XXVII.

SULLE EQUAZIONI DIFFERENZIALI CHE PROVENGONO DA QUESTIONI DI CALCOLO DELLE VARIAZIONI

« Rend. Lincei », ser. IV, vol. VI, 1890, pp. 43-54.

In una ricerca, che spero di poter comunicare a cotesta Accademia, mi è necessario considerare gli integrali di un sistema di equazioni differenziali, che provengono dall'annullare la variazione prima di un integrale multiplo come dipendenti da certi elementi dati ai limiti dell'integrale stesso. Perciò mi permetto di presentare in questa Nota alcuni studi sulle equazioni differenziali che provengono dai problemi del calcolo delle variazioni, fra cui un contributo ai criteri atti a riconoscere se il dare certi elementi ai limiti è sufficiente perché siano definite le funzioni incognite del problema. Non entrerò nella questione di cercare se gli elementi dati ai limiti sono caratteristici. Questa questione che presenta grande difficoltà può ritenersi risoluta solo in pochi casi, fra i quali quelli notevolissimi trattati da SCHWARZ e recentemente generalizzati da PICARD in una interessante Memoria pubblicata negli «Acta Mathematica».

JACOBI ha osservato che le equazioni differenziali che si trovano annullando la variazione prima di un integrale semplice possono trasformarsi e ridursi ad una forma eguale a quella alla quale era pervenuto HAMILTON per le equazioni della dinamica. In modo analogo si possono ridurre ad una stessa forma le equazioni differenziali che provengono dall'annullare la variazione prima degli integrali multipli. Questa forma comprende come caso particolare la forma canonica di JACOBI. Nella presente Nota mi sono servito delle equazioni differenziali poste sotto questa forma.

I.

I. Siano y_1, y_2, \dots, y_p delle funzioni di n variabili x_1, x_2, \dots, x_n , ed abbiasi una funzione F di x_1, x_2, \dots, x_n , di y_1, y_2, \dots, y_p e delle loro derivate parziali.

Potremo supporre che le y_1 , y_2 , ..., y_p siano fra loro indipendenti, oppure che siano legate da certe relazioni

(1)
$$F_1 = 0 , F_2 = 0, \dots, F_r = 0.$$

Introduciamo come variabili ausiliarie le derivate parziali delle y_1, y_2, \dots, y_p di ordine *inferiore* a quelle che compariscono con un indice di derivazione massimo in F e nelle equazioni date di condizione, vale a dire consideriamo tutte le

$$z_h = \frac{\partial^{k_1+\cdots+k_n} y_i}{\partial x_1^{k_1} \partial x_2^{k_2} \cdots \partial x_n^{k_n}} = \mathbf{Y}_{k_1 k_2 \cdots k_n}^{(i)}$$

tali che esistano nella F e nelle (I) le $Y_{h_1h_2,...h_n}^{(i)}$, per cui si abbia

$$h_1 \ge k_1$$
 , $h_2 \ge k_2$, ..., $h_n \ge k_n$
 $h_1 + h_2 + \dots + h_n > k_1 + k_2 + \dots + k_n$.

Si potrà considerare F come funzione di z_1, z_2, \dots, z_n e delle loro derivate prime

$$z_h^{(i)} = \frac{\partial z_i}{\partial x_h} \,,$$

mentre fra le z_i e le $z_k^{(i)}$ passeranno certe relazioni

$$F_1 = 0$$
 , $F_2 = 0$, \cdots , $F_r = 0$, $F_{r+1} = 0$, \cdots , $F_s = 0$.

Di queste, le prime r potremo supporre essere le relazioni date (1), le altre saranno evidentemente delle relazioni lineari fra le z_i e le $z_k^{(i)}$.

2. Consideriamo ora il problema di annullare la variazione prima di

$$I = \int F dx_1 \cdots dx_n.$$

Posto

(2)
$$\Phi = F + \sum_{t=1}^{s} \lambda_{t} F_{t},$$

otterremo le equazioni

(3)
$$\begin{cases} \sum_{i=1}^{n} \frac{\partial}{\partial x_{h}} \frac{\partial \Phi}{\partial z_{h}^{(i)}} - \frac{\partial \Phi}{\partial z_{i}} = 0 \\ F_{1} = 0 , F_{2} = 0, \cdots, F_{s} = 0. \end{cases}$$

Supponiamo che in Φ , delle $z_1^{(i)}, z_2^{(i)}, \dots, z_n^{(i)}$, compariscano soltanto le $z_{i_1}^{(i)}, z_{i_2}^{(i)}, \dots, z_{i_l}^{(i)}$. Potremo scrivere le equazioni precedenti sotto la forma

$$\begin{cases} \frac{\partial}{\partial x_{i_1}} \frac{\partial \Phi}{\partial z_{i_1}^{(i)}} + \frac{\partial}{\partial x_{i_2}} \frac{\partial \Phi}{\partial z_{i_2}^{(i)}} + \dots + \frac{\partial}{\partial x_{i_t}} \frac{\partial \Phi}{\partial z_{i_t}^{(i)}} = \frac{\partial \Phi}{\partial z_i} \\ F_i = o \quad , \quad F_2 = o, \dots, F_s = o. \end{cases}$$

