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445.

A MEMOIR ON QUARTIC SURFACES.

[From the Proceedings of the London Mathematical Society, vol. 111 (1869—1871),
pp- 19—69. Read February 10, 1870.]

THE present Memoir is intended as a commencement of the theory of the quartic
surfaces which have nodes (conical points). A quartic surface may be without nodes,
or it may have any number of nodes up to 16. I show that this is so, and I con-
sider how many of the nodes may be given points. Although it would at first sight
appear that the number is 8, it is in fact 7; viz, we can, with 7 given points as
nodes (but not in a proper sense with 8 or more given points), find a quartic surface;
such surface contains in its equation 6 constants, which may be such that the surface
has an additional node or nodes. Suppose that the surface has an 8th node :—there
are two distinct cases; viz, (1) the 8 nodes are the points of intersection of 3 quadric
surfaces, or say they are an octad, and the surface is said to be octadic; (2) the Sth
node is any point whatever on a certain sextic surface determined by means of the
7 given nodes, and called the dianodal surface of these 7 points; the quartic surface
is said to be a dianome. The two cases are in general exclusive of each other; viz,
the 7 given points being any points whatever, the dianodal surface does not pass
through the 8th point of the octad; and thus the quartic surface with the 8 nodes is
either octadic or else a dianome. Assuming it to be a dianome, the constants may be
further determined so that there shall be a 9th node; it is necessary to examine
whether this forms with 7 of the 8 nodes an octad. Supposing that it does not (viz,
that there are not any 8 nodes in regard to which the surface is octadic), the 9th
node is then any point whatever on a certain curve of the order 18, determined by
means of the 8 nodes, and called the dianodal curve of these 8 points. And, finally,
the constants may be further determined so that there shall be a 10th node ; supposing,
as before, that this does not form an octad with any 7 of the 9 nodes (viz, that
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134 A MEMOIR ON QUARTIC SURFACES. [445

there are not any 8 nodes in regard to which the surface is octadic), the 10th node
is then any one of a system of 22 [should be 13] points determined by means of the
9 nodes, and called the dianodal system of these 9 points. But the quartic surface is
now completely determined; viz., starting with any 7 given points as nodes, we have a
dianome with 8 nodes, 9 nodes, or 10 nodes, say, an octodianome, enneadianome, or
decadianome, but not with any greater number of nodes; these can only present them-
selves when particular conditions are satisfied in regard to the 7 given nodes, and to
the 8th and 9th node; and the consideration of the quartic surfaces with more than
10 nodes would thus form a separate branch of the subject.

The case of the decadianome (or quartic surface with 10 nodes formed as above
with 7 given points as nodes) is peculiarly interesting. I identify this with the surface
which I call a symmetroid; viz, the surface represented by an equation A =0, where
A is a symmetrical determinant of the 4th order the several terms whereof are linear
functions of the coordinates (#, v, z, w); this surface is related to the Jacobian surface
of 4 quadric surfaces (itself a very remarkable surface), and this theory of the symmetroid
and the Jacobian, and of questions connected therewith, forms a large portion of the
present Memoir.

The theory of the Jacobian is connected also with the researches in regard to
nodal quartic surfaces in general; and, for greater clearness, it has seemed to me
proper to commence the Memoir with certain definitions, &c., in regard to this theory.
It will be seen in what manner I exten. the notion of the Jacobian.

I remark that the present researches on Quartic Surfaces were suggested to me
by Professor Kummer’s most interesting Memoir “Ueber die algebraischen Strahlen-
systeme u.s.w.,” Berl. Abh. 1866, in which, without entering upon the general theory, he
is led te consider the quartic surfaces, or certain quartic surfaces, with 16, 15, 14, 13, 12,
or 11 nodes; the last of these, or surface with 11 nodes, being in fact a particular
case of the symmetroid.

Considerations in regard to the Jacobian of Jour, or more or less than four, Surfaces.

1. In the case of any four surfaces, P=0, @ =0, R=0, S=0, the differential
coefficients of P, @, R, S in regard to the coordinates (z, y, z, w) may be arranged
as a square matrix in either of the ways
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445] A MEMOIR ON QUARTIC SURFACES. 135

and with either arrangement we may form one and the same determinant, the Jacobian
determinant J (P, @, R, S), or, equating it to zero, the Jacobian surface J (P, @, R, S)=0,
of the four surfaces.

2. In the case of more than four surfaces, adopting the arrangement

P QIR ST

> O
£

<

2z

S >

w

and considering the several determinants which can be formed with any four columns
of the matrix, these equated to-zero establish a more than one-fold relation between
the coordinates; viz, in the case of five surfaces, we have J(P, Q R, S, T)=0, a
twofold relation representing a curve; and in the case of six surfaces, J(P, @, R, S, T, U)=0,
a threefold relation representing a point-system; and (since with four coordinates a
relation is at most threefold) these are the only cases to be considered.

3. In the case of fewer than four surfaces, adopting the arrangement

8:6) Sy; 82; Bw
B < D 1)

.

and considering the several determinants which can be formed with any 3 or 2 columns
of the matrix, and equating these to zero, we have in like manner a more than one-
fold relation between the coordinates; viz.,, in the case of three surfaces, we have
J(P, @ R)=0, a twofold relation representing a curve; and in the case of two
surfaces J (P, @) =0, a threefold equation representing a point-system, (viz., this
denotes the points. 8P : 8,P : 8, : 8,P =8,Q : 8,Q : 8,.Q : 6,Q); for a single surface
we should have a fourfold relation, and the case is not considered. But observe that
if the notation were used, J(F)=0 would denote 5, =0, §,P=0, §,P=0, §,P=0,
equations which are satisfied simultaneously by the coordinates (z, y, 2z, w) of any
node of the surface P=0. Although in what precedes I have used the sign =, there
is no objection to using, and I shall in the sequel use, the ordinary sign =, it being
understood that while J (P, @, R, S)=0 denotes a single equation or onefold relation,
JP, Q R, S, T)=0 or J(P, @ R)=0 will each denote a twofold relation, and
JP, Q R, S, T, Uy=0 or J(P, @)=0 each of them a threefold relation.

4. It is not asserted that ...J (P, @, R)=0,J (P, @Q R, 8)=0,J(P,Q, R, S, I)=0,...
form a continuous series of analogous relations; and there might even be a propriety
in using, in regard to four or more surfaces, J, and in regard to four or fewer surfaces
an inverted J (viz, in regard to four surfaces, either symbol indifferently); but there
is no ambiguity in, and I have preferred to adopt, the use of the single symbol .J.
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136 A MEMOIR ON QUARTIC SURFACES. [445

5. Suppose that the orders of the surfaces P=0, @=0,... are a+1, b+1,... (so
that the orders of the differential coefficients of P, Q... are @, b,...), then we have
for the orders of the several loci,

J (P, @) =0, point-system, order a*+ a’b + ab®+ b%;

J (P, @ R)=0, curve, » @+VP+E+be+ca+ab;
J (P, Q, R, S)=0, surface, » @+b+c+d;
J(P, Q R, S, T)=0, curve, » ab+ac...+de;
J(P, Q R, S, T, U)=0, point-system, , abc+abd ...+ def’;

see, as to this, Salmon’s Solid Geometry, Ed. 2, (1865), Appendix 1v., “On the Order
of Systems of Equations” [not reproduced in the later editions]. In particular, if
a=b=c...=1, then the orders are 4, 6, 4, 10, 20.

As to the Surface obtained by equating to zero a Symmetrical Determinant.

6. It is also shown (Salmon, Ed. 2, p. 495) that the surface obtained by equating
to zero any symmetrical determinant has a determinate number of nodes; viz, if the
orders of the terms in the diagonal be @, b, ¢, &c, then the number of nodes is
=% (Za.Zab—Zabc), or, as this may also be written, % (Sa% + 23abc). In particular,
the formula applies to the case of the surface

A" . G L =0,
H BAF, M
G ¥ i
Lo M N D

(a, b, ¢, d) being here the orders of 4, B, C, D respectively, and the orders of F, @, &c.,
being 4 (b+c), $(a+c), &c. If the terms are all of them linear functions of the
coordinates, or a =b=c=d =1, then the number of nodes is = 10.

7. That the surface has nodes is, in fact, clear from the consideration that any
point for which the minors of the determinant all vanish will be a node; and that
(for the symmetrical determinant), by making the minors all of them vanish, we
establish only a threefold relation between the coordinates. The expression for the
number of the nodes is, I think, obtained most readily as follows:

The nodes will be points of intersection of the curve and surface
4, H, @ L|=9, B, "F, M |=0,
. o s ik g il el )
G ¥ G \N M, N
these, however, contain in common the points
H, By s Ml =03
” @/ aPs 6, “
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and not only so, but they touch at the points in question; so that, multiplying
together the orders of the curve and surface, and subtracting twice the order of the
point-system, we obtain the expression for the number of nodes. In the particular case
where the functions are all linear, we have a sextic curve and cubic surface inter-
secting in 18 points; but the curve and surface touch in 4 points, and the number
of nodes is (18 —2.4)=10. And in the same way the formula may be established for
~the general case.

8. The subsidiary theorem of the contact of the curve and surface requires, how-
ever, to be proved. Seeking for the equation of the tangent plane of the surface at

any one of the points in question, we have first

OB O, pOM 4=l Bye o M4 By o Fyy Mf=0,
P oaac0, S0l 8F, &C, &N e 8., 80, 0 2V
MM D M N ) 8M, 8N, éD

where, in virtue of the equations

H, B, F M |=0,
&; | FLowiin

the last term vanishes. Expanding the other two terms, the equation becomes
D (C8B + B3C —2F8F) — (N*6B — 2MNSF + M*8C)+ 8M (FN — CM) + 8N (BN — MF) = 0;

but, in virtue of the same equations, the coefficients of 8M and 8N each of them
vanish, and we have also

N26B + M*6C — 2MNSF = %?(CBB + BSC — 2F3F);

so that the equation becomes finally U8B+ B3C —2F3F =0. Investigating by a like
process the equation of the tangent of the curve

., QD (L ; S | )
H B, F M
glur e N

we find between the differentials 64, 8B, &c., a twofold linear relation, expressible by
means of the foregoing equation O3B+ BSC —2F8F =0, and one other equation; that
is, at each of the points in question the tangent of the curve lies in the tangent
plane of the surface, or, what is the same thing, the curve and surface touch at these
points.

C. VIL 18
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138 A MEMOIR ON QUARTIC SURFACES. [445

Surfaces represented by an equation F (P, Q) =0, &c.

9. In the remarks which follow as to the surfaces F (P, Q)=0, F(P, Q, R)=0, &c,
the function F is a rational and integral function of (P, @), (P, @, R), &c., not in
general homogeneous in regard to P, @, R,.... but of such degrees in regard to these
functions respectively as to be homogeneous in regard to the coordinates (z, y, 2z, w).

The surface F (P, @)=0 has in general a nodal curve 8,F =0, §,F=0; and if
it has besides any nodes, these are points of the point-system J (P, @)=0.

The surface (P, @, R)=0 has in general nodes 8,F =0, §,F=0, 8,F=0; and
if it has besides any nodes, these are points on the curve J (P, @, R)=0.

The surface F(P, @ R, S)=0 has not in general, but it may have, nodes
8 F =0, §,F=0, §;F=0, §;F=0; if it has any other nodes, these are points on the
surface J (P, @, R, S)=0.

Nodes of a Quartic Surface ; Circumscribed Cone having its vertex at a Node.

10. A quartic surface may be without nodes; or it may have any number of nodes
up to 16. Consider a quartic surface having a node or nodes; and take the single
node, or (if more nodes than one) any one of the nodes, as the vertex of a circumscribed
cone; then, considering any plane through the vertex, the section will be a quartic
curve having a node at the vertex, and the generating lines in the plane will be the
tangents from the node to the quartic curve; the number of them is therefore 6, and
the order of the circumscribed cone is thus =6. Each tangent intersects the quartic
curve in the node counting as two intersections, and in the point of contact counting
as two intersections; there are consequently no singular tangents; and therefore in the
circumscribed cone no singular lines arising from a singular tangency of the generating
line. Hence, in the case of a single node on the surface, the circumscribed cone is
a cone of the order 6 without nodal or stationary lines; and the class is =30. But
in the case of more than one node, say % nodes, the circumscribed cone passes through
the remaining k—1 nodes, and the generating line through each of these nodes is a
nodal line of the cone; that is, the cone has £—1 nodal lines, and its class 1is
=30—2k+ 2. The cone is not of necessity a proper cone; the maximum number of
nodal lines is when it breaks up into 6 planes, and we have then k—1=15; that is,
the number of nodes of the surface is at most = 16.

11. It is easy to form a table of the different primd facie possible forms of the
sextic cone, according to the number of nodes of the surface; viz, writing 6 for a
proper sextic cone without nodal lines, 6,, 6,...6, for the proper sextic cone with
1, 2,... or 10 nodal lines; and so 5, 5,...5; for the proper quintic cones,
4, 4,, 4y, 44, 3, 3,, 2 for the quartic, cubic, and quadric cones, and 1 for the plane, the
table is
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CIRCUMSCRIBED SEXTIC CONE.

Nodes of

Surface.
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and moreover, in the cases where there are two or more forms of the sextic cone,
then the % sextic cones may be of the different forms in various combinations. The
total number of cases primd facie possible is thus very great; but only a comparatively
small number of them actually exist.

12. In the case where there is a plane 1, the sextic cone breaks up into this
plane, and into a (proper or improper) quintic cone intersecting the plane in 5 lines;
that is, there will be in the plane 6 nodes; the plane is, in fact, a singular tangent
plane meeting the surface in a conic twice repeated; and the 6 nodes lie on this
conic. Taking any one of these nodes as vertex, the corresponding sextic cone breaks
up into the plane, and into a (proper or improper) quintic cone.

13. In the cases k=1, 2, 3, 4, 5, and k=15, 16, there is only one form of sextic
cone; so that each node (at least so far as appears) stands in the same relation to
the surface. Considering the last mentioned two cases; k= 16,—ecach of the 16 nodes
gives 6 singular tangent planes, but each of these passes through 6 nodes; therefore
the number of planes is =16: similarly, £=15, the number of singular tangent planes
is 15 x 4+ 6, =10.

