724. ## ON THE DEFORMATION OF A MODEL OF A HYPERBOLOID. [From the Messenger of Mathematics, vol. VIII. (1879), pp. 51, 52.] THE following is a solution of Mr Greenhill's problem set in the Senate-House Examination, January 14, 1878. "Prove that, if a model of a hyperboloid of one sheet be constructed of rods representing the generating lines, jointed at the points of crossing; then if the model be deformed it will assume the form of a confocal hyperboloid, and prove that the trajectory of a point on the model will be orthogonal to the system of confocal hyperboloids." Let (x_1, y_1, z_1) , (x_2, y_2, z_2) be points on the generating line of then $$\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} - \frac{z_1^2}{c^2} = 1,$$ $$\frac{x_2^2}{a^2} + \frac{y_2^2}{b^2} - \frac{z_2^2}{c^2} = 1,$$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1,$ $$\frac{x_1x_2}{a^2} + \frac{y_1y_2}{b^2} - \frac{z_1z_2}{c^2} = 1;$$ or, what is the same thing, if $$\frac{x_1}{a}, \ \frac{y_1}{b}, \ \frac{z_1}{c} = p_1, \ q_1, \ r_1; \quad \frac{x_2}{a}, \ \frac{y_2}{b}, \ \frac{z_2}{c} = p_2, \ q_2, \ r_2;$$ then $$p_1^2 + q_1^2 - r_1^2 = 1,$$ $p_2^2 + q_2^2 - r_2^2 = 1,$ $p_1p_2 + q_1q_2 - r_1r_2 = 1.$ Similarly, if (ξ_1, η_1, ζ_1) , (ξ_2, η_2, ζ_2) be points on generating line of $$\frac{\xi^2}{\alpha^2} + \frac{\eta^2}{\beta^2} - \frac{\zeta^2}{\gamma^2} = 1,$$ and if $$\frac{\xi_1}{\alpha}\,,\ \frac{\eta_1}{\beta}\,,\ \frac{\zeta_1}{\gamma}\!=p_1,\ q_1,\ r_1\,;\quad \frac{\xi_2}{\alpha}\,,\ \frac{\eta_2}{\beta}\,,\ \frac{\zeta_2}{\gamma}\!=p_2,\ q_2,\ r_2\,;$$ then $$\begin{split} p_{1}^{2} + q_{1}^{2} - r_{1}^{2} &= 1, \\ p_{2}^{2} + q_{2}^{2} - r_{2}^{2} &= 1, \\ p_{1}p_{2} + q_{1}q_{2} - r_{1}r_{2} &= 1. \end{split}$$ Hence if (x_1, y_1, z_1) , (ξ_1, η_1, ζ_1) be corresponding points on the two surfaces, that is, if $$\frac{x_1}{a}$$, $\frac{y_1}{b}$, $\frac{z_1}{c} = \frac{\xi_1}{a}$, $\frac{\eta_1}{\beta}$, $\frac{\zeta_1}{\gamma}$, $= p_1$, q_1 , r_1 , and similarly, if (x_2, y_2, z_2) , (ξ_2, η_2, ζ_2) are corresponding points, that is, if $$\frac{x_2}{a}$$, $\frac{y_2}{b}$, $\frac{z_2}{c} = \frac{\xi_2}{a}$, $\frac{\eta_2}{\beta}$, $\frac{\zeta_2}{\gamma} = p_2$, q_2 , r_2 ; then we have, as before, the system of three equations $$p_1^2 + q_1^2 - r_1^2 = 1, \ p_2^2 + q_2^2 - r_2^2 = 1, \ p_1p_2 + q_1q_2 - r_1r_2 = 1.$$ Then if the two surfaces are confocal, that is, if $$\alpha^2$$, β^2 , $-\gamma^2 = \alpha^2 + h$, $b^2 + h$, $-c^2 + h$, we shall have $$(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2 = (\xi_1 - \xi_2)^2 + (\eta_1 - \eta_2)^2 + (\zeta_1 - \zeta_2)^2.$$ For this equation is $$a^2(p_1-p_2)^2+b^2(q_1-q_2)^2+c^2(r_1-r_2)^2=\alpha^2(p_1-p_2)^2+\beta^2(q_1-q_2)^2+\gamma^2(r_1-r_2)^2,$$ that is, $$(p_1 - p_2)^2 + (q_1 - q_2)^2 - (r_1 - r_2)^2 = 0,$$ an equation which is obviously true in virtue of the above system of three equations. Hence, if on confocal surfaces $$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \quad \frac{\xi^2}{a^2 + h} + \frac{\eta^2}{b^2 + h} - \frac{\zeta^2}{c^2 - h} = 1,$$ we take two points P_1 , P_2 on the first, and Q_1 , Q_2 the corresponding points on the second; then P_1 , P_2 being on a generating line of the first surface, Q_1 , Q_2 will be on a generating line of the second surface, and P_1P_2 will be $=Q_1Q_2$. The same is evidently true for the quadrilaterals $P_1P_2P_3P_4$ and $Q_1Q_2Q_3Q_4$, where P_1P_2 , P_2P_3 , P_3P_4 , P_4P_1 are generating lines on the first surface: and therefore Q_1Q_2 , Q_2Q_3 , Q_3Q_4 , Q_4Q_1 are generating lines on the second surface, which proves the theorem. 9-2