Poniamo

$$\frac{\partial \Phi}{\partial z_{i_1}^{(i)}} = p_{i_1}^{(i)}, \quad \frac{\partial \Phi}{\partial z_{i_2}^{(i)}} = p_{i_1}^{(i)}, \cdots, \frac{\partial \Phi}{\partial z_{i_t}^{(i)}} = p_{i_t}^{(i)}$$

e ammettiamo che il sistema di equazioni (4) insieme alle

(I)
$$F_{1} = 0 , F_{2} = 0, \cdots, F_{s} = 0$$

possa risolversi rispetto alle $z_{i_l}^{(i)}$ e alle λ_h , vale a dire che il Jacobiano delle $\partial \Phi/\partial z_{i_l}^{(i)}$ e F_h rispetto alle $z_{i_l}^{(i)}$ e alle λ_h sia differente da zero. Sostituiamo i valori che si ottengono mediante questa risoluzione in

(5)
$$H = \Phi - \sum_{i=1}^{m} \left[z_{i_1}^{(i)} p_{i_1}^{(i)} + z_{i_2}^{(i)} p_{i_2}^{(i)} + \dots + z_{i_t}^{(i)} p_{i_t}^{(i)} \right].$$

Variando ambo i membri otterremo

$$\begin{split} & \sum_{i}^{m} \left[\frac{\partial H}{\partial z_{i}} \, \delta z_{i} + \frac{\partial H}{\partial p_{i_{1}}^{(i)}} \delta p_{i_{1}}^{(i)} + \dots + \frac{\partial H}{\partial p_{i_{t}}^{(i)}} \delta p_{i_{t}}^{(i)} \right] \\ & = \sum_{i}^{m} \left[\frac{\partial \Phi}{\partial z_{i}} \, \delta z_{i} - z_{i_{1}}^{(i)} \, \delta p_{i_{1}}^{(i)} - \dots - z_{i_{t}}^{(i)} \, \delta p_{i_{t}}^{(i)} \right] \\ & + \sum_{i}^{m} \left[\left(\frac{\partial \Phi}{\partial z_{i_{1}}^{(i)}} - p_{i_{1}}^{(i)} \right) \delta z_{i_{1}}^{(i)} + \dots + \left(\frac{\partial \Phi}{\partial z_{i_{t}}^{(i)}} - p_{i_{t}}^{(i)} \right) \delta z_{i_{t}}^{(i)} \right] \\ & + \sum_{i}^{s} F_{h} \, \delta \lambda_{h} \, . \end{split}$$

Se quindi teniamo conto delle (4) e (1) avremo

$$\sum_{i}^{m} \left[\frac{\partial H}{\partial z_{i}} \delta z_{i} + \frac{\partial H}{\partial p_{i_{1}}^{(i)}} \delta p_{i_{1}}^{(i)} + \dots + \frac{\partial H}{\partial p_{i_{t}}^{(i)}} \delta p_{i_{t}}^{(i)} \right]$$

$$= \sum_{i}^{m} \left[\frac{\partial \Phi}{\partial z_{i}} \delta z_{i} - z_{i_{1}}^{(i)} \delta p_{i_{1}}^{(i)} - \dots - z_{i_{t}}^{(i)} \delta p_{i_{t}}^{(i)} \right]$$

d'onde

$$\frac{\partial \mathbf{H}}{\partial z_i} = \frac{\partial \Phi}{\partial z_i} \ , \ \frac{\partial \mathbf{H}}{\partial \mathbf{p}_{i_I}^{(i)}} = -z_{i_I}^{(i)} \ .$$

Alle equazioni (3) può quindi sostituirsi il sistema di equazioni

$$\frac{\partial p_{i_1}^{(i)}}{\partial x_{i_1}} + \frac{\partial p_{i_2}^{(i)}}{\partial x_{i_2}} + \dots + \frac{\partial p_{i_t}^{(i)}}{\partial x_{i_t}} = \frac{\partial H}{\partial z_i}$$

$$\frac{\partial z_i}{\partial x_{i_1}} = -\frac{\partial H}{\partial p_{i_1}^{(i)}}$$

$$\frac{\partial z_i}{\partial x_{i_2}} = -\frac{\partial H}{\partial p_{i_2}^{(i)}}$$

$$\frac{\partial z_i}{\partial x_{i_t}} = -\frac{\partial H}{\partial p_{i_t}^{(i)}}$$

$$(i = 1, 2, \dots, m).$$

Questo sistema di equazioni ha una forma analoga a quella delle equazioni canoniche, soltanto ad ogni funzione z_i sono coniugate in generale più funzioni, cioè le $p_{i_1}^{(i)}, \dots, p_{i_t}^{(i)}$, invece che una sola funzione come nelle equazioni canoniche ordinarie.