18—2
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For k=14, the cones are 3,,1,1,1, or 2,2,1,1: it is easy to see that we have
only the three cases

Cones: 3y il biev 2342441 511 Singular tangent planes
No. may be 14 , 0 gives (14.3+ 0.2)+6, =7
5 Bl e O » (8.3+ 6.2)+6,=6
! 8. 18 o (2.8412.2)+86, =5

and we may in the like manner limit the number of possible cases, for other values
of k. But I do not at present further pursue the inquiry.

As to the Number of Constants contained in a Surface.

14. We say that a surface P=0 contains or depends upon a certain number of
constants ; viz., this is the number of constants contained in the equation P =0 of the
surface, taking the coefficient of any one term to be equal to unity; thus the general
quadric surface contains 9 constants; the surface can in fact be determined so as to
satisfy 9 conditions; or, as we might express it, the Postulation of the surface is =9.
[I have elsewhere said Postulandum and Capacity: I prefer this last expression.]
And if, in the general equation so containing 9 constants, Z of these are given, or,
what is the same thing, if the quadric surface be made to satisfy any £ conditions,
then the number of constants, or postuletion of the surface, is =9 —£.

15. But a different form of expression is sometimes convenient; the conditions to
be satisfied are frequently such that, being satisfied by the surfaces P=0, @=0,...,
they will be satisfied by the surface aP + BQ+ ...=0, where a, 3, ... are any constant
multipliers whatever. When this is so, there will be a certain number of solutions
P=0, =0,... not connected by any such relation, or say of asyzygetic solutions, such
that the general surface satisfying the conditions in question is aP + B8Q+...=0; and
hence, taking one of these coefficients as unity, the number of constants, or postulation
of the surface, is equal to the number of the remaining coefficients, or, what is the
same thing, it is less by unity than the number of the asyzygetic solutions P =0,
Q@=0.... Instead of considering the number of constants, or postulation, we may consider
the number of solutions (that is, asyzygetic solutions) or surfaces P=0, @ =0, ... which
satisfy the conditions in question.

16. Thus, for the quadric not subjected to any conditions, there are 10 surfaces
(for example, these may be taken to be the surfaces 2?=0, y*=0, 22=0, w*=0, yz=0,
2w=0, 2y=0, aw=0, yw=0, zw=0); and the general quadric surface is by means of
these expressed linearly in the form (@, ...J=, y, 2z, w)*=0. So for the quadric surfaces
through % given points, the number of these is =10—%; thus for the surfaces
through 4 given points, say the points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, O, 1),
the 6 given surfaces may be taken to be yz=0, z2=0, 2y=0, 2w =0, yw=0, zw=0,
and every other quadric surface through the 4 points is by means of these expressed
linearly in the form (a, ...Yyz, 2z, ay, aw, yw, zw)=0; for the quadric surfaces through
8 points there are two surfaces P=0, @ =0; and every quadric surface through the
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8 points is by means of these expressed linearly in the form aP+B3Q=0; and (as
the extreme case) if the quadric surface passes through 9 given points, then there is
the single quadric surface P = 0.

17. In the questions in which such quadric surfaces present themselves, it is in
general quite immaterial what particular surfaces are selected as the surfaces P =0,
@=0,...; the selection may be made at pleasure and, being so made, the surfaces are
to be regarded as completely determinate; viz, there would be no gain of generality
if these were replaced by any other surfaces aP+ 8@ ...=0. For instance, in the
theory of the quartic surfaces with 6 given points as nodes, we have through the 6
given points the 4 quartic surfaces P =0, @Q=0, R=0, S=0, and we consider the
quartic functions (a, ...3P, @, R, S)* and J (P, @, R, S): each of these is unaltered
as to its form when P, @, R, S are replaced each of them by any linear function of
these quantities; viz, (@, ...QP, @, R, S)* is changed into a new quadric function
(@,...3P, Q R, Sy, and J (P, Q R, S) into a mere constant multiple of its original
value. We have herein a justification of the expressions in question, through 6 given
points there are 4 quadric surfaces, &c.

General theory of the Quartic Surface with a given Node or Nodes.

18. A quartic surface contains 34 constants; and the number of conditions to
be satisfied in order that a given point may be a node is =4. Hence, if the surface
has k given points as nodes, the number of constants is =34—4%; and it would at
first sight appear that k¥ might be =8, and that with the 8 given points as nodes
we should have a quartic surface containing 2 constants. But this is not so in a
proper sense; for through the 8 given points we have 2 quadric surfaces P=0, @=0;
and we can by means of these form a quartic surface (a, b, ¢c§P, Q)*=0, containing
2 constants, and having in a sense the 8 points as nodes. This, however, is no
proper quartic surface, but is a system of 2 quadric surfaces, each of them passing
through the 8 points, and the two quadric surfaces therefore intersecting in a quadri-
quadric curve through the 8 points; which curve is therefore a nodal curve on the
compound surface; and it is only as points on this nodal curve, and not in a proper
sense, that the 8 given points are nodes of the quartic surface. The greatest value
of k is thus k=17.

19. Of course, if k=0, we have the general quartic surface U =0, containing 34
constants. The cases k=1, k=2, k=3 (viz, a single given node, 2 given nodes, 3
given nodes), may be at once disposed of; taking for instance the 1st node to be the
point (1, 0, 0, 0), the 2nd node the point (0, 1, 0, 0), the 3rd node the point
(0, 0, 1, 0), we find at once an equation U =0, with 30, 26, or 22 constants, having
the given node or nodes.

Four given Nodes.

20. The case of 4 given nodes is just as easy; but in reference to what follows,
it is proper to consider it more in detail. The equation should contain 18 constants;
we have through the 4 given points 6 quadric surfaces, P=0, Q=0, R=0, S=0, =0,
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U =0, and we can by means of them form a quartic equation (a,...JP, @, R, S, T, U)*=0,
having the 4 given points as nodes; this contains, however, (21—1=) 20 constants;
the reduction to the right number 18 occurs by reason that the functions (P, @, R, S, T, U),
although linearly independent, are connected by two quadric equations

(+YP, Q R, 8, T, Uy=0, (#¥IP, Q R, 8, T, Uy=0;
hence writing the equation of the quartic surface in the form
(a’ g Q”)Z Yyt X (*3{”)2 b “ (*§11)2 = 0;

the coefficients A, w may be so determined as to reduce to zero the coefficients of
any two terms of the equation, and the number of constants really is 20—2=18, as
it should be.

21. In proof, observe that, taking the 4 given nodes to be the points (1, 0, 0, 0),
0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0), the quadric surfaces may be taken to be yz=0,
22=0, 2y=0, 2w =0, yw=0, zw=0; the equation of the quartic surface will thus be

(a, ...Qyz, 2z, ay, aw, yw, zw)*=0;
but we have between the functions ay, &c., the two identical relations
ay.ow—wz.yw=0, ay.zw—aow.yz=0;

and the number of constants is thus =18.

Five giwen Nodes.

22. In the case of 5 given nodes, the number of constants should be =14. We
have through the 5 given points, 5 quadric surfaces P=0, @=0, R=0, =0, T'=0,
and we form herewith the quartic equation (a,...Q.P, @, R, S, T)*=0, containing the
right number 14 of arbitrary constants. The functions P, @, &c. are in this case not
connected by any quadric relation, and the equation just written down is in fact the

general equation of the quartic surface with the 5 given nodes.

23. In verification, take the first 4 nodes to be as above, and the 5th node to
be the point (1, 1, 1, 1); we may write

P, Q R 8 D={z(y—2), z2(y—w), y(&—2), y (@—w), ay—2w};

and if from the 5 equations P =z (y—2), &c., we eliminate (z, y, 2, w), we obtain
one, and only one, relation between the functions P, @, R, S, T'; this is found to be

PS(Q+R-T)- QR(P+8-T7)=0,
or, what is the same thing,
R(P-Q (S-T)-P(R-8)@Q~T)=0;

viz., it is a cubic relation, and there is consequently no quadric relation between the
5 functions.
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Stz given Nodes.

24. In the case of 6 given nodes, the quartic surface should contain 10 constants.
We have through the 6 given points 4 quadric surfaces P =0, @ =0, R=0, S=0;
but if we form herewith the quartic surface (a,...JP, @, R, S)*=0, this contains only
9 constants. It is to be shown that the Jacobian surface J (P, Q, R, S)=0 of the
4 quadric surfaces (or say of the 6 points) is a quartic surface having the 6 given
points as nodes, and not included in the foregoing form (a, ...YP, @, R, S)*=0; this
being so, we have the quartic surface

(@ ...9P, @, R, Sp+6J(P, @, R, 8)=0,
having the 6 given points as nodes, and containing the complete number of constants,

viz., 10.

25. The 6 given nodes being any points whatever, their coordinates may be taken
to be (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1,1, 1), and (a, B, v, ). I
proceed to find the Jacobian of these 6 points. For this purpose, let (a, b, ¢, £, g, k)
be the 6 coordinates of the line through the points (1, 1, 1, 1) and (a, B, v, 8), viz,

a=B—y, [f=a-3

b=y —a, g=8 =3,

c=a-—B, h=fy—3,
whence af+ bg + ch =0, and also

h—g+a=0,

—h . +f+b=0,
g—f .+c¢ =0,
—a—b—-c .=0,

we have through the 6 points the plane pairs

z( .—he—gz+aw)=0,

y(—hz . +fz2 +bw)=0,

z2( ge—fy . +ow)=0,

w(—ar—by—cz . )=0,
where, adding the four equations, we have identically 0=0. For this reason, we cannot
take these to be the equations of the 4 quadric surfaces, but we may take the first
8 of them for the surfaces P=0, =0, R=0; and for the 4th surface S=0, I take
the quadric cone having its vertex at the point (0, 0, 0, 1); viz, the equation is

aayz + bBzx + cyxy = 0;

that is, I write

(P, Q, R, 8)={z(hy — gz + aw), y (= ha + fz + bw), 2(9z — fy + cw), (aayz + bBzx + cyzy)}.
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26. The Jacobian is then easily found to be

(bBza + cywy) (— agh, bhf, cfg, abe, — af?, —gB, hC, ad, bg, — chYx, y, 2z, w)
+ (cyzy + anyz) (agh, —bhf, efy, abe, fA, —bg?, —hC, — a*f, bB, ¢h Yz, vy, 2, w)
+ (aayz + bBzz) (agh, bhf, — cfg, abe, — fA, gB, —ch, a*f, — b, cC Yz, y, z, w)=0;

where for the moment A, B, C denote bg —ch, ch —af, af — by respectively. Collecting
and reducing, the whole divides by 2abc; and if finally we replace a, b, ¢, f, g, b by
their values, the result is

J =<+ (v —a)zx (Bw* — 8y*) + (B — 8) yw (y2* — az* )

(B=v)yz (aw* —8) + (a — 8) aw (82" — 7y*)
=0.
+ (2 = B) oy (vw* —82°) + (v — &) 2w (ayﬁ—ﬁwz)}

27. It may be shown @& posteriors that J is not a quadric function of P, @, R, S. For,
attempting to express it in this form, J does not contain the terms z*w? yw? z2w? and it
thence at once appears that the coefficients of P2, ¢?, R* each of them vanish. Hence,
introducing for convenience the factor 2, I assume (0,0,0, D, F,G, H,L,M, N3P, Q, R, S)=2J.
Comparing the terms in w?(yz, zz, zy), we obtain

beF=aa, caG@ =08, abH=cy;
and comparing the coefficients of w (y%2, 2%, 2%, y2*, za*, «y®), we obtain

—Bf +aaf =2, Ff +aal = -2,

—Gg+b,BN=J?, Gg+bBL =—%§,

~Hht oyl =02, Hh+cvyM=—fb1;

substituting for ¥, G, H their values, we obtain from the first 3 equations L, M, N

=:f 4 _—_g, j, and from the second 3 equations, L, M, N =i, i, !—L—; that is,
boié: Vear ' Lah 0c’ teca’ iiah

the equations are inconsistent, and the function J is not expressible in the form in

question.

Jacobian Surface of Siz given Points.

28. The equation J=0 is the locus of the vertices of the quadric cones which
pass through the given 6 points; calling these 1, 2, 3, 4, 5, 6, we see at once that
the surface passes through the 15 lines 12, 13,...56, and also through the ten lines
123.456 (viz., line of intersection of the planes through 1, 2, 3, and through 4, 5, 6),
&c. In fact, taking the vertex at any point O in the line 1, 2, the lines drawn
to the six points are 01 =02, 03, 04, 05, 06; viz, there are only five lines, so that
these lie in a quadric cone. And taking the vertex at any point in the line 123. 456,
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the lines to the 6 points lie in these planes 123 and 456 respectively, and the quadric
cone is in fact this plane-pair. Moreover, the surface containing the lines 12, 13, 14, 15, 16,
must have the point 1 for a node; and similarly, the points 2, 3, 4, 5, 6 are each
of them a node on the surface. It is to be added that the surface contains the skew
cubic through the 6 points, or say the skew cubic 123456. See, as to this, post No. 108.

29. The surface in question (the Jacobian of the 6 points) is a particular case
of the Jacobian of any 4 quadric surfaces. This more general surface will be considered
in the sequel; I only remark here that it contains 10 lines, corresponding to the
10 lines 123.456, &c., but it has not any other lines, or any nodes.

Jacobian Curve of Seven given Points, or of an Octad of Pounts.

30. In connexion with what precedes, we may here consider a curve which presents
itself in the sequel; viz, the curve which is the locus of the vertices of the quadric
cones which pass through seven given points. The general case is when no one of
the points is the vertex of a quadric cone through the other 6 points. We have
through the 7 points the three quadric surfaces P =0, @ =0, R=0; hence, forming
the equation aP +BQ+yR=0 of the general quadric surface through the 7 points,
and making this a cone, we find as the locus of the vertex J(P, @ R)=0; the
analytical form shows that this is a sextic curve. It appears, moreover, that the curve
is symmetrically related to all the 8 points P=0, =0, R=0; and instead of calling
it the Jacobian of the 7 points, we may call it the Jacobian of the octad. But in
further explanation, take the points to be 1, 2, 3, 4, 5, 6, 7; the vertex will lie on
each of the Jacobian surfaces 123456 and 123457; and it is at present assumed that
7 is not a point on the first surface, nor 6 a point on the second surface. The two
surfaces have in common the lines 12, 13,... 45, and they consequently besides intersect
in a curve of the 6th order, or sextic curve, which is the locus in question. At the
point 1 there is on the first surface a tangent cone through the lines 12, 13, 14, 15, 16,
and on the second surface a tangent cone through the lines 12, 13, 14, 15, 17; these
two cones have for their complete intersection the lines 12, 13, 14, 15, which lines
belong to the complete intersection of the two surfaces, but not to the sextic curve.
It thus appears, d posterior:, that the sextic curve does not pass through the point 1;
and similarly, that it does not pass through any of the points 2, 3, 4, or 5. As to
the points 6 and 7, each of these is on only one of the quartic surfaces, and there-
fore the curve of intersection does not pass through either of these points.

