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Uniqueness, existence and estimate of the solution in the dynamical
problem of thermodiffusion in an elastic solid

GAETANO FICHERA (ROME)

THE PAPER is devoted to the theory of a syswm of five second-order partial differential equa-
tions describing the dynamic problem of thermodiffusion in a deforming elastic body. The
system is hyperbolic with respect to some of the unknown functions, parabolic with respect
to the rest of them. A particular case is the coupled thermoelasticity.

Rozpatru_]e si¢ teori¢ ukladu pieciu réwnan réiniczkowych czastkowych drugiego rzedu, opi-
sujacego zagadnienia dynamiczne termodyfuzji w odksztalcajacym sie ciele sprezystym. Uklad
hiperboliczny ze wzgledu na czefé nieznanych funkcji, paraboliczny ze wzgledu na pozostale.
Przypadkiem szczegblnym jest sprzezona termosprezysto$é.

PaccmarpuBaeTcsi TEOPHA CHCTEMBb! NATH JAdQdepeHIMaNLHbIX YpaBHEHHH BTOPOrO NMOpAIKa
B YaCTHBIX NPOM3BOJHLIX, OINHMCBHIBAIOIIAA JHHAMHJECKYIO mpobiemy Tepmommbdysnu B me-
dopmupylomemca ynpyrom tene. Cucrema seiaserca runepGOIHUecKol OTHOCHTENBHO YACTH
HeH3BeCTHRIX (yHrumiA M mapaGomedeckolf OTHOCHTENEHO OCTANBHBIX. UacTHBIM CITydaeM
SABJACTCA CONPSKEHHAA TEPMOYNPYTOCTD.

THE ANALYTICAL problem which will be discussed in this paper was proposed to me by
Prof. Witold Nowacki, during the Polish Conference on Mechanics of Solids, held in
Zakopane last September. This problem is originated by the study of the dynamical pro-
cesses of thermodiffusion in an elastic solid (*). It consists in investigating a system of five
2nd order partial differential equations which is hyperbolic with respect to some of the
unknown functions and parabolic with respect to the others. This system contains as
particular case (assuming equal to zero some of the coefficients) the well known system
of partial differential equations of coupled thermoelasticity (see [2], p. 41). The existence
problem in the case of thermoelasticity is studied in [3]. More general “coupled equations”
are considered in [4].

Suitable boundary and initial conditions must be associated with the system of partial
differential equations.

I have restricted myself to consider here only Dirichlet boundary conditions. However
the method used in this paper should work even with more general or different boundary
conditions.

It must also be remarked that the method developed in this paper applies to non
isotropic, inhomogeneous bodies as well. However this extension will not be discussed
here.

(*) For more information on the physical aspects of the problem we refer the reader to the forth-
coming paper [1] of Prof. Nowacki and to the bibliography quoted in it.
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I am very pleased indeed to submit for publication in a Polish journal this paper,
originated by stimulating discussions with Polish Colleagues and, in particular, with
Prof. Nowacki, during the unforgettable meeting in Zakopane.

1. Statement of the problem

Let us denote by u = (uy,u4,,u;) a 3-vector valued function with real components and
by 0 and u real valued functions. In this paper by the term function we refer to vector
valued functions with any number of real or complex components, and, in particular,
to scalar functions. If v is a function, by v, and v,; we denote the partial derivatives

v %0

Oxy * 0, 0%
with respect to space variables. Differentiation with respect to the time variable ¢ will
be denoted either in the usual way or by a dot, i.e.,
P
o’ Tt

We shall consider the following system of partial differential equations
G“MJJ"'(J"*'G)“Jth"Qﬁk—PJG;b—P;Pu - Fk(xv n’ h= ls 2! 3s
(L1 Kb,y —c—djs—potly; = f(x, 1),
Dpyjy—np—dd—p,iy; = g(x, 1).