3. Abbiamo veduto come le equazioni differenziali che provengono dall'annullare la variazione prima di un integrale possono porsi sotto la forma (6). Si può reciprocamente dimostrare che ogni sistema di equazioni della forma (6), in cui H è una funzione delle z_i e delle $p_{i_l}^{(i)}$, può farsi dipendere da un problema di calcolo delle variazioni. Consideriamo infatti

$$\int \left[\sum_{i=1}^{m} z_{i} \left(\frac{\partial p_{i_{1}}^{(i)}}{\partial x_{i_{1}}} + \frac{\partial p_{i_{2}}^{(i)}}{\partial x_{i_{2}}} + \cdots + \frac{\partial p_{i_{t}}^{(i)}}{\partial x_{i_{t}}} \right) - H \right] dx_{1} \cdots dx_{n}.$$

Le condizioni affinché la variazione prima di questo integrale si annulli, supponendo le z_i e $p_{i,j}^{(i)}$ fra loro indipendenti, sono appunto le (6).

II.

4. Fra la funzione H e le funzioni Φ , F, F, \dots , F, passano delle relazioni notevoli. Dalle (6) segue, se Φ contiene la $z_{h_{t}}^{(h)}$,

$$\frac{\partial \mathbf{H}}{\partial p_{h_I}^{(h)}} = -z_{h_I}^{(h)} \cdot$$

Possiamo scrivere per conseguenza

$$\begin{split} \sum_{i}^{m} \left[\frac{\partial H}{\partial z_{i}} z_{i} - \frac{\partial H}{\partial p_{i_{1}}^{(i)}} p_{i_{1}}^{(i)} - \cdots - \frac{\partial H}{\partial p_{i_{t}}^{(i)}} p_{i_{t}}^{(i)} \right] \\ &= \sum_{i}^{m} \left[\frac{\partial \Phi}{\partial z_{i}} z_{i} + \frac{\partial \Phi}{\partial z_{i_{1}}^{(i)}} z_{i_{1}}^{(i)} + \cdots + \frac{\partial \Phi}{\partial z_{i_{t}}^{(i)}} z_{i_{t}}^{(i)} \right] \\ &= \sum_{i}^{m} \left[\frac{\partial F}{\partial z_{i}} z_{i} + \frac{\partial F}{\partial z_{i_{1}}^{(i)}} z_{i_{1}}^{(i)} + \cdots + \frac{\partial F}{\partial z_{i_{t}}^{(i)}} z_{i_{t}}^{(i)} \right] \\ &+ \sum_{i}^{s} \lambda_{h} \sum_{i}^{m} \left[\frac{\partial F_{h}}{\partial z_{i}} z_{i} + \frac{\partial F_{h}}{\partial z_{i_{1}}^{(i)}} z_{i_{1}}^{(i)} + \cdots + \frac{\partial F_{h}}{\partial z_{i_{t}}^{(i)}} z_{i_{t}}^{(i)} \right]. \end{split}$$

Ma F_{r+1}, \dots, F_s sono funzioni omogenee di primo grado, quindi

(7)
$$\sum_{i}^{m} \left[\frac{\partial H}{\partial z_{i}} z_{i} - \frac{\partial H}{\partial p_{i_{1}}^{(i)}} p_{i_{1}}^{(i)} - \cdots - \frac{\partial H}{\partial p_{i_{t}}^{(i)}} p_{i_{t}}^{(i)} \right]$$

$$= \sum_{i}^{m} \left[\frac{\partial F}{\partial z_{i}} z_{i} + \frac{\partial F}{\partial z_{i_{1}}^{(i)}} z_{i_{1}}^{(i)} + \cdots + \frac{\partial F}{\partial z_{i_{t}}^{(i)}} z_{i_{t}}^{(i)} \right]$$

$$+ \sum_{i}^{r} \lambda_{h} \sum_{i}^{m} \left[\frac{\partial F_{h}}{\partial z_{i}} z_{i} + \frac{\partial F_{h}}{\partial z_{i_{1}}^{(i)}} z_{i_{1}}^{(i)} + \cdots + \frac{\partial F_{h}}{\partial z_{i_{t}}^{(i)}} z_{i_{t}}^{(i)} \right].$$

Se tutte le F_h fossero funzioni omogenee l'ultimo termine nel secondo membro della equazione precedente sparirebbe.

5. Consideriamo due sistemi di soluzioni delle (6) cioè z_i , $p_{i_l}^{(i)}$ e u_i , $q_{i_l}^{(i)}$ e poniamo $u_i - z_i = \zeta_i$, $q_{i_l}^{(i)} - p_{i_l}^{(i)} = \tilde{\omega}_{i_l}^{(i)}$; avremo

$$u_{i_l}^{(i)} - z_{i_l}^{(i)} = \zeta_{i_l}^{(i)}$$
.