31. Suppose, however, that one of the seven points is the vertex of a cone
through the other six; it is of course the same thing whether we take this to be
one of the points 1, 2, 3, 4, 5, or one of the points G and 7, but the result comes
out more easily in the latter case; viz, in the former case, taking 1 to be the point
in question, the two tangent cones at 1 are one and the same cone, and all that
appears is that there is nothing to hinder a branch or branches of the sextic curve
from passing through the point 1. But in the latter case, taking 7 for the point in
question, then 7 lies on the surface 123456, being a simple point on this surface, but
a node on the surface 123457; and it thus appears that there are through 7 two

0. /VIIL. 19
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branches of the sextic curve; so that any one of the seven points, being the vertex of
a cone through the other six, is an actual double point on the sextic curve.

32. In the case where two of the points are each of them the vertex of a cone
through the other six points, then the seven points lie on a skew cubic; and the
sextic curve of the general case becomes this skew cubic twice repeated.

Seven given Nodes.

33. In the case of 7 given nodes, the number of constants should be =6; the
7 given points determine 3 quadric surfaces P=0, @ =0, R=0: and we have hence
the quartic surface (a,...QP, @, R)*=0, containing 5 constants only. That this is not
the general quartic surface with the 7 given nodes, is also clear from the consideration
that the surface in question has 8 nodes; viz, the 8 points of intersection of the
three quadric surfaces. Suppose that a particular quartic surface, having the 7 given
nodes, but not of the last mentioned form, is A=0; then a quartic surface having the
7 given nodes is

(a,...YP, @ Ry +60A=0;

and this, as containing 6 constants, will be the general quartic surface with the 7 given
nodes.

L, 4

34. It follows that, if A’=0 be another quartic surface having the 7 given nodes,
we must have identically A’— pA =(*{P, @, R)*, where p is a determinate constant and
(*YP, Q Ry a determinate quadric function of (P, @, R). The formula extends to
the case where A’=0 has the 8 nodes (P=0, =0, R=0), but we have then p=0,
and the meaning is simply that the general quartic surface having the 8 nodes is
C¥Q P Q, =0

35 A particular quartic surface having (in an improper sense) the 7 given nodes,
but not having the 8th node, is MQ =0, where M=0 in the plane through any 3 of
the 7 points and Q=0 is the cubic surface through these same 3 points, and having
the remaining 4 points as nodes. The equation of the cubic surface, if the 4 points
are taken to be (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), is obviously of the form

By &  Supe 2 g 0, (that is, ayzw + bzzw + cayw + dzyz=0),

@ e By U
and by making the surface pass through the 3 points we determine linearly the
coefficients (a, b, ¢, d), that is, their ratios. The equation of the quartic surface thus is

(a,.. 7P, Q Ry+6MQ=0,

the 7 given points being here proper nodes; and the formula being precisely equi-
valent to the preceding one containing A.

36. We can with the 7 given points form 35 such combinations MQ =0 of a
plane and a cubic surface, and so present the equation of the quartic surface under
35 different forms; these are of course equivalent in virtue of the before mentioned
formula for A’—pA; viz, we must have identically MQ — pM'QY' =(*JP, @, R)*: a
theorem of some interest, which it might be difficult to verify @ posterior.
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Investigation of the cases of 8 Nodes.

37. It has already been shown that a quartic surface cannot in a proper sense
have 8 given nodes. In regard to the quartic surfaces with 8 nodes, we start from
the surface with 7 given nodes; viz,

(a,...QP, Q, RP+0V =0,
or, what is the same thing,
(@,...9P, @ RP+6MQ=0;

and we inquire in what cases this surface has an 8th node. Obviously if 6=0. that
is, if the surface is (a,...QP, @, R)*=0, the surface will have an 8th node, the
remaining intersection of the quadric surfaces P =0, Q=0, R=0 (observe that this is
a point in no wise depending on .the particular quadric surfaces, but uniquely deter-
mined by means of the 7 given points); and we have thus one kind, say the
“octadic” surface, of the quartic surfaces with 8 mnodes; viz, the nodes are the
8 points of intersection of any 3 quadric surfaces, or they are an octad of points.
By what precedes, 7 of the nodes may be given points, and the remaining node is
then a uniquely determinate point, the 8th point of the octad.

38. But if 6 be not =0, there may still be an 8th node; viz, this must then
be a point on the Jacobian surface J (P, @, R, V)=0, which is of the order 6. It
is clear d priort that this must be a surface depending only on the 7 points, but
independent of the particular surfaces P=0, Q=0, R =0, V =0; to verify this, observe
that, substituting for V the function V', =pV + (*QP, @, R)*, we in fact leave the
Jacobian unaltered ; I call it the dianodal surface of the 7 points.

39. I say that the 8th node may be any point whatever on the dianodal surface ;
in fact, regarding for a moment the coordinates of the node as given, and expressing
that the point is a node on the quartic surface, we have 4 equations containing

aPy+ hQ,+gR,, hP,+bQ,+fR,, gP,+fQ,+ cR,,

(Py, @, R, the values of P, @ R at the node,)) but which, if only the point be on
the dianodal surface, reduce themselves to three equations; viz, we have between the
coefficients (a, b, ¢, f, g, k) and 6 three equations which being satisfied, the point in
question will be a node. And it thus appears that, taking the 8th node to be a
given point on the dianodal surface, the equation (a,...QP, @ R)+6V =0 of the
quartic surface will contain 3 constants. Observe that we may through the 8 nodes
draw 2 quadric surfices P=0, @=0; and this being so if A=0 be a particular quartic
surface with the 8 nodes, then the general quartic surface will be

(@, b, AP, Q)+ 6A =0,

containing the right number 3 of constants. But there is not here any simple form
of the surface A =0, such as the form MQ =0 for the surface through 7 given points.
19—2
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40. It is clear @ prior: that the relation between the 8 nodes is a symmetrical
one ; so that the 8th point being situate anywhere on the dianodal surface of the
7 points, each of the points will be situate on the dianodal surface of the remaining
7 points. This is a remarkable property of the dianodal surface, which will have to
be again considered.

41. In what precedes, we have the second kind of quartic surfaces with 8 nodes,
say the “dianome”; viz., each node is a point on the dianodal surface of the remaining
7 nodes; any 7 of the nodes may be taken to be given points, and the remaining
node to be any point whatever on the dianodal surface of the 7 points.

The Dianodal Surface.

42. Consider the seven points 1, 2, 3, 4, 5, 6, 7. As already mentioned, through
three of these, say 1, 2, 3, we may draw a plane M =0; and through the same three
points, with the remaining points 4, 5, 6, 7 as nodes (3 + 4.4 =19 conditions), a cubic
surface =0; this surface passing through the six lines, 45, 46, ... 67. Hence we have
A, =MQ, =0, a quartic surface with the seven points as nodes. And using this form
of A, it may be shown that the dianodal J (P, @, R, A)=0 passes through the 21
lines 12, 13,...67, and through 35 plane cubics such as M =0, Q=0; viz, this is a
cubic in the plane 123 passing through the points 1, 2, 3, and through the inter-
sections of the plane with each of the six lines 45, 46,... 67 (nine points determining
the cubic); the complete intersection by the plane 123 being therefore composed of
this cubic and of the three lines 12, 13, 23. For the passage through the cubic, we
have only to observe that

J(P, Q R, MQ)=J(P, Q R, Q)M +J(P, Q, R, M)Q=0

is satisfied by M =0, Q=0; and for the passage through the lines, taking =0, y =0,
z=0, w=0 for the equations of the planes 567, 674, 745, and 456 respectively, each
of the functions P, @, R is of the form ayz+ bzx+ cay+ faow + gyw + hzw, and the
function Q is of the form Ayzw + Bzwa + Cwzy + Dzyz. Hence, writing in the derived
functions for instance z=0, w=0, the first and second lines of the determinant

J(P, Q, R, Q) will be of the form

¢y, ¢y, ¢y, 0],
6z, & oaiie w50
or the determinant vanishes for z=0, w=0; that is, for any point of the line 45 we

have Q=0 and also J(P, @, R, Q)=0; consequently J (P, @, R, MQ)=0, and the
like for the other lines. The theorem is thus proved.

43. I say that the dianodal surface passes through each of the 7 skew cubics,
such as 123456. To prove this, it is only necessary to show that the skew cubic
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128456 lies on the dianodal surface. For this purpose it will be enough to show that
the skew cubic meets the plane 712 in a point of the surface; for then it will, in
like manner, meet each of the 15 planes 712, 713,...756 in a point of the surface;
that is, we shall have 15 intersections of the curve and surface, and there are, besides,
the intersections 1, 2, 3, 4, 5, 6, in all 21 intersections; that is, the skew cubic must lie
on the surface.

44. The plane 712 meets the surface in three lines and in a plane cubic deter-
mined by the points 7, 1, 2 and the six intersections of the plane with the lines
34, 35,... 56. We have therefore to show that this plane cubic meets the skew cubic
123456. Consider for a moment the points 1, 2, 3, 4, 5, 6 and another point 7. As
seen above, we have in general, through the points 1, 2, 7" and with the points
3, 4, 5, 6 as nodes, a determinate cubic surface, which surface passes through the lines
34, 35,...56. ‘But the cubic surface becomes indeterminate if the points 1, 2,7, 8, 4, 5, 6
are on the same skew cubic; that is, if 7' is any point whatever on the skew cubic
123456 (the proof presently). Taking, then, 7' as the intersection of the skew cubic
by the plane 712, we have in this plane the points 7', 1, 2, and the intersections of
the plane by the lines 34, 35, ... 56, nine points through which there pass an infinity
of plane cubics; that is, the plane cubic determined by the points 7, 1, 2 and the
six intersections will pass through the point 7’; viz., it meets the skew cubic 123456.

45. For the subsidiary theorem, taking X, Y, Z, W as current coordinates, viz,
X=0,Y=0, Z=0, W=0 as the equations of the planes 456, 563, 634, 345 respectively,
(%1, Y1, 21, wy) and (3, Y, 2, w,) as the coordinates of the points 1 and 2 respectively,
and (=, y, 2, w) for those of 7’; the equation of the cubic surface passing through
7', 1, 2, and having the nodes 3, 4, 5, 6, is

Lo b 4
XY Ol e TR e
5 T D
ey’ e’ow
dhigre i Bagng &
O wlh b G
: il
ey B4 2z’ w
and this ceases to be a determinate function if only
1T LU0k
RRE, Gp AR
= (ks op digu i
n'n s w
Ticoakit 36 0.3
' Yy @ w
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viz., considering (z,, ¥, 2, ), (@, Y., 2., w,) as given, this is a twofold relation
between the coordinates (z, ¥, z, w) of the point 7. The relation may be represented
by the four equations (yzw)=0, (2wz)= 0, (wzy)=0, (zyz) =0, if for shortness

(yew)=| yz , 2w , wy
Y12, W, W
YaZo, 2Wy,  W2Ye

and the like as to the other symbols. The four equations represent quadric surfaces,
each two intersecting in a line [e.g, (yzw)=0, (s2wx)=0 in the line 2=0, w=0], and
the four surfaces besides intersecting in a skew cubic, which is the required locus of
the point 7', and which, as is seen at once, passes through the points 1, 2, 3, 4, 5, 6.

46. By what precedes, we have on the dianodal surface through the point 1 the
lines 12, 13, 14, 15, 16, 17, and the skew cubics 123456, &c. The six lines are not on
the same quadric cone, and it thus appears that the point 1 must be a cubic-node
(point where, instead of the tangent plane, we have a cubic cone) on the surface. It
is to be remarked that the lines 12, 13, 14, 15, 16, and the tangent at 1 to the
skew cubic 123456, lie in a quadric cone; viz, this tangent is given as the sixth
intersection of the cubic cone with the quadric cone through the lines 12, 13, 14, 15, 16.

47. I revert to the equation of the dianodal surface as given in the form
J=J(P, Q R, MQ)=0, where M =0 is the plane through the points 1, 2, 3, and
Q =0 the cubic surface through these points, and having the points 4, 5, 6, 7, as nodes.
We can find the orders of the several functions P, @, R, M, Q in the coordinates
(#, 1, 2, wy), &c., of the several points; viz., writing for shortness #* to denote the
order 2 in regard to (=, %, 2, w,), and so in other cases, we have

'P= Q=R=JJ2(.’I}5, ws, w7)2 (-7/'1, 372, .’173, (l?'4)2,
M=z (x5, x5, x), -

Q = a* (%5, @, ) (-Z'x, Xgy Tgy w«t)g;

{where, of course, the 2% #, 2* show in like manner the orders in regard to the
current coordinates (#, y, z, w); the proof in regard to Q is easily supplied} The
order of J is equal that of PQRMQ, less 4 as regards the current coordinates, by
reason of the differentiations; that is, we have J = af(2,&2,)° (2,25252,)"; and we thus
see that the equation of the dianodal surface as above obtained is encumbered with
a constant factor of the form (2 a.,)*(@,25752,). In fact, the relation between the 7
points and the current point (z, y, z, w), or say the point 8, as expressing that the
8 points are the nodes of a dianome, should be a symmetrical one in regard to the
coordinates of the several points; and being of the order 6 in regard to the coordi-
nates (#, y, z, w), it should be of the same order in regard to the other coordinates;
that is, the true form would be J = (z22,252,25252;)° = 0.

48. It is possible that taking the 4 points, say 1, 2, 3, 4, to be (1, 0, 0, 0),
0, 1,0,0), (0,0, 1,0), (0,00, 1), and the 3 points, say 5, 6, 7, to be (1, 1, 1, 1),
(@ B, v, 8), (@, B, o, &), the extraneous factor might exhibit itself, and that the
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equation divested of this factor might be of a tolerably simple form. I have not,
however, worked this out, but I have, by an independent process, obtained in regard
to the dianodal surface of the 7 points a result which may be interesting.