G, A4, 0.p ,pu K, ¢, d, D, n are given real constants; F(x, t) = Fy(x, t), F5(x, t), F3(x, 1),
fx,1), g(x,t) are given functions with real components. The point x = (x,, X5, X3)
varies in a bounded domain (open set) A of the 3-dimensional space and the variable ¢
is such that 0 < r < +oo.

We assume that the domain A has a piece-wise smooth boundary and that the Gauss-
Green formulas which transform volume integrals into surface integrals hold for the
domain A.

With the system (1.1) we associate the following boundary conditions, for x € 04,
0<t< 400,

O =

u(x,t) = u(x, 1),
0(x, 1) = 0(x,8), p(x, 1) = a1,

where @, 6, 4 are given functions with real components and the following initial condi-
tionsforxe A

(1.3)

(1.2)

u(x,0) = w’(x), d(x,0) = ¥/'(x),
0(x,0) = 0°(x), p(x,0) = p°(x),
where u°, ', 6°, u° are given functions with real components.
Let us define the function class where we shall study the problem (1.1), (1.2), (1.3).
Let o(x, f) be a function defined in A x [0, +0). We consider the following conditions
i) ve® {dx[0, +o0)} N €2{Ax[0, +0)}.
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ii) Two positive constants ¢, and s, exist which depend only on v and are such that,
if D™ denotes any partial derivative of o(x, ) of order m, we have

[D™o(x, )| < coe™, xe€ed, 0<t< +oc0, m=0,1,2.

We denote by & the function class, formed by all the 3-vector valued functions u
and by all the scalar functions 6 and g, such that each of the functions u, 6, x satisfies
conditions i) and ii).

If (u, 0, ) belongs to # we may assume that the positive constants ¢, and s, are the
same for each function u, 6, u.

2. Uniqueness theorem

Let us assume from now on that the following conditions are satisfied
G>0, K>0, D>0, >0, ¢>0, n>0,
A+2G >0, d*< en.
Suppose that the “data” of the problem are identically zero, i.e.
Fx,n=0, flx,t)=0, g, 1=0,
(2.2 a(x, =0, 0(x,t=0, §ux1)=0,
u’(x) =0, °(x) =0, wx =0, @) =0.
Let (u,0, u) be a solution of the problem (1.1), (1.2), (1.3), belonging to &, and

assume that the conditions (2.1), (2.2) are satisfied. For any complex number s such that
Rs > 5o(%), we may consider the Laplace transforms
-4}
u(x,s) = f u(x,t)e "dt,
0

@.1)

b(x,5) = [ 0(x, )e"a,
1]

AGx, 8) = [ uix, ne=d.
0
From (1.1), (1.3) and (2.2), we get
Gibnyyy+ (A+G)ibypy— 05%iy —Pobs—puiin = 0, h=1,2,3,
@3) Kby~ esb—dsfi—po sy = 0,
X Djiyy;—nsji—dsli—p, sikyy = 0.

The functions 4, 6, /i belong to ¥*(4) N%¥*(4) and satisfy the boundary conditions

2.4 #=0, 6=0, A=0 ondd.

() If a is a complex number, we set a = Xa+i Ja with Za and Sa real.
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If a is a complex number, we denote by a* its complex conjugate. By multiplying
both sides of the A-th equation (h = 1, 2, 3) of system (2.3) by —u¥, both sides of the

fourth equations by —%5* and both sides of the fifth equation by —-:—ﬁ*, by summing

and by integrating over A, we get, after some integrations by parts and recalling (2.4),

(2.5) f%G"mﬁrfu + (A+ Gy i+ 052y +2ip I Guist) +2ip,F (fipisd)
A

K»r a D A A A AR A A
+T BUB,‘j+—s—p”pﬁ+cﬂﬂ*+2d‘!(pﬂ‘]+npp'}dx = 0.
Set s = 5, +is, (8, 5, real). Considering the real part of (2.5) we have