Dalle relazioni

$$\frac{\partial \Phi}{\partial z_{i_{l}}^{(i)}} = p_{i_{l}}^{(i)} \text{ , } z_{i_{l}}^{(i)} = -\frac{\partial \mathbf{H}}{\partial p_{i_{l}}^{(i)}} \text{ , } \frac{\partial \Phi}{\partial z_{i}} = \frac{\partial \mathbf{F}}{\partial z_{i}} \text{ ; }$$

segue, applicando la formula del TAYLOR,

(8)
$$\sum_{i=h}^{m} \left[\frac{\partial^{2} \Phi}{\partial z_{i_{I}}^{(i)} \partial z_{h}} \zeta_{h} + \frac{\partial^{2} \Phi}{\partial z_{i_{I}}^{(i)} \partial z_{h_{1}}} \zeta_{h_{1}}^{(h)} + \dots + \frac{\partial^{2} \Phi}{\partial z_{i_{I}}^{(i)} \partial z_{h_{I}}} \zeta_{h_{I}}^{(h)} \right] + \varphi_{i_{I}}^{(i)} = \tilde{\omega}_{i_{I}}^{(i)}$$

(8')
$$\zeta_{i_{I}}^{(i)} = -\sum_{\mathbf{r}}^{m} \left[\frac{\partial^{2} \mathbf{H}}{\partial p_{i_{I}}^{(i)} \partial z_{h}} \zeta_{h} + \frac{\partial^{2} \mathbf{H}}{\partial p_{i_{I}}^{(i)} \partial p_{h_{I}}^{(h)}} \tilde{\omega}_{h_{I}}^{(h)} + \dots + \frac{\partial^{2} \mathbf{H}}{\partial p_{i_{I}}^{(i)} \partial p_{h_{I}}^{(h)}} \tilde{\omega}_{h_{I}}^{(h)} + \dots + \frac{\partial^{2} \mathbf{H}}{\partial p_{i_{I}}^{(i)} \partial p_{h_{I}}^{(h)}} \tilde{\omega}_{h_{I}}^{(h)} \right] + \psi_{i_{I}}^{(i)}$$

$$(8'') \qquad \sum_{i}^{m} \left[\frac{\partial^{2} \Phi}{\partial z_{i} \partial z_{h}} \zeta_{h} + \frac{\partial^{2} \Phi}{\partial z_{i} \partial z_{h_{1}}^{(h)}} \zeta_{h_{1}}^{(h)} + \dots + \frac{\partial^{2} \Phi}{\partial z_{i} \partial z_{h_{2}}^{(h)}} \zeta_{h_{t}}^{(h)} \right] + \varphi_{i}$$

$$= \sum_{i}^{m} \left[\frac{\partial^{2} H}{\partial z_{i} \partial z_{h}} \zeta_{h} + \frac{\partial^{2} H}{\partial z_{i} \partial p_{h_{t}}^{(h)}} \widetilde{\omega}_{h_{1}}^{(h)} + \dots + \frac{\partial^{2} H}{\partial z_{i} \partial p_{h_{t}}^{(h)}} \widetilde{\omega}_{h_{t}}^{(h)} \right] + \psi_{i},$$

in cui $\varphi_{i_l}^{(i)}$, φ_i sono funzioni omogenee e di secondo grado delle ζ_h e $\zeta_{h_h}^{(h)}$ i cui coefficienti sono le derivate terze di Φ prese per valori intermedi delle variabili fra i valori z_h , $z_{h_h}^{(h)}$ e u_h , $u_{h_h}^{(h)}$, mentre le $\psi_{i_l}^{(i)}$, ψ_i sono funzioni omogenee e di secondo grado delle ζ_h , $p_{h_h}^{(h)}$ i cui coefficienti sono le derivate terze di H prese per valori intermedi delle variabili fra i valori z_h , $p_{h_h}^{(h)}$ e u_h , $q_{h_h}^{(h)}$.

Moltiplicando fra loro membro a membro le (8) e (8') e moltiplicando le (8'') per ζ_i e sommando si trova

$$(9) \qquad \Sigma \Sigma \frac{\partial^{2} \Phi}{\partial z_{i} \partial z_{h}} \zeta_{i} \zeta_{h} + \Sigma \Sigma \frac{\partial^{2} \Phi}{\partial z_{i_{l}}^{(i)} \partial z_{h_{\lambda}}^{(h)}} \zeta_{i_{l}}^{(i)} \zeta_{h_{\lambda}}^{(h)} + \Sigma \Sigma \frac{\partial^{2} \Phi}{\partial z_{i} \partial z_{h_{\lambda}}^{(h)}} \zeta_{i} \zeta_{h_{\lambda}}^{(h)} + \varphi$$

$$= \Sigma \Sigma \frac{\partial^{2} H}{\partial z_{i} \partial z_{h}} \zeta_{i} \zeta_{h} - \Sigma \Sigma \frac{\partial^{2} H}{\partial p_{i_{l}}^{(i)} \partial p_{h_{\lambda}}^{(h)}} \tilde{\omega}_{i_{l}}^{(i)} \tilde{\omega}_{h_{\lambda}}^{(h)} + \psi,$$

in cui φ è una funzione omogenea di terzo grado nelle ζ_i , $\zeta_{i_l}^{(i)}$ e ψ è pure omogenea e di terzo grado nelle ζ_i , $\tilde{\omega}_{i_l}^{(i)}$. Denotiamo le z_i e $z_i^{(i)}$ contenute in Φ con v_1 , v_2 , \cdots , v_g e le corrispondenti u_i e $u_{i_l}^{(i)}$ con w_1 , w_2 , \cdots , w_g , posto

$$w_i - v_i = v_i$$

e ricordando che le F_{r+1}, \dots, F_s sono funzioni lineari, avremo che l'equazione precedente potrà scriversi