49. The dianodal surface, qud surface having the first-mentioned 4 points for cubic
nodes, has its equation of the form

yow (y, 2, w) +zaw (2, x, wy+zyw (x, y, w) +zyz(z, y, 2)’ +zyzw (2, y, 2, w)=0;

where in the cubic functions the terms a° ° 2% w® none of them appear. If for
instance w =0, the equation becomes (z, y, z)* =0, which, by what precedes, is a
known cubic curve, viz., the curve through the points 1, 2, 3 and the intersections of
the plane 123 by the lines 45, 46, 47, 56, 57, 67; and we can by this consideration
find the cubic function (z, ¥, z)°, and thence by symmetry the other cubic functions.
I take

(a”b’ C,f,g, h) {(1)1)1) 1)y (a’ By'Y)S)
(«, V, ¢, f', g/, ') + for coordinates of line through 'i (1255 oo bl ) e (- 68 S )
(a, b, c, T, 8> h) \(a, B; Y 8)’ (a/7 ﬂ” 'y" 8’)

respectively ; viz.,, I write :
a=B—vy, f=a -3 =By, fl=d =¥ a=RBy —By, f=ad —a'd
b=y—a, g=B-98 V=¢—-0o, g=8-7¥ b=yad —ya, g=R-p3
C=a'—B, h=’)"—8 C’=C¢’—B', h/=71_8/ C=aB’—a,,8, h=78l—'y'8

and I write moreover

A= h—g+a,
w=—h . +f+b,
ul=t5io—f .+ec,
w=—a—b —c¢

50. This being so, the cubic curve through the last-mentioned six points has its
equation of the form

B b o iR o s Bed iy
ax +by+cz de+by+cz ar+hy+gz Ae+py+vz

and to make this pass through the points 1, 2, 3, we write therein successively
(y=0, 2=0), (2=0, £=0), (=0, y=0); viz, we have for the ratios 4 : B: C: D
the three equations :

R
o

_+g+12—-0
5l S e ks E 4
g
'E+b7+E+;—0,
£l o ie
R Y R
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In eliminating, for instance, B for the first and second equations, the resulting equation
divides by ab’—a’h, =a+b+4c, and we thus obtain, between 4, C, D, the three
equations (equivalent to two)

A+C’a+Df P

R il
IS |
ca  ca VA

A G D
bt b T =

from which the ratios 4 : C : D may be obtained by actual calculation. After all
reductions, we have

A= abc (8 +BY)af+ (B + ) bg + (v& + «/F) ch},
=—ab¢ {(ad +By)af+(BS +ya)bg+ (y8 +afB)chj,
C= abec {(ad\ + BBu +yy'v + 88w},
D=—\pv{(ad’a + BB'b + yy'c};
viz, A, B, C, D are proportional to these values respectively. Multiplying by the pro-
duct of the denominators, I find without much difficulty that the resulting cubic

function is divisible by a+b +c; hence, introducing the factor zyz, and an indeterminate
multiplier /, I write

ayz (az + by + cz) (@@ + 'y + '2) (az + by + c2) Az + py + vz)

o A A B s C & D
ax+by+cz adz+by+cz arx+by+cz Az+py+vz)’

l
» 3 — _ e R
ayz (%, 9 = 3G

where A, B, C, D have the values above written down.

51. Considering the orders in regard to (a, 5; v, 8), (¢, B, v, &), and observing
that @, b, ¢ and @/, ¥, ¢ are linear functions of the two sets respectively, but that
a, b...h, M... =, are linear in the two sets conjointly, or say

’ x

Q55 =060 D= ol ARt aa:
we have
Aad'al =d%at. a?a’® = a’a”?,
so that after the division by a+b+c, =aa’, the order will be a%”. Hence ! will be
a mere numerical factor, and the last-mentioned equation gives, without any extraneous
factor, the terms zyz (2, y, 2)* in the equation of the dianodal surface of the seven points.

Octadic Surfaces with 9 or 10 Nodes.

52. In regard to the surfaces with 9 and 10 nodes, I consider first the octadic
surfaces. Starting as before with the given points 1, 2, 3, 4, 5, 6, 7, we have a deter-
minate point 8 completing the octad, and the surface with the 8 nodes is

(a,...3P, Q Ry=0,
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(5 constants). Suppose that there is another node 9; this must be a point on the
Jacobian curve J (P, @, R)=0, which (as was seen) is a sextic curve not passing
through any of the 8 points; the node 9 may be any point on this curve, viz, taking
its coordinates as given, the condition of its being a node gives 4 equations, and these
for the very reason that the point is on the Jacobian curve, reduce themselves to
2 equations, which can be satisfied by means of the constants (a,...); the resulting
equation should therefore contain 8 constants.

53. In order to find it, taking as above 9 a given point on the Jacobian curve,
this will be the vertex of a quadric cone, say P =0, through the 8 points; we may
draw through the 9 points another quadric surface @ =0, and through the 8 points a quadric
surface R =0; this being so, we have the quartic surface (@, b, 0, 0, g, hYP, @, R)*=0,
having the 9 nodes, and containing, as it should do, 3 constants; this may be written

(aP + 2hQ +2gR) P +bQ*=0;

viz, if bR =aP + 21Q + 2gR, that is, if R'=0 be the general quadric surface through the
8 points, then the equation is @°*— PR’ =0, where observe that R’ is considered as
containing implicitly 3 constants.

54. If there is a 10th node, say 10, this is also a point on the Jacobian curve
J(P, @ R)=0, and it may be any point whatever on the curve; taking it as a given
point on the curve, the resulting equation should contain 1 constant. We may take
P=0 to be the quadric cone, vertex 9, through the 8 points, R =0 the quadric cone,
vertex 10, through the 8 points, @ =0 the quadric surface through the 8 points and
the points 9 and 10 (viz., the surface through 9, 10 and any 7 of the 8 points will
pass through the remaining 8th point). The equation of the quartic surface then is

(0,i:0::0,°0, g, 00.P, @, R}=0;

that is, bQ*+ 29PR =0, containing 1 constant; we may reduce this to @*— PR =0, the
constant being considered as contained implicitly in one of the functions. It is clear
that the constant cannot be so determined as to give rise to an 11th node, nor
indeed to any other singularity in the surface.

55. In the case of the surface with 9 nodes, it is clear that this is octadic in
one way only; the node 9 cannot form an octad with any 7 of the remaining nodes.
But in the case of the surface with 10 nodes, the question arises whether the nodes
9 and 10 may not be such as to form an octad with some six, say with the nodes
1,2, 3,4, 56 of the remaining 8 nodes; that is, whether we can have 1,2, 3,4,5,6,7, 8
forming an octad, and also 1, 2, 3, 4, 5, 6, 9, 10 forming an octad. I will show that
this is impossible if only the points 1, 2, 3, 4, 5, 6 are given points, that is, points
assumed at pleasure and not specially related to each other. For this purpose, assuming
that the points form 2 octads as above, take through 1, 2, 3, 4, 5, 6, 7, 9 the quadric
surfaces P=0, Q=0, then each of these passes through 8, 10; take R=0 any other
quadric surface through 1, 2, 3, 4, 5, 6, 7, 8, and S=0 any other quadric surface
through 1, 2, 3, 4, 5, 6, 9, 10. Then P=0, @=0, R=0 intersect in the 1st octad,
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and P=0, @ =0, S=0 intersect in the 2nd octad ; the quartic surface (if it exists)
must be simultaneously of the forms (*3P, @, R}*=0, (x§P, @, S)*=0; and this implies
an identical equation (*¥P, @, R, Sf=0. The quadric surfaces are surfaces through
the points 1, 2, 3, 4, 5, 6, and taking through these six points any other quadric
surfaces 4 =0,C=0, E=0, H=0, we have P, @, R, S each of them a linear function of
A,C, E, H; and the relation between P, @, R, S gives a like relation (x§4, C, E, H*=0
between A, C, E, H. 1 assume A =123. 456, E=134.256, H =145 .236, C =152, 346 ;
viz., A =0 is the plane-pair formed by the planes through 1, 2, 3 and 4, 5, 6 respectively ;
and so for the others: we have to show that there is not any such identical relation

(*Y4, C, E, Hp=0.

56. We may through 3 draw the lines LM, QT to meet 14, 26 and 12, 46
respectively ; and through 5 the lines RS, NP to meet 14, 26 and 12, 46 respectively.
Observe that the points O.in the figure are apparent intersections only; viz., NP does

L

s N 6

not meet QT, nor LM meet RS. In fact, if NP met Q7 it would be a line in the
series of lines meeting 14, Q7', 26; or 5 would be situate in a hyperboloid, determined
by means of the points 1, 2, 4, 6, 3; viz, 5 would not be an arbitrary point: and
so LM does not meet RS. Now the quadrics £, H meet in the lines 14, 26, L1/, NP,
and the quadrics 4, C in the lines 12, 46, Q7, RS. Suppose that we had identically
(*44, C, E, HF=0; putting therein E=0, H=0, we should have (x§4, C)*=0, viz,
(A4 +A0) (4 + pC)=0; or there would exist quadrics of the forms A4 +AC=0 containing
the lines 14, 26, LM, NP. Now there is no quadric surface A4 +AC=0 containing
the line NP; for A+AC=0 is a quadric containing the sides of the quadrilateral
QRST; the generating lines of the one kind meet each of the lines RS, QT'; those
of the other kind neither. Hence NP, which meets RS but not Q7, cannot be a
generating line of either kind; and we have no identical relation (4, C, E, Hy= 0.

57. In the octadic surface with 9 nodes; starting with any 7 nodes of the octad,
9 is not the 8th point of the octad, and hence (by the theory of the dianome) it
must lie in the dianodal surface of the 7 points; that is, the dianodal surface of the
7 points must pass through 9, viz, through any point whatever of the Jacobian curve
of the 7 points, that is, of the octad; or (what is the same thing) the dianodal surface
of the 7 points passes through the Jacobian curve of the octad. This is an obvious
property of the dianodal surface, the surface J(P, @, R, V)=0 contains the Jacobian
curve J(P, @, R)=0. But it further appears that, starting with any 6 points of the
octad and with the point 9 (that is, any point whatever of the Jacobian curve), the
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dianodal surface of these 7 points must contain the remaining 2 points of the octad.
And in the octadic surface with 10 nodes, starting with any 5 points of the octad
and with the points 9 and 10 (that is, any two points on the Jacobian curve) the
dianodal surface of these 7 points must contain the remaining three points of the
octad. I have not attempted to verify these last properties of the dianodal surface.

Dianomes with 9 or 10 Nodes.

58. I now consider the dianomes with 9 and 10 nodes. Starting from the general
form

(a, b, SYP, Q) +6A=0,

where A=0 is a particular quartic surface having the 8 nodes, it at once appears
that if there is a 9th node, say 9, this must be a point on the Jacobian curve
J(P, @ A)=0, or say on the dianodal curve of the 8 points, viz. (a=b=1, ¢=38, in
the formula No. 5), this is a curve of the order 18; the node may be any point
whatever on this curve, and taking it to be a given point on the curve, the number
of constants in the resulting equation should be 1. Hence if P=0 be the quadric
surface through the 9 points, and A=0 a particular quartic surface having the 9 points
as nodes, the gencral equation is aP*+ 6A =0.

59. But we may consider the question somewhat differently. Starting with the
7 given points 1, 2, 3, 4, 5, 6, 7 and with 8 a given point -on the dianodal surface
of the 7 points; it is clear that 9 must be on the dianodal surface 1234567, and
also on the dianodal surface 1234568 ; the complete intersection is of the order 36,
and we have to consider how this breaks up so as to contain as part of itself the
dianodal curve of the order 18.

Dianodal Curve of 8 Points.

60. Consider first any 8 points whatever 1, 2, 3, 4, 5, 6, 7, 8; where 8 is not on
the dianodal surface 1234567, nor 7 on the dianodal surface 1234568. The two surfaces
have in common the 15 lines 12, 13,...56 and the skew cubic 123456, they therefore
besides intersect in a curve of the order 18. At the point 1 the tangent cubic
cones of the two surfaces intersect in the lines 12, 13, 14, 15, 16 and the tangent
to the skew cubic 123456, 6 lines lying in a quadric cone; they therefore besides
intersect in 3 lines lying in a plane; that is, the point 1 is on the curve of the
order 18 an actual triple point, the 3 tangents lying @n plano; and the like of course
in regard to each of the points 2, 3, 4, 5, 6. But as 7, 8 lie each of them on only
one of the two surfaces, the curve of the order 18 does not pass through 7 or 8.

61. If, however, 8 lies on the dianodal surface 1234567, then each of the 8 points
will lie on the dianodal surface of the other 7; and in particular 7 will lie on the
dianodal surface 1234568. The surfaces intersect as before in a residual curve of the
order 18; the only difference is that 7 and 8 are now points on each surface; viz,
each of them is on one of the surfaces an ordinary point, and on the other a cubic
node; the points 7 and 8 are thus each of them an actual triple point on the curve;
and at each of them the 3 tangents are in plano. We thus see that the dianodal
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curve 12345678 is a curve of the order 18, such that each c¢f the 8 points is a triple
point on the curve, the tangents at each of them being in plano.

Ten Nodes.

62. Suppose there is a 10th node, say 10; starting from the equation alP?+ 6A =0
(P =0 the quadric surface through the 9 points, A =0 a particular quartic surface having
the 9 points as nodes), it at once appears that the node must be one of the points
J (P, A)=0; hence, taking it to be one of these points, we have 4 equations, which,
in virtue of the node being one of the points in question, reduce themselves to a
single equation determining the ratio @ : 6; we have thus a completely determinate
surface, say [0 =0 having the 10 points as nodes. The number of points J (P, A),
writing in the formula No. 5, a=1, b=3, is obtained as 1+ 3+ 9+ 27 =40, but it
is to be observed that the surface P =0 passes through each of the 9 nodes of the
surface A=0; these count twice among the points J (P, A)=0, and the number of
residual points (or say the dianodal centres of the 9 points) is 40 — 18 =22 ; viz, this
is the number of positions of the node 10. [The nine points count each three times
and the number of residual points, or positions of the node 10, is thus not 40 — 18 = 22,
but 40 —27,=13]

Dianodal Centres of 9 Points.

