a rational algebraic function of z and y, show

fos IF(a:, JTT2) (@ + VT )ida

may be integrated by the transformation z = sinh (¢log 2).
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38. Show that
(i) ." (cos 26)% cos 0.0

_—sm9(3+2cos 260)+/cos 26 0+SJ—sln"1(J251n0)

(i) sin 0 P ( cos a )
«~/sin%a — sinZ@ g cos 6 ++/sin?a — sin 6.

i v
(iii) J-'e%cosodo 7r[1+(1|),+(2,),,+(:,’,)2 J
39. Show that

A oAy 3
+2)? (a+3)3+(a+4)4

IS

1
. 1
+cz o=
(i) I z* d:c—a 1+(

(ii) j " dp=1 ijlz 5l¢713+ e Pp s
40. If ¢(z) = ao+ az? +33 iaﬁ + ..., show that
(i) Icos’0¢(sm0)d0 12,00+ 1(1>g +; ;3)a+
@ g mer(e) 4G () -
@3-t () +e(a) reaie) +
[ANGLIN.]

41. Integrate
@) J' sin 20 d6
Vsin@ + 4 sin20 cos20 + 2 cos* 6

(i) J' [ AR Ay i
(P+z+ D)VA+ 48+ 4221 42+ 1

42. If J be the Jacobian of two quadratic functions of , viz.
Uy =a2?+2bx + ¢,  Uy=a2® + 2byx + cy,
2(a @ +0by), 2(bz+c)
:} 2(az+by), 2(bz+cy) |y
show that, if u, =0, u,=0 have no positive roots, then
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43. By means of the identity

; x
I (a+ sin’x)"coszd:c=r (1 +a - sin®z)" sin z dz,
0 ¢
prove that

n—1 n—2 n—3
a"+"ClaT+”Cga—5—+"03a—7‘+...

~(rap 23 +apt+ 220D g e

¥ gn(n—1)(n—2) .
2 s (1+a)2+....
[WoLSTENHOLME, Problems, No, 1929 ; WicGeIns, K, Times, No. 13323.]
44, Show that
1 1.3

i Ll gt adife (3B g
(i) a"+"01p+2a"‘ +”C’(p+2)(p+4)a“-
1.3.5

T
= (o= B (1 apt 40, (B IEED Doyt
_ng. (P D (@+3)(p+5)
Sp+2)(p+4)(p+6)
N
GrErhT
1.3.5
(p+2)(p+4)(p+6)
—(a+by- »c,;f—%(a +Byr1b 400, 2_2__1’; * 1;81‘3 (a+by-2p2
an @+ 1) (p+3)(p+5) &
il Cg(p+2)(p+4)(p+6)((l+b) 8b3+

+"Cy +...

(1+a)*B+....
(ii) a™+ ”C‘F}-_Z an1) +7C,

+7Cy ot O

45. (i) Integrate
223 - 1 o
B+ -2 +1 [Ox. L. P., 1903.]
(ii) Integrate
(3% -1)dz
28+ 224 - 1622+ 1°
(iii) Prove that
r(l ~ sin 0 cos 0+ sin?0) cos?0df _ 107 /5

¥ (1 + sin 6 cos 6)° 9
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46. (i) Show that

7 ; 1 a
101 i 7 A
Lx (1-a+2z)y"ldz SR

(ii) Evaluate
! (g +h—z)*L qn
_[ =D &=

How could your result be appiied to the summation of series?
[a, 1886.]

47. Discuss the integration of

Thy a+bz » a+bx)7,r" a+ba;); &
l:" <dr:b':i) } <a’+b’z ? (a'+b’z ] §

where f denotes a rational integral algebraic function of the
quantities indicated. [Lacroix, C.I., ii., p. 35.]

48. If F(x) be a rational integral algebraic function of z, show

+1
that j {'(z_)z =k, where £ is the coefficient of % in the product
-1

-
BT (T B L |
F(a) [& tsrata g st ] > [St. Joun’s, 1891.]
or where % is the constant term in the expansion of (a: F(f;, }
22 1)t
i [CoLL., 1892.]

49. If f(«) be an arbitrary algebraic polynomial of degree n—1,

and dn
P"(Z)EA JQ:T.('T— a)"("v_ b)”>

where A is a constant, then

r (@) P, (@) dz=0.

[Loxp. Un1v.]

50. Prove that

i xdz a
— = -———logseca.
0 COSzcos(a—2) sina [CoLL., 1896.]

51. Show that if a be less than unity,

J" zsinz dz tan~la
g =T
o 1 + a2 cos?z a [, 1891.]
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bz 42’ si 2
52. Integrate (1) j( —ah)y g lbzd“" [3, 1881.]

.. ’T_-T
(ii) J’cos‘#\/l o [ST. Joun’s, 1885.]

53. From the definition of a Bessel’s function, viz.

=g - Tt = -
@ =F e 2@ o) T 2 i@+ @t h) ]
derive the results

sn s I Jo(2 sin 6) sin 6d0,

e opd I J,(zsin 6)d6.
[CoLL., 1896.]

5 z®
54. Integrate (i) GFP@E=T)
is 1
(ii) - - :
N1+ 3sinzcosz+ 2 sin?zcos?z
1
(iii) = —_
V(1 +sinz) (2 +sinz)  [Marn. Trre., 1897.]

55, Show that

d ¢>(sinz)}

sin™ z sin nx dz = sin? nz ——{ —
dz \ sinnx

where the form of the function ¢ is defined by the relation
m(m —1)
$(2)= ,mz (,,,2 m2){n® — (m — 2)2}
X m(m —1)(m —2)(m — 3) ol
(=) {nf = (m— 2} (nF— (m— )1}
m being a positive integer and n not being of the form + (m—2r),

zm—ﬂ

where 7 is a positive integer not greater than "23 -
[MaTH, TrIP., 1897.]
56. Draw graphs of the transformation formula
(@g2® + 20,2 + ¢5) Y2 = @, 2% + 2b,z + ¢,
corresponding to those of Arts. 301 and 309 for
(@g2®+ 26, + Cp)y = @, 2 + 2b,2 + c4.
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