(10)
$$\Sigma \Sigma \frac{\partial^{2} \Phi}{\partial v_{i} \partial v_{h}} v_{i} v_{h} + \varphi = \Sigma \Sigma \frac{\partial^{2} H}{\partial z_{i} \partial z_{h}} \zeta_{i} \zeta_{h} - \Sigma \Sigma \frac{\partial^{2} H}{\partial p_{i_{1}}^{(i)} \partial p_{h_{\lambda}}^{(h)}} \tilde{\omega}_{i_{1}}^{(i)} \tilde{\omega}_{h_{\lambda}}^{(h)} + \psi$$

$$= \Sigma \Sigma \frac{\partial^{2} F}{\partial v_{i} \partial v_{h}} v_{i} v_{h} + \sum_{i}^{r} \lambda_{g} \Sigma \Sigma \frac{\partial^{2} F_{g}}{\partial v_{i} \partial v_{h}} v_{i} v_{h} + \varphi.$$

Separation of interrand III S. 1

6. Riprendiamo le equazioni fondamentali (6). Denotiamo, come precedentemente con z_i , $p_{i_l}^{(i)}$ un sistema di integrali, e con u_i , $q_{i_l}^{(i)}$ un altro sistema di integrali.

Sia S_n un campo ad n dimensioni limitato dal contorno S_{n-1} , entro il quale i due precedenti sistemi di integrali sono funzioni finite e continue insieme alle loro derivate.

Moltiplicando ordinatamente le (6) membro a membro per u_i , $-q_{i_l}^{(i)}$, sommando e integrando a tutto S_n , si ottiene

$$\begin{split} \int_{S_n}^{\infty} \left[u_i \frac{\partial H}{\partial z_i} + q_{i_1}^{(i)} \frac{\partial H}{\partial p_{i_1}^{(i)}} + \cdots + q_{i_t}^{(i)} \frac{\partial H}{\partial p_{i_t}^{(i)}} \right] dS_n \\ = \int_{S_n} \left[\sum_{\mathbf{i}}^{m} u_i \left(\frac{\partial p_{i_1}^{(i)}}{\partial x_{i_1}} + \cdots + \frac{\partial p_{i_t}^{(i)}}{\partial x_{i_t}} \right) - \sum_{\mathbf{i}}^{m} \left(q_{i_1}^{(i)} \frac{\partial z_i}{\partial x_{i_1}} + \cdots + q_{i_t}^{(i)} \frac{\partial z_i}{\partial x_{i_t}} \right) \right] dS_n \\ = -\int_{S_{n-1}}^{\infty} u_i \left(p_{i_1}^{(i)} \cos v x_{i_1} + \cdots + p_{i_t}^{(i)} \cos v x_{i_t} \right) dS_{n-1} \\ + \int_{S_{n-1}}^{\infty} z_i \left(q_{i_1}^{(i)} \cos v x_{i_1} + \cdots + q_{i_t}^{(i)} \cos v x_{i_t} \right) dS_{n-1} \\ - \int_{S_n} \left[\sum_{\mathbf{i}}^{m} \left(p_{i_1}^{(i)} \frac{\partial u_i}{\partial x_{i_1}} + \cdots + p_{i_t}^{(i)} \frac{\partial u_i}{\partial x_{i_t}} \right) - z_i \left(\frac{\partial q_{i_1}^{(i)}}{\partial x_{i_1}} + \cdots + \frac{\partial q_{i_t}^{(i)}}{\partial x_{i_t}} \right) \right] dS_n, \end{split}$$

essendo ν la normale di S_{n-1} diretta verso l'interno di S_n . Avremo dunque

(11)
$$\int_{\mathbb{S}_{n-1}}^{m} z_{i} \left(q_{i_{1}}^{(i)} \cos \nu x_{i_{1}} + \dots + q_{i_{t}}^{(i)} \cos \nu x_{i_{t}}\right) dS_{n-1}$$

$$-\int_{\mathbb{S}_{n-1}}^{m} u_{i} \left(p_{i_{1}}^{(i)} \cos \nu x_{i_{1}} + \dots + p_{i_{t}}^{(i)} \cos \nu x_{i_{t}}\right) dS_{n-1}$$

$$= \int_{\mathbb{S}_{n}}^{m} \left(u_{i} \frac{\partial H}{\partial z_{i}} + q_{i_{1}}^{(i)} \frac{\partial H}{\partial p_{i_{1}}^{(i)}} + \dots + q_{i_{t}}^{(i)} \frac{\partial H}{\partial p_{i_{t}}^{(i)}}\right) dS_{n}$$

$$-\int_{\mathbb{S}_{n}}^{m} \left(z_{i} \frac{\partial H}{\partial u_{i}} + p_{i_{1}}^{(i)} \frac{\partial H}{\partial q_{i_{1}}^{(i)}} + \dots + p_{i_{t}}^{(i)} \frac{\partial H}{\partial q_{i_{t}}^{(i)}}\right) dS_{n}.$$

Questa relazione è analoga a quella di GREEN.