63. In further explanation, observe that 9 is any point on the dianodal curve
12345678 ; the node 10 must lie on this same curve, and also on the dianodal surface
1234569. Take P=0 the quadric through all the 9 points, @=0 a quadric through
all but the point 9, BR=0 through ull but the point 8, S=0 through all but the
point 7. The dianodal curve 12345678 is J(P, @, V)= 0, and the dianodal surface
1234569 is J (P, R, S, V)= 0; the total number of intersections is 6 x 18 =108 ; these
include the 4 x 18 =72 points of intersection of the dianodal curve J (P, @, A)=0 with
the Jacobian surface J (P, @, R, S)= 0, except the four points J (P, @Q)=0, which are
the vertices of the 4 quadric cones through 1, 2, 3, 4, 5, 6, 7, 8 (which 4 points are not
situate on the curve J (P, R, 8)=0), and there are besides 40 points {108 = (72— 4) + 40}
which are the before mentioned points J(P, A)=0; viz, these are the 9 points each
twice [three times], and the residual 22 [13] points which are the dianodal centres of the
9 points.

General result as to the Dionomes.
64. We have thus established the theory of the dianome quartic surfaces; viz., we
have

The octodianome, 8 nodes, 7 of them arbitrary, and the Sth an arbitrary point
on the dianodal surface (order 6) of the 7 points.

The enneadianome, 9 nodes, the 9th an arbitrary point on the dianodal curve
(order 18) of the 8 points.

The decadianome, 10 nodes, the 10th any one of the 22 [13] dianodal centres of
the 9 points.

And as already mentioned, so long as the first 7 nodes are arbitrary, there cannot
be more than 10 nodes in all.
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THE SYMMETROID.
The Lineolinear Correspondence of Quartic Surfaces.

65. I consider four equations S=0, 7’=0, U=0, V=0, lineolinear in regard to
the two sets of coordinates (z, v, 2, w) and (a, B, v, 8); viz, each of these equations

is of the form
' (%Y, y, 2, wla, B, v, §)=0.

This implies that the point (z, y, z, w) lies on a certain quartic surface ® =0, and
the point (a, B, vy, 8§) on a certain quartic surface A =0, and that the two surfaces
correspond point to point to each other. In fact, writing the four equations in the form

La+ MB+ Ny+ P8§=0,
La+ MB+ Ny+ Ps=0,
L'a+ M"B+ N'y+ P"8=0,

L"a+M"B + N"y + P8 =0,

where L, &c., are linear functions of (z, y, z, w), then eliminating (a, B, v, 8), we obtain
the equation
Ol Lb, s lMagoiNiegioR: vk=i0y

i or et whinion i
L/l ; .]”// 4 JV’II ! P/I
L,”, ﬂ[’//’ lv'/l/, Pr//

and similarly, writing the four equations in the form

Az+ By+ Cz+ Dw=0,
A'z+ By+ Cz+ Dw=0,
A"z+ B'y+ C"z+ D'w =0,

A"z +B"y+ 0”24+ D"w =0,

where A, &c., are linear functions of (a, B, v, 8), then eliminating (z, y, 2z, w), we
obtain the equation

A Sty Al SRk CLE B LLE,
. S > SR
A B ROk, D
At BB S G P

Moreover, ® being =0, the four linear equations in (a, B, v, 8) are equivalent to three

equations, and give for instance (a0, B, v, 6) proportional to the determinants formed
with the matrix

L B poedlopontl
Ll/ s Iw” A N//’ P/l
LIIV’ JW”” NIII’ P/II

e )

;
I
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and similarly, A being =0, the four linear equations in (2, y, 2, w) are equivalent to
three equations, and give for instance (#, y, 2z w) proportional to the determinants
formed with the matrix

AL AERA ERE L o
Ao B SR
tesds sanl ts it A
which establishes the point-to-point correspondence of the two surfaces.
66. It would at first sight appear that any quartic surface (x{a, B, v, 8)*=0 what-
ever might have its equation expressed in the foregoing determinant form A = 0. This

equation seems, in fact, to contain homogeneously as many as 64 constants. But if
we multiply the determinant line into line by a constant determinant

(74 i A i

ot Of - CheN Y

ali ) bll S c/l : d/l

al/l’ b/’l’ c”l, dll/
and then column into column by another constant determinant, the coefficients, all but
one of them, of these constant determinants may be used to specialize the form of the
resulting equation, [say they are apoclastic constants]; this equation will really contain
64—(2.16—1)=33 constants; and in order that the quartic surface (*Qa, B3, ¢, §2=0

may have its equation expressible in the form A =0, a single relation must hold good
among the coefficients : but this in passing (*).

67. Returning to the quartic surface
A=|4, B, C, D |=0,
Alel Blan O ondh
A Bl Al
A S
we may connect this not only with the foregoing surface ® =0, but in a similar

manner with another quartic surface ® = 0; viz, taking the current coordinates (£, 7, {, ®),
we may form the lineolinear equations

Af+ A+ A"¢+ A"0 =0,
BE+ Bn+ B¢+ B" 0 =0,
CE+C'n+C"t + 0" 0=0,
DE+Dn+ D¢+ D" =0,

1 Applying the same reasoning to a cubic determinant A=0, the number of constants is 36-(2.9-1)=19;
g0 that a cubic surface is expressible in the form in question. And so for the quadric determinant A=0,

the number of constants is 16-(2.4-1)=9; so that a quadric surface is expressible in the form in question,
as ig otherwise obvious.
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which, by the elimination of (7, § »), give A=0, and by the elimination of (a, 3, v, 0)

a determinant quartic equation ® =0 between the coordinates (& 7, & w); and of

course the two surfaces A =0, ® =0 have a point-to-point correspondence such as exists

between the surfaces ® =0, A =0. The relation of the point (a, 8, v, 8) on the surface
A=0 to the point (2, y, 2, w) on the surface ® =0, and to the point (& 7, { o) on
the surface ® =0, may be conveniently indicated by means of the diagram

®
AL
7 st SN R 8
i TRRTYE T Ve
A nBEac R DA
17 o,
AII’ Bll, C//, D/I ; g
Am, .B,”, Cym’ D/u : &
68. It is to be observed that, writing for A, B, ... their values as linear functions

of (a, B, v, 6), we have in all 64 constant coefficients, which we may conceive arranged
in the form of a cube, thus:

a b —-
a/ bl

A

T
b

P

and taking these in fours height-wise, (¢, @, @, a;), &c., we compose with them the
linear functions aa+ a8+ ayy +a,8, &c., which enter into the equation >'A=O; taking
them in fours length-wise, (a, b, ¢, d), &c., we compose the linear functions az+by+cz+dw,
&c., which enter into the equation ® =0; and taking them in fours breadth-wise
(a, &, a”, @), &c., we compose the linear functions aé+ a'n + «"¢+ a”w, &c., which
enter into the equation ®=0.

69. The process may be indefinitely repeated; we obtain always the same three
surfaces over and over again, but on them an indefinite series of corresponding points ;
viz,, we may write

CHOUTAGID RO, K DO, AT DL

PR Pl B O,

viz.,, a point @ on A corresponds to a point P on ©® and to a point R on &®; R
corresponds to @ on A and to a new point P’ on ®; P’ to R on ® and to a new
point @ on A, and so on. And in the opposite direction P corresponds to @ on A,
and to a new point R, on ®; R, to P on ® and to a new point §, on A; and so
on. And of course the correspondence of any two points of the series, whether belonging
to the same surface or to different surfaces, is a one-to-one correspondence.
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The Symmetrical Case; Symmetroid and Jacobian.

70. I have established the foregoing general theory; but it is only a particular
case of it which connects itself with the theory of nodal quartics; viz, the cube of
coefficients is a symmetrically arranged cube

A S g
< CRUT RGP Uiy
R BN

vt

or say its upper face is the symmetrical square matrix

a, ko geb
Rawhy o im
9 f IPERC, il
L, my n, d

and the other horizontal planes, the like squares with the several terms affected by
suffixes.

The surface V =0 is here a surface of the form

Vi=idy 0l O sl | =10

H;''B, "¥.
G R o N
i e

{4, B, &c. linear functions of (a, B, ¢, 8)} viz, V is a symmetrical determinant; I call
this a symmetroid ; the surfaces V=0, ® =0 are one and the same surface, the Jacobian
of 4 quadric surfaces; moreover the points P and R are one and the same point, and
the correspondence R to P’ is a reciprocal one; so that, instead of the indefinite
series of points, we have only 2 points @, @ on the surface V, and 2 points P, P’
on the surface ® (= ®); viz, the diagram is

..A, 8,08, A0, 0,A..
..Q, P, P,Q P P Q.

moreover the symmetroid surface V =0 is a surface with 10 nodes, which is clearly
not octadic, and which is therefore the decadianome.
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71. Consider the quadric surfaces

S=@becdfghlmnrlsy 2 wi=0,

Do, Sz o R=0,
= ] % =t
V=(a3, cos i 3 )2= )

and a point (a, B, ¢, ) in the same or in a different space, such that the surface
aS+ BT +yU+38V=0 is a cone, or say for shortness,

oS+ BL+yU+ 8V = cone;

(a, B, v, 8) is said to be the determining point, or determinator of the cone. And if
we establish the equations

8 (aS+ BT +yU+8V)=0,
Sy( » )=0,
82( » )=0,
8w( » )=0:

which express that the surface is a cone, then the point (z, y, 2, w) is the vertex of
the cone. We have thus 4 equations lineolinear in (z, v, 2, w) and also in (a, B, v, §),
so that the relation between the 2 points is of the nature of that above considered.
The relation between (z, y, z, w) is given by the equation

S8 BTV =05

viz., the locus is the Jacobian of the 4 quadric surfaces. The relation between (a, B, v, 8)
is given by the equation

V=|a+afB+ay+aed ha +.., ga+..., la +...|=0,
ha + ... s LhbaR St fa e T
| ga+ ... S 1 e et e B Ll R T e L
a4 ... W e e e R (7 e

so that the locus is (by the foregoing definition) the symmetroid. And the deter-
minator point on the symmetroid thus corresponds to the cone-vertex on the Jacobian.

72. But the Jacobian may be obtained in a different manner; viz, if we establish

the equations
(88, +m8y+ &8, + w8,) S =0,

( o D=
( » )U::O’
( » )V=0,

then the elimination of (£ 7, ¢ ) leads to the equation J (S, 7, U, V)=0 of the
Jacobian surface. And since each of the equations is symmetrical in regard to (z, ¥, 2, w)
21
C. VIL
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and (§ 7, { o), it appears that the point (& 7, { w) is also a point cn the Jacobian
surface. We have on the symmetroid a point related to (£ %, ¢ o) in the same way
that (a, B, v, 8) on the symmetroid is related to the point (z, y, z, w); and this completes
the system of the 4 points, @ on the symmetroid, P and P’ on the Jacobian, @ on
the symmetroid; but in what follows I make no use of this last point @'

73. The points (z, ¥, z, w), (€ 0, { w) on the Jacobian correspond in such wise that,
taking the polar planes of either of them in regard to the quadrics S=0,7=0, U=0, V=0,
these intersect in a single point, viz, in the other of the two corresponding points.
Or, what is the same thing, the line joining the two points cuts each of the four
quadrics harmonically, whence also it cuts harmonically any quadric surface whatever
of the series aS+ BT+ yU+8V =0, (a, B, v, 8 being here arbitrary multipliers); viz.,
this property is an immediate interpretation of the equation

(€8, +m8y + &8, + 0dy) (aS+ BT+ yU+8V) =0,
or, as this is more conveniently written,

(a) "'if} 7, g’ wZZ:I;, Y, z, 'll})=0,
if for a moment (g, ...) denote the coefficients of the quadric function aS+ BT+ yU +8V.

74. Consider any 6 pairs of points (zy, ¥, 2, ), (&, m, &, @), &c., related as
above ; the quartic surfaces S=0, 7'=0, U=0, V=0 are surfaces cutting harmonically
the lines joining the two pairs of points respectively ; or say they are quadrics cutting
harmonically 6 given segments; and the general quadric surface which cuts harmonically
the 6 given segments is aS + BT +yU +8V =0. We thus see that the Jacobian surface
J(S, T, U, V)=0 is in fact the locus of the vertices of the quadric cones which cut
harmonically 6 given segments. The surface so defined by M. Chasles (Comptes Rendus,
tom. LIL, 1861, pp. 1157—62), and shown by him to be a quartic surface, is thus
identified with the Jacobian of any 4 quartic surfaces; and included herein we have
the particular case, also considered by him, of the locus of the vertices of the quadric
cones which pass through 6 given points, or Jacobian of the 6 given points.

75. It is to be shown that there are 10 systems of values (a, B, v, J), or, what
is the same thing, 10 points on the symmetroid, for each of which the quartic surface
aS+BT+yU+6V=0 is a plane-pair. For any such system of values the plane-pair
may be regarded as a cone, having its vertex at any point whatever on the line
which is the axis of the plane-pair; that is, each point of this line is the vertex of
a cone of the system of surfaces aS+ BT +yU+ 6V =0; or, what is the same thing,
the axis of the plane-pair lies on the Jacobian surface; viz., there will be on the
Jacobian surface 10 lines. Moreover, to the point (a, B, v, 6) on the symmetroid there
corresponds indifferently any point whatever on the axis of the plane-pair. The analytical
expressions for (z, y, z, w) in terms of (a, B, v, ) must therefore, for the values in
question of (a, B, v, 8), become indeterminate; and this can only happen if for the
values in question the first minors of the determinant V all of them vanish. But a
point (a, 3, vy, 8), for which the minors of V all of them vanish, is obviously a node
on the symmetroid; and it thus appears that there are on the symmetroid 10 nodes,
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each corresponding to a line on the Jacobian, and that the condition for determining
these is
aS+ BT +y U+ 8V = plane-pair ;

viz., the values of (a, B, v, 8), which satisfy this condition, belong to a node of the
symmetroid, and the line on the Jacobian is the axis of the plane-pair.

76. Reverting to the equation V =0 of the symmetroid, where V is a symmetrical
determinant the terms of which are linear functions of the coordinates (a, B, v, ), it
has already been shown, ante No. 7, that this is a surface with 10 nodes; but this
may be also proved as follows. Writing as before

aS +BT+yU+8V=(A, B, C, D, F, G, H, L, M, N{=, y, z, wy=0,

the condition that this shall be' a plane-pair implies a threefold relation between the
coefficients A, B, &c., and the required number of nodes is equal to the order of this
threefold relation. Establishing between the coefficients 4, B, &c., any 6 linear relations
whatever, we should have a ninefold relation to determine the ratios of the 10 quantities;
and the number of solutions would be equal to the order of the threefold relations.
But taking the 6 linear relations to be of the form (4,...Qx, v, 2z, w)*=0, the
question is in fact to find the number of the plane-pairs which pass through 6 given
points; and this is clearly =10.

77. Applying the conclusion to the system of quadric surfaces aS+ B1'+ yU +8V =0,
we see that there are in the system 10 plane-pairs; and that the lines of intersection,
or axes of the plane-pairs, are lines upon the Jacobian surface.

78. The equation V =0 of the symmetroid seems to contain homogeneously 40
constants. But starting with any given symmetrical determinant, we may multiply it
line into line by a constant determinant, and then column into column by the same
constant determinant, in such wise that the resulting product is still a symmetrical
determinant ; and the coefficients of the constant determinant may then be used to
specialise the form -of the equation. The equation V =0 of the symmetroid thus really
contains 40 — 16 =24 constants ; this is as it should be, for the symmetroid, qua quartic
surface with 10 nodes, contains 34 — 10 = 24 constants.

Symmetrovd with given Nodes.

79. A symmetroid can be formed with 7 given points as nodes; but there is no
proper symmetroid with 8 given points as nodes. If we endeavour to form such a
symmetroid, we obtain a system of 2 quadric cones, each of them passing through the
8 points; viz, these are any 2 out of the 4 quadric cones which pass through the
8 points. This will be shown in a moment; for the complete @ posteriors identification
with the decadianome, it would be necessary to show that a symmetroid could be found
having for nodes 7 given points, an 8th point anywhere on the dianodal surface, and
a 9th point anywhere on the dianodal curve; but this I have not succeeded in
effecting.

21—2
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80. We have for any node (a, B, v, 8) of the symmetroid,
a8+ BT + U + 8V = plane-pair.

If, then, 4 of the given nodes are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), we
must have S, T, U, V each of them a plane-pair. We may without loss of generality
assume S=a*+1? T=2*+w?; this, however, does not determine the signification of
the coordinates (z, y, z, w), for S will remain unaltered if we write therein

zcosf +y sinf, xsinf —y cosf for z, y;
and similarly 7' will remain unaltered if we write therein
zcos 0, +wsin 6,, zsin 6, —wecos B, for z, w.
Hence, if we go on to assume
U=k@+my+nz+pw)(@+m' y+n' z+p w),
V=k(&+my+mz+pw)(z+m'y +n'z+ p'w),
we may imagine the 6, 6, so determined that, for instance,

m+m'=0, p+p’'=0;
we have thus
S =22+

= 22+ w?,
U=k (z4+my+nz+pw)(z—my +n' z+pw),
V="Ik(z+my+mz+pw)(@+my +mn'z—pw);
formulze which contain the 12 constants
(k: m, n, p, nly pls kl) my, M, P, mlla nll)'

This is right, for the symmetroid containing 24 constants, the symmetroid with 4 given
nodes should contain (24—4.3=) 12 constants. And each additional given node will
determine 3 constants: hence for 4 new given nodes the expressions become deter-
minate (not of necessity uniquely so).

81. But for any 4 new nodes, the equations may be satisfied by writing therein

n=n/, p=—p, m=—m,, n,=n; viz, they then assume the form
S= a2+ Y,
= 22 + W

U=(@z+c2l+(by+dw),

V=(dz+c2}+ by +dw),
containing 8 constants, which may be determined so that the nodes shall be the 4 given
points. If now with the last mentioned values we form the value of aS+ BT +yU+ 8V,

this will consist of two terms (*{, z)* and (*Jy, w)’, the first of which will be a

square if
(a+ ya? + 8a”) (B + ryc® + 6¢*) — (yac + 8a'c’* = 0, say this is A =0,
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and the second will be a square if
(a+yb® +80") (B + yd* + 8d”) — (ybd + 8b'd’')* =0, say this is A'=0;
so that the condition
aS+ BT + yU + 8V = cone

will be satisfied if A=0, or if A’=0; that is, the equation of the symmetroid will
be AA’=0, or the symmetroid breaks up into the 2 quadric suwrfaces A =0, A'=0,
each of which is a cone.

82. It is to be further observed that, considering the first mentioned 4 points
(1, 0, 0, 0), &c., and any other 4 given points whatever, the equation of any one of
the 4 quadric cones through these 8 points will be of the form

(#9 By, va, aB, ad, B3, v8)=0;

viz, any equation of this form, being a cone, will admit of being expressed, and that
in one way only, in the form A =0. Consider then any one of the 4 cones through
the 8 points, and let its equation be thus expressed; we have the values of the
coefficients «, ¢, @/, ¢/, which enter into the expressions of S, T, U, V'; and similarly,
consideiing any other of the 4 cones, and expressing its equation in the like form, we
have the values of the coefficients b, d, ', d’ which enter into the expressions of

SO Y

83. If instead of taking 2 different cones through the 8 points, we take in each
case the same cone, the expressions for S, 7, U, V would be
S = 22 St ;1/2,
i = 2 4+ W,
U=(az+cz)+(ay+cw)
V=(da+cz)+ (ad'y + cw);
and we have identically
(ac’—d'c) (a'S —cc'T)— a'¢’U + acV = 0.
This solution may be disregarded.

84. Instead of the assumption S=a+13 T'=2z'+w* we may take =0, y=0,
2=0, w=0 to be planes of the plane-pairs S, 7, U, V respectively; it is then easy
to fix the remaining constants so that the 5th and 6th nodes of the symmetroid shall
be given points. Suppose that the coordinates of the 5th mnode are (1, 1, 1, 1); to
obtain the result in the most simple manner, I take for the moment Q an arbitrary
quadric function (z, y, 2z, w)%, and I write

N =00, + hy — gz + aw),
1= 9.(8, 2 — ha; + fz + bw),
U=z (0,0 +gz—fy + cw),
V=w(,Q—ax—by—cz 0
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where the coefficients are arbitrary. We have identically S+ T+ U+ V=2Q; wherefore
the given point (1, 1, 1, 1) will be a node of the symmetroid if only Q=0 be a
plane-pair; and it is easy to see that we may without loss of generality take one
factor to be z+y+ 2+ w, and write

Q=@ +y+2z+w)(lz+my+nz + pw);

viz, Q having this value, the symmetroid, aS+ BT+ yU + 8V = cone, will have the 5
given nodes; the equation contains, as it should do, 9 constants.

85. In order that the symmetroid may have a 6th given node (@, B, m, &), 1
observe that the constants may be determined so that a8+ 8,7+ U+8,V shall be
equal to an arbitrary quadric function, say

oS+ BT +nU+8V=(, b cdf g h | m njz y 2 wp;
this in fact gives

onnn-( b 5 D)
and then, completing the comparison,
Sl ]x+[a2f‘ﬂl-¥‘—&(i+£>]y
b s iR B e
7=s{{g=a- Bl_%(%“)]“m Jo

Ib

K l: 12f'Yl ’)'1<:(?1+ $1>:| 4 [Bl2m “1_ 31—8—151 (Ebl-+8%>:| w} !

)
U=;{[%—al %-—al( te, ﬂ [ 2f’31 'yf_lﬁl('%—*-g)_y

=2k

*[v_cl ] [%2_’“51 %(5*3“)]‘”}
V=”’{[8_al al(g%ﬂ“[s—& 5 -Bl(gﬁE) y

-+

n +—]z+ d ]w}
& — 'Yl 'Yl 0, "N o, :

N AR V=(x+y+z+w)(§w+§y+$z+§w),
1 1 1 1

viz., these values give

oS+ B T+pU+8V=( b c d £ g h I, m nfa y, 2 w);

hence, taking the function (a,...J#, v, 2z, w)* to be a plane-pair equal to (z+ iy + jz + kw)
(41,9 +j12 + kyw) suppose, or considering the coefficients (a, ...) as given functions of
(%, 4, k, u, j, k), we have the symmetroid having the 6 given nodes and containing the
last mentioned 6 constants.
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The Jacobian with given Lines.

86. The Jacobian contains 24 constants; obviously it is uniquely determined if
4 of the plane-pairs thereof are given; and it is also determined, but not uniquely,
if 6 of the lines thereof are given. We may enquire how many given nodes of the
symmetroid may be considered as corresponding to given plane-pairs, or lines of the
Jacobian. Take as given any 4 nodes of the symmetroid; the corresponding 4 plane-
pairs may be taken to be given plane-pairs; and we may besides take as given a
5th node of the symmetroid. For let the first 4 nodes of the symmetroid be (1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1); the given plane-pairs P,Q, =0, P,@.=0, P,@Q,=0,
P,Q,=0; (I, ls, Iy, 1,) any system of values such that we have

LP, G+ LP.Qy + 1, PyQ,+ 1, P,Q, = plane-pair;
and (1, 1, 1, 1) the 5th node of the symmetroid; we have only to assume

(S: T; U> V)=(l1P1Q1: l:P;*Qz: l::P:;Qs, l4P4Q4)~

87. Suppose, however, that on the Jacobian we have given, not the 4 plane-pairs,
but only the 4 axes of the plane-pairs; the plane-pairs may be taken to be

@, b, oY P, @y=0,.... 1, b, 4P, Q)=0,

where the 8 constants (by, by, b;, by, ¢, ¢, ¢y, c) ave in the first instance undetermined.
If we attempt to find 4, l,, &, L, so that

S EOES o R G YL +L (1, b, ¢,y P,, Q)= plane-pair of given axis,

we have between the coefficients (b, ¢) 4 equations; and similarly, if we attempt to
find m,, m,, m,, m, such that

o SO0, B NSIC) P eale +my (1, by, ¢4 P,, Q,)*=plane-pair of another given axis,

we have 4 more equations between the coefficients (b, ¢); viz, these will be deter-
mined by the 8 equations (this is in fact the before mentioned property that 6 lines
of the Jacobian may be taken to be given lines). But considering only the first
system of equations; in order that to the given axis may correspond a given node
on the symmetroid, say the node (1, 1, 1, 1), we have only to write

el (]-1 by, CIKZP]: Ql)zy ------ V=l4(1: b,, C4ZZP47 Q4)2§

that is, we may take as given 5 nodes of the symmetroid, and the corresponding
5 lines of the Jacobian; the formule will contain 4 constants; we may by means
of them make the Jacobian have a 6th given line, thus determining the constants;
or we may make the symmetroid have a 6th given node, leaving in this case one

constant arbitrary.
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Correspondence on the Jacobian: Lines and Skew Cubics.

88. I consider the correspondence of two points on the Jacobian; it is to be
shown that when one of the points is on a line of the Jacobian, the corresponding
point will be on a skew cubic; that is, that corresponding to each line of the
Jacobian we have (on the Jacobian) a skew cubic. Call the plane-pairs of the system
of quadric surfaces 1, 2, 3,...10; selecting any 4 of these, say 1, 2, 3, 4, the polar
planes of any point of the Jacobian in regard to these 4 plane-pairs will meet in a
point which will be the required corresponding point. And observe that, in regard
to any one of the plane-pairs, say 1, the polar plane of a point P is the plane
through the axis harmonic to the plane through the axis and the point P. Hence,
for a point on the axis of 1, the polar plane in regard to 1 is indeterminate; the
polar planes in regard to the plane-pairs 2, 3, 4 respectively meet in a point which
is the required corresponding point. We may for any point whatever take the polar
planes in regard to the plane-pairs 2, 3, 4 respectively, and call the intersection of
these planes the corresponding point; this being so, if the first mentioned point
moves along a line, the corresponding point moves along a curve, which is easily
shown to be a skew cubic cutting the axis of each plane-pair twice; that is, in
regard to the plane-pairs 2, 3, 4, the locus corresponding to any line whatever is a
skew cubic cutting the axis of each plane-pair twice. In particular, the corresponding
curve of the axis of 1, is a skew cubic cutting the axis of the plane-pairs 2, 3, 4
each twice; but the axis of 1 does not stand in any special relation to the plane-
pairs 2, 3, 4, as distinguished from the remaining plane-pairs 5, 6...10; we have
therefore the more complete theorem, that the skew cubic cuts the axes of the plane-
pairs 2, 3,...10 each twice; or, instead of the plane-pairs, speaking of the line 1, 2,
3,...10, we may say that corresponding to any one of the lines we have a skew cubic
meeting the other 9 lines each of them twice.

89. I stop for a moment to prove the subsidiary theorem assumed in the fore-
going demonstration. Let the 3 plane-pairs be PQ=0, RS=0, TU=0, and let the
line be that joining the points (@, %, 2, w,) and (2, 7%, 2z, w,); the coordinates
of any point in the line may be taken to be Az, + puz, Ayo+ py1, Noo+ pz, Aw, + paw, ;
and hence for the polar plane in regard to the plane-pair PQ =0 we have

(A, + pay) 85 ... + Aw, + pawy) 8} PQ=0;
viz., this equation may be written
A (PQ+ PQ)+p (PO +PQ)=0;

forming the like equations in regard to the other 2 plane-pairs respectively, and
eliminating A, u, we obtain for the required locus

“ PQ,+PQ, RS, +RS, TU,+T,U ’= 0,
PQ +PQ, RS +RS TU+TU
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a skew cubic; and on writing herein P =0, @ =0, the equations become

RS,+ RS, TU,+T,U '=0;
RS, + RS, TU,+T.U |

viz., the line (P =0, @=0) meets the skew cubic in the points where the line meets
the quadric surface determined by this last equation, that is in 2 points.

90. We have thus on the Jacobian the 10 lines 1, 2,...9, 10, and corresponding
thereto respectively the 10 skew cubics 1/, 2/,...9", 10°, where each line meets twice
each of the skew cubics except that denoted by the same number; a relation similar
to that which exists between the lines 1, 2, 3, 4, 5, 6 and 1/, 2/, 3, 4, 5, 6/, which
compose a double-sixer on a cubic surface.

Suppose that there are given on the Jacobian the lines 1, 2, 3, 4, 5, 6; meeting
each of these twice, we have the skew cubics 7/, 8, 9, 10’; and then

7 Lo K

i 8 ; : s e vl

the lines 9 meet twice each of the cubics 10, 7,8
10 T8t gl

so that the determination of the remaining 4 lines depends upon that of the skew
cubics 7', 8, 9, 10’, which meet each of the given lines twice.