Nel caso in cui H sia una funzione razionale intera omogenea di 2º grado, il secondo membro sparisce. Da essa può dedursi il teorema fondamentale della elasticità del prof. BETTI.

7. Moltiplicando ordinatamente membro a membro le (6) per z_i , $p_{i_1}^{(i)}, \dots, p_{i_s}^{(i)}$ sommando e integrando in S_n , si trova

$$\int_{S_n} \sum_{i}^{m} \left(z_i \frac{\partial H}{\partial z_i} - p_{i_1}^{(i)} \frac{\partial H}{\partial p_{i_1}^{(i)}} - \cdots - p_{i_t}^{(i)} \frac{\partial H}{\partial p_{i_t}^{(i)}} \right) dS_n$$

$$= \int_{S_n} \sum_{i}^{m} \left(\frac{\partial \left(z_i p_{i_1}^{(i)} \right)}{\partial x_{i_1}} + \cdots + \frac{\partial \left(z p_{i_t}^{(i)} \right)}{\partial x_{i_t}} \right) dS_n$$

$$= -\int_{S_{n-1}} \sum_{i}^{m} z_i \left(p_{i_1}^{(i)} \cos v x_{i_1} + \cdots + p_{i_t}^{(i)} \cos v x_{i_t} \right) dS_{n-1}.$$

Tenendo conto della (7) e supponendo F, F_1, \dots, F_r omogenee e la F di grado k, avremo

$$k_{i} I = k \int_{S_{n}} F dS_{n} = - \int_{S_{n-1}} \sum_{i}^{m} z_{i} \left(p_{i_{1}}^{(i)} \cos \nu x_{i_{1}} + \dots + p_{i_{t}}^{(i)} \cos \nu x_{i_{i}} \right) dS_{n-1}.$$

8. Dalle formule trovate nel § 5 segue

$$(12) \begin{cases} \frac{\partial \tilde{\omega}_{i_{1}}^{(i)}}{\partial x_{i_{1}}} + \cdots + \frac{\partial \tilde{\omega}_{i_{t}}^{(i)}}{\partial x_{i_{t}}} = \sum_{1}^{m} h \left(\frac{\partial^{2} H}{\partial z_{i} \partial z_{h}} \zeta_{h} + \frac{\partial^{2} H}{\partial z_{i} \partial p_{h_{1}}^{(h)}} \tilde{\omega}_{h_{1}}^{(h)} + \cdots + \frac{\partial^{2} H}{\partial z_{i} \partial p_{h_{t}}^{(h)}} \tilde{\omega}_{h_{t}}^{(h)} \right) + \psi_{i} \\ \frac{\partial \zeta_{i}}{\partial x_{i_{1}}} = -\sum_{1}^{m} h \left(\frac{\partial^{2} H}{\partial p_{i_{1}}^{(i)} \partial z_{h}} \zeta_{h} + \frac{\partial^{2} H}{\partial p_{i_{1}}^{(i)} \partial p_{h_{1}}^{(h)}} \tilde{\omega}_{h_{1}}^{(h)} + \cdots + \frac{\partial^{2} H}{\partial p_{i_{1}}^{(i)} \partial p_{h_{t}}^{(h)}} \tilde{\omega}_{h_{t}}^{(h)} \right) + \psi_{i_{1}}^{(i)} \\ \frac{\partial \zeta_{i}}{\partial x_{i_{t}}} = -\sum_{1}^{m} h \left(\frac{\partial^{2} H}{\partial p_{i_{1}}^{(i)} \partial z_{h}} \zeta_{h} + \frac{\partial^{2} H}{\partial p_{i_{1}}^{(i)} \partial p_{h_{1}}^{(h)}} \tilde{\omega}_{h_{1}}^{(h)} + \cdots + \frac{\partial^{2} H}{\partial p_{i_{1}}^{(i)} \partial p_{h_{t}}^{(h)}} \tilde{\omega}_{h_{t}}^{(h)} \right) + \psi_{i_{1}}^{(i)} \\ \text{onde} \end{cases}$$

$$\int \left(\sum_{i} \sum_{h} \frac{\partial^{2} H}{\partial z_{i} \partial z_{h}} \zeta_{i} \zeta_{h} - \sum_{i} \sum_{p} \frac{\partial^{2} H}{\partial p_{i_{1}}^{(i)} \partial p_{h_{1}}^{(h)}} \tilde{\omega}_{h_{1}}^{(i)} + \cdots + \frac{\partial^{2} H}{\partial p_{i_{1}}^{(i)} \partial p_{h_{1}}^{(h)}} \tilde{\omega}_{h_{1}}^{(h)} + \psi \right) dS_{h} \\ = \int \sum_{i} \sum_{n} \left(\frac{\partial^{2} (\zeta_{i} \tilde{\omega}_{i_{1}}^{(i)})}{\partial x_{i_{1}}} + \frac{\partial^{2} (\zeta_{i} \tilde{\omega}_{i_{2}}^{(i)})}{\partial x_{i_{2}}} + \cdots + \frac{\partial^{2} (\zeta_{i} \tilde{\omega}_{i_{1}}^{(i)})}{\partial x_{i_{1}}} \right) dS_{h},$$