91. To determine a skew cubic cutting twice each of 6 given lines, I proceed
as follows. Let the lines be 1, 2, 3, 4, 5, 6; take U=0 the general quadric surface
through the lines 1 and 2, V=0 the general quadric surface through the lines 1,
3 (the equations contain each of them homogeneously 4 constants). The 2 surfaces
intersect in the line 1, and in a skew cubic cutting twice each of the lines 1, 2, 3;
we have therefore to determine the constants so that the 2 surfaces may meet the
line 4 in the same 2 points, the line 5 in the same 2 points, the line 6 in the
same two points. Imagine for a moment the equations of any one of the lines 4,
5, 6 to be 2=0, w=0; the equations of the 2 surfaces, substituting therein these
values, would assume the forms

(a’ b’ O§$, y)2=0’ (a,x b,; C,K.T, y)2= >
{00

and the conditions for the intersection in the same 2 points would be ¢?=B7=:7’=p
suppose. This is in fact the form of the conditions, understanding a, b, ¢ to be linear
functions of the coefficients of U, and «’, I’, ¢’ to be linear functions of the coefficients
of V. We have in this manner 3 sets of equations involving respectively the indeter-
minate quantities p, ¢, 7; viz, these may be represented by

a=pa’ b=pl, p=pc; d=qde=qd, fi=gf's g=rd;h=0l, 1=0;

where the unaccented letters «, b,...7 are linear functions of the coefficients of U,
and the accented letters «, 0’,... %" linear functions of the coefficients of V. Eliminating

CHVIL 0
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the coefficients of U, V, we have between p, ¢, » a twofold relation, which may be
represented as follows:

LY SRS s e R =20
T Ty N ool SO 02t o
| LR R ol SR ) G (AR L |
) i Tt il ol ansl g WIS L8 sgl
o i el i XL D e
D, - Dev e gd 9 Lot Ll
PP sillksd, ey By, S0
Y L S el B S el b B i ]

it being understood that the 1’s represent constants, and the p’s, ¢’s, and »’s linear
functions of these variables respectively. The several equations of the system, regarding
therein p, ¢, r as coordinates, represent each of them a quartic curve; any 2 of these
intersect in 16 points; but the number of points common to all the curves is = 10.
But each of the curves passes through the 3 points (1, 0, 0), (0, 1, 0), (0, 0, 1); these
are consequently included among the 10 points, but they do not give a proper solution
of the question; and the number of solutions is thus reduced to 10 —3=7. There
is yet another solution to be rejected; viz, U=0 being a quadric surface through
the lines 1, 2, and V=0 the quadric surface through the lines 1, 3, it is possible
to determine the coefficients of U, V so that each of these surfaces shall be the
quadric surface through the lines 1, 2, 3; and if we then have identically U=V,
it is clear that corresponding values of p, g, » are p=g=r(=6). We have thus the
point p=¢g=7r common to all the curves of the system; this solution counts, I believe,
once only, and the number of relevant solutions is 7 —1=6.

92. It may be observed, in regard to the foregoing solution, that if we take
123 =0 as the equation of the quadric surface through the lines 1, 2, 3, and so in
other cases, then the equation of the surfaces U=0 and V=0 may be taken to be

A 123+ p . 1244+ v . 1254p . 126=0,
N.132 4w 184+ /. 135 4+ p’. 136 =0,
respectively, the coefficients of the two surfaces being here put in evidence. And it

is clear that for u=v=p=0, p'=1v"=p'=0, the surfaces become each of them the
surface through the lines 1, 2, 3.

93. The couclusion is, that touching twice each of the six lines 1, 2, 3, 4, 5, 6,
we have six skew cubics; it would appear that any four of these may be taken for
the skew cubics 7/, 8, 9, 10’ (so that there are 15 such tetrads of cubics). I am
not, however, able to verify that we then have the remaining 4 lines each cutting
twice 3 of the 4 skew cubics; assuming that for each system of 4 skew cubics there
is one and only one, such system of lines, then of course to the given system of
lines 1, 2, 3, 4, 5, 6, there will belong 15 systems of lines 7, 8, 9, 10, and there-
fore also 15 Jacobian surfaces.
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Further Investigations as to the Jacobian, &c.
94. Taking (& », § ) as plane-coordinates, two quadric surfaces
a5k, B Ainlotl o Pl RO et v G 00)iirs O
(4, B,C, D, F, G, H, L, M, NQ=, y, z, wp=0

and

are said to be interverts (or interverse) one of the other, when we have between the
coefficients the relation

Gasd, e d;; Fodgiilsilom; i Ast Byo@piDya FoiQ e H, W oMy V)=

that is
ad + ...+ 2fF+...=0.

The condition that the two surfaces may be interverts of each other is linear in
regard to the coefficients of each surface separately; hence, using a before explained
locution, we may say—interverse to a given quadric surface we have 9 quadrics;
interverse to two given quadrics 8 quadrics; or generally, that interverse to % given
quadrics we have 10—% quadrics. And, moreover, if the quadrics of the two systems
be L=0, M=0, &c., and S=0, '=0, U=0, &c., then every quadric )»L+MM+ =0
is interverse to each of the quadrics aS+ BT+ yU +...=0.

If the quadric (a,...0& #, § @)*=0 be an intervert of the plane-pair

(lz+ my + nz + pwQla +m'y +n'z + p'w) =0,
the condition is

(@ .. gl m, n, pYl, w', v/, p')=0;

viz., this expresses that the two planes are harmonics in regard to the pair of planes
drawn through the axis of the plane-pair to touch the quadric surface; or say, that
the plane-pair is harmonic in regard to the quadric.

95. To apply this to the Jacobian surface, I recall that, starting with the given
quadric surfaces S=0, 7’=0, U=0, V=0, and taking (a, 3, v, 8) to be such that

aS + BT + yU + 8V = plane-pair,

there are 10 such plane-pairs, and that the axes of these are the lines of the Jacobian.
If instead of the given quadric surfaces, we consider the six interverse surfaces
(ty ...9& m, & 0)3=0, ...(as ...0& m, § 0)=0, then the condition is that the plane-
pair shall be harmonic in regard to each of these surfaces. Let the quadric surfaces
be called 1, 2, 3, 4, 5, 6; then, attending to any three of these, say 1, 2, 3, the
plane-pair is harmonic in regard to these three surfaces. Through the axis of the
plane-pair draw tangent planes to 1, 2, and 3 respectively; each of these pairs of
planes is harmonic in regard to the planes of the plane-pair; that is, the three pairs
of tangent planes are in involution; or, as we may also express it, the axis is (quoad
its planes) in involution in regard to the three quadric surfaces. Conversely, when
the axis is thus in involution in regard to the surfaces 1, 2, and 3, we may by
22—2
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means of the surfaces 1 and 2 determine the two planes of the plane-pair, and then
these will be harmonics in regard to the surface 3. It thus appears that the axis
is given as a line which is (quoad its planes) in involution in regard to the surfaces
1, 2, 8, to the surfaces 1, 2, 4, the surfaces 1, 2, 5, and the surfaces 1, 2, 6,
respectively; or, as we may express it, as a line which is (quoad its planes) in
involution in regard to the surfaces 1, 2, 3, 4, 5, 6.

96. It is substantially the same thing, but it is rather casier, to consider the
whole question under the reciprocal form; viz, instead of a plane-pair and a quadric
surface represented by an equation in plane-coordinates, to take a point-pair and a
quadric surface represented by an equation in point-coordinates; we have thus a line
which is (quoad its points) in involution in regard to three given quadric surfaces,
or as we may more simply express it, which cuts in involution the three given surfaces ;
and we thus arrive at the problem of finding a line which cuts in involution six
given quadric surfaces; viz., this is equivalent to the above problem where the line
has to satisfy (quoad its planes) the like condition; and in each problem the number
of solutions should be = 10.

97. Consider a line which cuts in involution the three given surfaces (a,,... §z, ¥, 2, w)=0,
(g, ... 92, y, 2, w)?>=0, (a5, ...0x, y, 2, wP=0. I will presently show that this implies
a cubic relation (* ¥a, b, ¢, f, g, h)* between the six coordinates of the line. But
assuming it for the moment, suppose that the line cuts in involution the three
surfaces and a fourth quadric surface (a,, ...Jw, y, 2, w)*=0. Considering the line as
cutting in involution the surfaces 1, 2, 4, we have between the six coordinates a
second cubic relation; there is, however, a reduction, and the order of the resulting
twofold relation between the coordinates is 3.3 —4=05. To explain this, observe
that every line which cuts in the same two points the surfaces 1 and 2 respectively
(that is, which cuts the curve of intersection twice) will in an improper sense cut in
involution the surfaces 1, 2, 3, and also the surfaces 1, 2, 4. There is thus a reduction
equal to the order in the six coordinates of the twofold relation which expresses
that the line cuts twice the curve of intersection of the surfaces 1 and 2. Join
hereto the relations that the line meets each of two given lines; the coordinates of
the line are determined by the twofold relation (say its order is =2A) two linear
equations, and the universal equation af+bg+ch=0; the number of solutions is =2\
But the number of solutions is equal to that of the lines which meet the quadri-
quadric curve of intersection twice, and meet also each of two given lines; or what
is the same thing, it is equal to the order of the scroll generated by the lines which
meet the curve twice, and also a given line. We have for the cwve of intersection
(m the order, & the number of apparent double points) m =4, h=2; whence order of
the scroll is 2 +4.4.3=38; that is, 2. =8, or A =4, which is the required reduction.

98. If the line cut in involution 5 given quadric surfaces {say the 5th surface is
(ts,...Q, y, z, wP=0}; then we have between the 6 coordinates a threefold relation,
the order of which is 3.5 —reduction. This should be =10, and consequently the reduction
=5; for admitting the value to be 10, the order (in the ordinary sense) of the scroll
generated by the lines which cut in involution the 5 given quadrics should be =20;



445] A MEMOIR ON QUARTIC SURFACES, 173

and conversely. But the value 20 may be verified without difficulty. For the question
may be transformed as follows:—If a point-pair be harmonic in regard to each of
5 given quadrics, how many of the axes (or lines through the 2 points of a point-
pair) cut a given line. Take (z, y, 2z, w), (@, ¥y, 2/, w’) as the coordinates of the
2 points of a point-pair; the harmonic condition in regard to a quadric surface U=0
is 28, U+ y'8,U+ 28,U+ w'é,U=0 {where U is regarded as a function of the (z, y, z, w)
belonging to a point of the point-pair}; the condition for the intersection with a given
line is a lineolinear equation in the coordinates (z, y, z, w) and (<, ¥/, 2/, w'), or say
it is L&' + My’ + N2+ Pw'=0, where L, M, N, P are linear functions of the coordi-
nates; we have thence for (z, y, 2, w) the threefold relation

L; stn SzU:h SzUa; szUu SzUs =0»
M, §,U,

j N, 8,0,
-P) Sw Ul

which denotes a system of }.6.5.4=20 points.

It would seem that if the line cuts in involution 6 given quadrics, there should
be between the 6 coordinates a fourfold relation of the order 4.10=5; this would imply
a reduction 25, viz. we should have 5=3.10 —25. I do not understand this, and T drop
the question.

99. I return to the question to find the relation between the coordinates (a, b, ¢, f, g, h)
of a line which cuts in involution the 3 quadric surfaces

(&, by, ¢, Ao, 1, 915 By by 0y, G2, 9, 2, wP=0, (a,...02, 9, 2, w}=0, (a,...32,9, 2, w)=0.
Writing down any two of the equations of the line, for instance
hy — gz +aw =0,
—hz +fz4+Dbw=0,
if we substitute the values of (2, y) in the equation of the first surface, it becomes
(a,, ...Yfz+ bw, gz—aw, hz, hw)=0;
or if we write for shortness
I =(fgh o, II'=(b,—a, o, h),
then the equation is
(@, ... 1022+ 2(ay, ... R ITYIT) . 2w + (ay, ... IV w? =0,

and forming the like equations for the other two surfaces, the condition of involution
is at once found to be

(0, ... 70, (ay,... 3 OYIT), (ay,... 3P |=0.
(as, ...IH)*', (@, ...IHIH'), (a,, ...II-I')2
‘ (a3, -~-§H)s’ (a'a’ IH§H'), (as: -"IHI)E
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100. It is convenient, in working this out, to consider II, II" as standing, in the

first instance, for (z, ¥, z, w), (¢, y/, 2, w’), these symbols being ultimately replaced by

the above-mentioned values. Writing also, for shortness, (¢bc) to denote the deter-
minant @, (bsc; — byc;) + &e., and so in other cases, it is at once seen that the function
on the right-hand side is a sum of such determinants each into a proper factor, con-
taining the coordinates (a, b, ¢, f, g, h), originally of the order 6, but where each term
contains the factor h? which may be omitted; or finally the result is of the order 3
in the coordinates. Thus we have a term

(abe) i, joz!, @*

Tl A

gheiler 0 5?

where the second factor is

a7 (y2 —y'z) + y2's (2’ — Z2) + 22’y (wy — 2y), =2y (wy —y),
1 (—ab) (~af — bg), = abek’,

or, omitting the factor — h? the term is (abc)abe.

101. There are in all 120 terms, but 16 of these are found to vanish (viz., these
are the terms in agh, bhf, cfy; ahl, bfm, cgn; agl, bhm, cfn; dmn, dnl, dlm; fyn, ghl, hfm).
The final result contains therefore 104 terms; viz., as a further abbreviation writing
abe &c., instead of (abc) &c., to denote ti.e above-mentioned determinants, the equation is

abe . abe — bed . agh — cad . bhf — abd . cfg
+bef .a* +cag.b® +abh.c® +adl . £ +bdm .g*+cdn . h?

+ abn .c(bg— af)+ adf . f (ch — bg)
+ bel .a(ch—bg)+bdg .g (af —ch)
+ cam . b (af — ch)+cdlh .h (bg — af)

— beg . a*b—beh.a*c +bem .a*g —ben . a*h
— cah .b% —caf.b% + can .b*h—cal . b*f
—abf .ca —abg.cb+abl . —abm.cg

— adg . bf* + adh. cf* + adm. f2g + adn . *h
— bdh . cg* + bdf . ag*+ bdn . g*h+0dl . g*f
— cdf .ah* + cdg . bh®+ cdl . h*f + cdm . hg

( afy.be —afh .be+afl . bef—afm. cth — afi . b?g\l
+ 23 + bgh . cta — bgf . ca® + bgm .cag —bgl .a* —bgl . ch
U+ chf . a%b — chyg . ab® + chn . abh— chm . b*g — chm . a*f )
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agm . bef — agn . bf — ahm . c*f + ahn . bef
{+ bhn .cag—bfl .c*g—bfn .a%g +bf! .cag f»
+ ¢fl .abh—chm.a*h—cgl .b*h +cgm.abh )
[— amn . af?> — anl . bf*— alm . cf* +dfyg .ch?
— bnl . bg®— blm .cg®— bmn. ag® + dgh . af*
l — clm .ch®—cmn.ah®*—cnl .bh? + dhf . bg?
|

— dfl . fgh—dfm.g*h — dfn . gh?
— dgm. . fgh— dgn . h*f — dgl . hf*
— dhm . fgh—dhl . f*g — dhm. fg* )

( fgh .bch— fgm.ach —fmn.agh - fal .bgh— flm.cgh
+4< + ghm .caf — ghn .baf —gnl . bhf — glm . chf — gmn.ahf
+ hfn .abg—hfl .cbg—him.cfg —hmn.afg —hnl .bfg

— 4fgh . abe =0,

And observe, by what precedes, this triple system of lines contains each of the following
double systems: viz, the lines which meet the quadriquadric curve (2, 3) twice, those
which meet the curve (3, 1) twice, those which meet the curve (1, 2) twice.