da cui finalmente si ha la formula

$$(13) \qquad -\int_{\tilde{S}_{n-1}} \sum_{i=1}^{m} \zeta_{i} \left(\tilde{\omega}_{i_{1}}^{(i)} \cos \nu x_{i_{1}} + \tilde{\omega}_{i_{2}}^{(i)} \cos \nu x_{i_{2}} + \dots + \tilde{\omega}_{i_{t}}^{(i)} \cos \nu x_{i_{t}} \right) dS_{n-1}$$

$$= \int_{\tilde{S}_{n}} \left(\sum \sum \frac{\partial^{2} H}{\partial z_{i} \partial z_{h}} \zeta_{i} \zeta_{h} - \sum \sum \frac{\partial^{2} H}{\partial p_{i_{1}}^{(i)} \partial p_{h_{h}}^{(h)}} \tilde{\omega}_{i_{1}}^{(i)} \tilde{\omega}_{h_{h}}^{(h)} + \psi \right) dS_{n}$$

$$= \int_{\tilde{S}_{n}} \left(\sum \sum \frac{\partial^{2} \left(F + \sum_{i=1}^{r} \lambda_{s} F_{s} \right)}{\partial v_{i} \partial v_{h}} v_{i} v_{h} + \varphi \right) dS_{n}.$$

IV.

9. L'ultima formula del paragrafo precedente ci fornisce un teorema fondamentale relativamente alle equazioni (6).

Se \mathbf{z}_i , $\mathbf{p}_{i_1}^{(i)}$ formano un sistema di integrali delle (6) tali che le due forme quadratiche

$$\Sigma\Sigma \frac{\partial^2 \mathbf{H}}{\partial \mathbf{z}_i \, \partial \mathbf{z}_h} \, \alpha_i \, \alpha_h \qquad , \qquad \Sigma\Sigma \frac{\partial^2 \mathbf{H}}{\partial \mathbf{p}_{i_I}^{(i)} \, \partial \mathbf{p}_{h_h}^{(h)}} \, \beta_{i_I}^{(i)} \, \beta_{h_h}^{(h)}$$

siano definite e di segno contrario, tutti gli integrali z_i , $p_{ij}^{(i)}$ i quali entro un campo S_n differiscono rispettivamente dalle \mathbf{z}_i , $\mathbf{p}_{ij}^{(i)}$ per meno di un certo valore, saranno determinati quando si conosceranno al contorno S_{n-1} i valori delle z_i oppure quelli delle somme

$$p_{i_1}^{(i)}\cos vx_{i_1} + p_{i_2}^{(i)}\cos vx_{i_2} + \cdots + p_{i_t}^{(i)}\cos vx_{i_t} = P_i;$$

o più in generale saranno determinati quando si conosceranno in ogni punto del contorno i valori di z_1, z_2, \dots, z_k e delle rimanenti P_{k+1}, \dots, P_m .

Infatti siano z_i , $p_{i_l}^{(i)}$ e u_i , $q_{i_l}^{(i)}$ due sistemi di integrali delle (6) tali che in ogni punto di S_{n-1} si abbia

$$z_1 = u_1, z_2 = u_2, \dots, z_k = u_k, P_{k+1} = Q_{k+1}, \dots, P_m = Q_m,$$

in cui

$$Q_i = q_{i_1}^{(i)} \cos v x_{i_1} + \dots + q_{i_t}^{(i)} \cos v x_{i_t}.$$

Applicando la (13) troviamo

(14)
$$\int_{S_n} \left(\sum \sum \frac{\partial^2 H}{\partial z_i \partial z_h} \zeta_i \zeta_h - \sum \sum \frac{\partial^2 H}{\partial p_{i_l}^{(i)} \partial p_{h_k}^{(h)}} \tilde{\omega}_{i_l}^{(i)} \tilde{\omega}_{h_k}^{(h)} + \psi \right) dS_n = 0.$$

Ora se le z_i , u_i , $p_{i_l}^{(i)}$, $q_{i_l}^{(i)}$ differiscono dalle \mathbf{z}_i , $\mathbf{p}_{i_l}^{(i)}$ per meno di un certo valore M, avremo

$$\left| \left. \zeta_i \right| < 2 \, \mathrm{M} \right. \ , \ \left| \left. \tilde{\omega}_{i_I}^{(i)} \right| < 2 \, \mathrm{M} \, . \right.$$

Potremo quindi determinare un valore μ di M, tale che 1° la forma

$$f = \sum \frac{\partial^2 \mathbf{H}}{\partial z_i \partial z_h} \zeta_i \zeta_h - \sum \sum \frac{\partial^2 \mathbf{H}}{\partial p_{i_I}^{(i)} \partial p_{h_\lambda}^{(h)}} \tilde{\omega}_{i_I}^{(i)} \tilde{\omega}_{h_\lambda}^{(h)}$$

sia definita;

 2° la forma omogenea ψ di terzo grado nelle ζ_i , $\widetilde{\omega}_{i_l}^{(i)}$ assuma sempre valori assoluti inferiori ad |f| (escluso per $\zeta_i = \widetilde{\omega}_{i_l}^{(i)} = 0$).

In tale ipotesi la relazione (14) non sarà soddisfatta altro che da

$$\zeta_i = \tilde{\omega}_{i_j}^{(i)} = 0$$

entro tutto il campo S_n, il che dimostra il teorema.

10. Supponiamo che H sia indipendente dalle z_1, z_2, \dots, z_m . In tale ipotesi il precedente teorema va modificato nella maniera seguente:

Se \mathbf{z}_i , $\mathbf{p}_{i_l}^{(i)}$ formano un sistema di integrali delle (6) e le $\mathbf{p}_{i_l}^{(i)}$ sono tali che la forma quadratica

$$\Sigma \, \Sigma \, \frac{\partial^2 \, \mathbf{H}}{\partial \mathbf{p}_{i_I}^{(i)} \, \partial \mathbf{p}_{h_{\lambda}}^{(h)}} \, \beta_{i_I}^{(i)} \, \beta_{h_{\lambda}}^{(h)}$$

sia definita, tutti gli integrali z_i , $p_{i_l}^{(i)}$ tali che le $p_{i_l}^{(i)}$ entro un campo S_n differiscono rispettivamente dalle $\mathbf{p}_{i_l}^{(i)}$ per meno di un certo valore saranno determinati quando si conosceranno al contorno S_{n-1} i valori delle z_i .

Infatti se z_i ed u_i sono tali che al contorno sia $z_i = u_i$, avremo

$$\int\limits_{S_n} \left(\sum \frac{\partial^2 H}{\partial p_{i_l}^{(i)} \partial p_{h_{\lambda}}^{(h)}} \tilde{\omega}_{i_l}^{(i)} \tilde{\omega}_{h_{\lambda}}^{(h)} + \psi \right) dS_n = o.$$

Ripetendo quindi il ragionamento fatto nel paragrafo precedente, si ricaverà che se $p_{i_l}^{(i)}$ e $q_{i_l}^{(i)}$ non si scosteranno da $\mathbf{p}_{i_l}^{(i)}$ più di un certo valore dovrà risultare

$$\tilde{\omega}_{i_{j}}^{(i)} = 0$$

affinché la precedente eguaglianza possa essere soddisfatta. Ma dalle (12) segue

$$\frac{\partial \zeta_i}{\partial x_{i_I}} = 0$$

onde ζ_i deve essere indipendente da x_{i_l} . Ora ogni parallela all'asse x_{i_l} incontra S_{n-1} , ove ζ_i è nullo, quindi le ζ_i sono nulle e per conseguenza avremo entro S_n

$$p_{i_l}^{(i)} = q_{i_l}^{(i)} \quad , \quad z_i = u_i$$

il che dimostra il teorema.

II. Il teorema del § 10 può anche interpretarsi in un altro modo. Se \mathbf{z}_1 , \mathbf{z}_2 , \cdots , \mathbf{z}_m , λ_1 , λ_2 , \cdots , λ_s sono un sistema di integrali delle equazioni (3) tali che la forma quadratica

$$\sum \sum \frac{\partial^{2} \left(\mathbf{F} + \sum_{i}^{r} \mathbf{y} \lambda_{y} \mathbf{F}_{y} \right)}{\partial \mathbf{v}_{i} \partial \mathbf{v}_{h}} \alpha_{i} \alpha_{h} \alpha_{$$

(1) Le $\mathbf{v}_1, \dots, \mathbf{v}_g$ denotano le \mathbf{z}_i e $\mathbf{z}_{ij}^{(i)}$ contenute in Φ (§ 5).

sia definita, tutti gli integrali z_1, \dots, z_m , tali che entro un campo S_n differiscono rispettivamente dalle z_1, \dots, z_m per meno di un certo valore, saranno determinati quando se ne conosceranno i valori al contorno S_{n-1} .

Infatti se z_1, \dots, z_m e u_1, \dots, u_m saranno due sistemi di integrali delle (3) tali che al contorno si abbia $z_i = u_i$ dalla formola (13) potrà dedursi

$$\int\limits_{S_n} \left(\sum \frac{\partial^2 \left(F + \sum_{i}^r \lambda_{\gamma} F_{\gamma} \right)}{\partial v_i \, \partial v_h} \nu_i \, \nu_h + \varphi \right) dS_n = o.$$

Ripetendo quindi un ragionamento fatto precedentemente, si giunge alla conclusione che, se le z_i ed u_i differiscono dalle \mathbf{z}_i per meno di un certo valore, affinché la precedente equazione sia soddisfatta deve essere

$$v_i = 0$$
,

onde (vedi § 5) le z_i e $z_h^{(i)}$ che compariscono in F_i , F_1 , ..., F_g risulteranno entro S_n eguali alle corrispondenti u_i , $u_h^{(i)}$. Ma se

$$z_h^{(i)} - u_h^{(i)} = \frac{\partial (z_i - u_i)}{\partial x_h} = 0$$

risulterà

$$z_i - u_i = \cos t$$
.

lungo tutte le parallele all'asse x_h e siccome queste incontrano il contorno S_{n-1} , ove $z_i = u_i$, così dovremo avere in tutti i punti entro S_n , $z_i = u_i$, il che dimostra il teorema.