Persymmetrical Case: the Hessian of a Cubic.

102. Reverting to the general equation
aS + BT +yU + 8V = cone,

which connects the symmetroid and Jacobian, it is evident that if S, 7, U, V are the
derivatives, in regard to the coordinates, of a single cubic function U, =(x{z, y, 2z, w),
then the symmetroid and the Jacobian become one and the same surface; viz., this is
the Hessian surface H =0 derived from the given cubic surface. The two corresponding
points on the symmetroid and the Jacobian respectively, and the two corresponding
points on the Jacobian, become one and the same pair of corresponding points on the
Hessian ; viz, either of these points is such that its first polar surface in regard to
the cubic is a quadric cone having for its vertex the other corresponding point. And
the Hessian surface unites the properties of the Jacobian and the symmetroid, viz, it
has 10 nodes and 10 lines. It is, in fact, known that there are five planes such that
the intersection of every two of them is a line on the Hessian surface, and the inter-
section of every three of them a node on the surface; viz, if the equations of the five
planes are =0, y=0, z=0, w=0, u=0, then the equation of the Hessian surface is

wyzwu(g+é+9+é+g>=0,
QL o & LAl

a form which puts in evidence the properties just referred to.
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Quartics with 11 or more Nodes.

103. I mention two results which, although they relate to quadric surfaces with
more than 10 nodes, present themselves in such immediate connexion with the present
Memoir, that it is natural to speak of them. If, in the equation

A, H G, L |=0,

s e T R |
Gl O
L% Mo N =D

of the symmetroid (4, B,... linear functions of the coordinates), we have identically
A =0, then the surface has evidently a node H=0, G=0, L=0; viz, this is a
node in addition to the usual 10 nodes, or the surface has in all 11 nodes. And so
also if (identically in every case) B is =0, there are 12 nodes; if C' is =0, there are
13 nodes; and if D is =0, there are 14 nodes. These are, in fact, quartic surfaces
with 11, 12, 13, and 14 nodes respectively, mentioned in Kummer’s Memoir.

104. We may consider the symmetroid derived from the quadric surfaces which
pass through 6 given points; viz., taking as before (see No. 25) the coordinates of the
6 points to be (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 1), (&, B, 9, d),
and (e, b, ¢, f, g, h) as the coordinates of the line joining the last-mentioned two
points; and, to avoid confusion, taking for the present purpose (X, ¥, Z, W) instead
of (a, B, v, &) for the coordinates of a point on the symmetroid, the equation is obtained
by arranging in the form of a determinant the coefficients of the quadric form

Xa ( hy— gz +aw)
+ Yy (—hx +  fz +bw)
+2Zz( gz— fy + cw)

+ W (aa yz + bB 2z +cy zy 0
viz., the equation in question is
? WX =Y)+ey W, g(Z=X)+0B W, aX |=0;

WX —=Y)+cey W, 4 , (Y =2)+aa W, bY
|9 Z-X)+BW, f(¥Y~2)+aalV, y , ¢Z
‘ . ki bY ; cZ ghaop |

or, as it may be more simply written,
NoX (f(Y = Z)+ aaW} + VoY [g(Z —X) +bBW | + NeZ (h(X = Y) + cyW}=0.

This is, in fact, a surface with 16 nodes. It would appear that additional nodes correspond
to the six common intersections of the quadric surfaces, or nodes of the Jacobian;
and it would seem that for four quadric surfaces having in common 1, 2, 3, 4, 5, or
6 points, the corresponding symmetroid would have 11, 12, 13, 14, 15, or 16 nodes.
But I reserve this for future consideration.
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I take the opportunity of mentioning some results which have a connexion, although
not an immediate one, with the subject of the present Memoir.

Quadric Surface through three gwen Lines.

105. To find the equation to the quadric surface through the three lines
4 (a'l; bl) C1, .fl: 91, hl); (a'z, b2) Co, .f2: .92, h?)x (a37 b3.v Cs, fs’ gs, 113)- Ta'ke on one Of the lines
the points (a, B, 4, 8) and («, B, v/, &'); then the equation of a quadric surface through
this line will be of the form

i z? w yz 2 xy aw yw 2w =0;
e < R G PR ya aB ad Bd )
2aal 2[831 2'7'7’ 288/ B‘y/ + B,’Y 'Ya, + 'yla aB/ + a/B asl + ais le + ,8’8 78/ + '718

o2 Blg 7/2 8/2 ﬁ/')’l 'yl o o Bl o 8/ ‘B/ 8/ ')’l 8/

and if we form thus a determinant with three of its lines relating to the line 1,
three of them to the line 2, and three to the line 3, we have the equation of the
quadric surface through the three lines. But considering in the determinant the three
lines which refer to the line 1, it is clear that the determinant is a. function of the
order 3 of the coordinates (@, b, ¢, fi, g1, &) of the line in question; and the like
as regards the other two lines respectively. Now observe that if two of the lines
intersect, the problem becomes indeterminate (in fact, the plane of the intersecting
lines, and any plane whatever through the third line, constitute a solution); the con-
dition for the intersection of the lines 1 and 2 is @, fo+ ayfi +bigs + bogy + Py + Ay =0 ;
hence, if this condition be satisfied, the determinant must vanish; it therefore divides
by the factor a,f,+ &c.; but, similarly, it divides by the factors a,f;+ &c. and a,f; + &c.;
and throwing out the three factors, the result should be of the order 1, that is
linear, in regard to the three sets of coordinates respectively. I have obtained this
reduced result in my “ Memoir on the Six Coordinates of a Line” (Camb. Phil. Trams.,
t. XL, 1869, p. 311 [435]); viz., writing (abc) to denote the determinant a, (byc; — bscy) + &c.,
and so for the other like determinants, the result is

(agh) @* + (bhF) y* + (cfy) 2 + (abe) w?
+ [(abg) = (cak)] aw + [(bfg) + (chf)]yz
+ [(beh) —(abf)]yw+ [(cgh) +(af9)] 2=
+ [(caf) —(beg) 12w + [(akf) + (bgh)] =y =0.

Condition that five given lines may lie in a Cubic Surface.

106. Taking the lines to be (@i, by, ¢, fi, g1, M), ... (@, bs, Cs, f, 95 hs), and

(a, B, v, 8), (@, B, v, &) the coordinates of any two points on one of the lines, the
equation of a cubic surface through this line would be

Qo VIL 23
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a8, . aydin pdlimeal bt myeinaitidng Yo g =0;

5 a?3, afBy,

Sa%, 2048 + a3, odBy +aB'y+aB,

3aa”, 2ad'B' + o*3, aB’y’ +o'By + aB'y,

guionds ) 8,
and hence it at once appears that, forming a determinant of 20 lines, wherein four
lines relate to the line 1, four to the line 2,...... , four to the line 5, and equating

this to zero, we have the required condition. But the condition so obtained is of the
order (34.3=)6 in regard to the coordinates of each line; and, as for the quadric, it
is satisfied identically if we have any such equation as a,f, + &c.=0; it consequently
contains the several factors a,f; + &c., which can be formed with the coordinates of any
two of the five lines; and throwing out these factors, the condition should be of the
order 2 in regard to the coordinates of each line. We in fact know that the required
relation between the five lines is that they shall all of them be cut by a sixth line;
and moreover that, writing a,f, + a.fi + b,gs + bygi + 1 ho+ chy =12, &c., then that the
condition for this is

LGl 28180, ddeds 16— 0,

21, ., 23, 24, 25
9110989 4. LoRANEE
41, 42, 43, ., 45

51, 52, 58, 54,

being, as it should be, of the order 2 in regard to the coordinates of each line.

Condition that T given lines shall lie on a Quartic Surfuce.

107. Taking the lines to be (ai, by, ¢, fi, ¢, b, ... (@, bs, ¢, fry g7, By), then in
precisely the same way we form a determinant of the order ($5.4=) 10 in regard
to the coordinates of each line; this determinant however divides out by the several
factors a, f, + &c., which can be formed with the seven lines; or throwing these out
and ecquating the quotient to zero, we have an equation of the order 4 in regard to
the coordinates of each line. It would not be practicable to obtain the reduced
equation in this manner, and I do not know how to obtain it otherwise, but the
material conclusion is that the order is =4.

The Jacobian of 6 points.

108. Any 6 points whatever may be regarded as points on a skew cubic; and
the coordinates (x, y, 2z, w) may be taken so that the equations of the skew cubic
| |
i W, Z/’ Z | {4 b1 M k2 . . .
shall be \ |=0. This being so, the coordinates of the 6 given points may be
T

taken to be (1, &, ¢34 &°), ... (1, &, &2 &*); and the equation of the Jacobian surface of
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the 6 points can then be expressed in a very simple form, putting in evidence the
passage of the surface through the skew cubic; viz. writing

P = >t P= ilita, Ps= St tsts, Pu= Zttatsts, Ps= Sttatstets, DPs = bibytstytsts
moreover,
O = § (bzyzw — daw2® — dy*w + 3y°2* — a*w?),

and therefore
0=— aw—22 + 3yzuw,

8, 0= 3yz —6yw + 3wzw,
;0= 3y%2 —6az* +3uwyz,

8o =— 2*w—-2y* +3axyz;
then the equation of the Jacobian surface is
3( @p; + zp,—2w) 5, O
+ha( 2zp, — wpy) &, O
+ (@ps—2yp, )8 U
+3 (22ps— yps — wp;) 8, 0 = 0.

There is not much difficulty in the direct investigation; but a simple verification may
be obtained by showing that the surface contains upon it the 15 lines 12, 13,... 56.
Write in the equation

(z, ¥, 2, w)=(N+ p, As + pt, As* + ut?, As®+ ut?),
the values 8,00 &c. are found to contain the factor Au (s —¢)’, and omitting this common
factor the values are as
% (7\'83 = /"ts)’ (=Y (A"S“z Ti /"’tz): (M B /"’t)» _% (X T l"') s
the equation thus becomes
AN(—28 + i+ p)+p(—28 + Epi+ p)} (NS — ut?)
— A~ $°py+25°p, )+ (— Bp + 26, )} (As? — ut?)
+{AM(—2sp+  ps )+ u(—2ps+ ps ) (As — pt)
—(N(= $ps— sps+2p)+pu(— BPps— tps+2p) (A —p )=0,

viz., collecting the terms, the coefficient of Au vanishes, and the whole is

— 27 (1, Py, P2y Ps» Par Pss p&s, —1)
+ 242 {1, D1 P25 Psy Pss Pss psit; e 1)s=0;
viz., this equation is satisfied if s denote any one of the quantities (£, &, &, &, ts, &),

and ¢ any one of the same 6 quantities; that is, the equation of the surface is satisfied
when (z, y, z, w) are the coordinates of a point on the line joining any 2 of the 6

points.
23—2
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Locus of the vertex of a Quadric Cone which touches each of Siz given Lines.

109. Representing as before each line by means of its six coordinates, let (z, y, 2z, w)
be the coordinates of the vertex, and (X, Y, Z, W) current coordinates. Suppose that
(a, b, ¢, f, g, h) are the coordinates of any one of the lines, the equation of the plane
through this line and the vertex is

a(@W—-—wX)+byW—-wY)+c(zW —wZ)
+f (yZ —2Y)+g(z2X —aZ )+h(xY — yX)=0;
or, what is the same thing, writing for shortness
P= . hy—gz+aw,
Q=—hz . +fz+buw,
s gz —fy . + cw,

S=—ax—by—cz
the equation is

FPX+QY+RZ+SW=0.

The plane in question is a tangent plane to the cone touched by the 6 lines. Now
when 6 planes touch a quadric cone, their traces on any plane whatever touch a conic
the intersection of the cone by that plane. Hence taking the plane W=0, the equation

of the trace is
PX +QY + RZ=0,

and forming in like manner tne equations belonging to each of the given lines, the
condition that the 6 traces may touch a conic is

(P, @ B, QR, RP, PQ)=0,

where the left-hand side represents a determinant -of 6 lines, the several lines being
respectively P2, Q2 R?2 QR,, RP,, P,.Q,, P2 &ec.... Or more simply we may denote

the equation by
[(P, @ Ry]=0.

To ascertain the form of this, write for a moment y =0, 2=0; the equation is
[(aw, — hz +bw, gz + cw)*] =0,
or attending only to the highest and lowest powers of w, this is
w? [(a, b, ¢)?] ... +w'at[(a, —h, 9)*]=0;

and it is thence easy to infer that the whole equation divides by w*; so that, omitting
this factor, the form of the equation is

((ar b) c) f‘; 9, h)2§w} :l/; Z: w)8=0;

viz., the equation is of the order 8 in the coordinates (z, v, 2z, w), and of the degree
2 in the coordinates (a, b, ¢, f, g, h) of each of the lines. It would not be very
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difficult to actually develope the equation ; in fact, starting from the term w®[(a, b, c)’] the

other terms are obtained therefrom by changing a, b, ¢ into a +$(hy—gz), b+$(—hw+ 12),
c+$(gw — fy) respectively; the equation may therefore be written in the symbolic form
ws . exp.% {(hy — 92) 84+ (— ha + f2) & + (9 — fy) &} . [(a, b, ¢)] =0,

or, what is the same thing,
W exp. ;{2 (g~ h8) + y (ke =3 +2 (8= g82)} - [(@, b, o] =0,

where exp. 6 (read exponential) denotes ¢, and [(a, b, ¢)’] represents a determinant as
above explained. The equation contains, it is clear, the four terms
(@ — b, g1+ [(—h b, —=fY]+2[(- g, /i ]+ w*[(a, b, )]

I am not sure whether this surface of the eighth order has been anywhere considered.
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