(2.6) ;f {Gam';ﬁﬁ(i"'(;)ﬁfuﬁﬁr*ﬁ(’l'32)1“!2 o2 s

51 A A - o A
+Wpupﬁ+c|8jz+2d3(pﬁ')+n|pfz=dx = 0.
Set
2.7 o= —imln[G 26+—).:l G}
The following Hermitian quadratic form in the 9 variables &, (k,j = 1, 2, 3)
(28) Q= Guy ity + (A+ Gy it +20R (ihy2 f}Zu — By 42
Fiha 3ty —thaya S + ks s — th3y34yy)
is positive definite(®).
Because of the boundary condition # = 0 on 94, we can write (2.6) as follows:
e | {Gﬁmﬁ,‘,‘;,-+(A+G)§,,J§:,,,+20rét(ﬁmﬁ;,t—ﬁmﬁ’g,,

+lhyya 83—ty ol 3 +thsyg s — a3 idn) +0(sT —s3) lal?

KV Ds -
I-?l; 6,08+ Is I; p”,u,,+cl9|’+2da(p8‘)+n|p[3}dx 0.

From (2.9) we deduce that, if s = 5, +is, satisfies the condition

(2.10) 5,20, 5-520 s+520,
the problem (2.3), (2.4) has only the trivial solution # =0, § =0, /i =0 in the class
€' (4) N *(4).

1. The problem (1.1), (1.2), (1.3) has at most one solution in the class .
. Suppose that conditions (2.2) are satisfied. Then the Laplace transforms u(x, s),
6(x, 5), f(x,s) vanish identically for x € A and for s real and such that s = s, > 5.
Hence, for a classical theorem on Laplace transforms, we have u(x, t) =0, 0(x,1) =0,
ulx, 1) =0 (4).

(%) See [5], Lemma 1.
(*) See [6], p. 62: Corollary 6.2b.
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For getting the existence theorem we need to prove that the uniqueness theorem for
the problem (2.3), (2.4) holds in a larger subset of the complex plane than that determined
by conditions (2.10). Actually we have:

IL If 5 is such that s, > 0, the problem (2.3), (2.4) has only the trivial solution & = 0,

0 =0, i =0 in the function class €'(4) 0 €2(A).
Suppose s; > 0. Let us multiply the A-th equation (h = 1,2, 3) of (2.3) by —af,

the fourth by -;—ﬁ“, the fifth by —i—ﬁ'. By summing and integrating we obtain

@y | {Gﬁm 18+ (A+G) iy iy + 0252y 1t +20, RO i) + 20, R (B ati?)

A
K2 Ax D Ay *"“ an AnL
"?aueu—Tﬂuﬂu—caB —2dR(ub*) —npp* ¢ dx = 0.
Considering the imaginary part of (2.11) we have

A Ds, A
A

which for s; # 0 proves the theorem. For s, = 0 the uniqueness was already known.

3. “A priori” estimates for the Laplace transforms

Let us now assume that the functions F(x, t), f(x, 1), g(x, 1) have Laplace transforms
F(x, 5), f'(x, 5), £(x, s) which for any s, such that #s > s, > 0, belong to the space L2(4).
Suppose that the functions u(x, t), 8(x, 1), &(x, 1), ¥°(x), &' (%), 6°(x), p°(x) vanish identic-
ally. Then the Laplace transforms #, 5, g of u, 0, u satisfy in A the differential system

GﬁMJJ+(A+G)ﬁJﬂJ_Q‘gz"ii_.pééjrﬁ_.pﬂﬁfk = ﬁh h= 1:23 31
(€X) Kby~ esb—dsji—p sily; = £,
Dity;y—nsji—dsf —p,sity; = §
and the boundary conditions (2.4).

Assume 5; = &5 > 5, > 0. By the same procedure used in Sec. 2 we get the analogous
equations of (2.6), (2.12)

A A A DS A Ay

(3.2) f{G“trj@1+(1+®”131“ﬁa+e(51'-Sz)lﬂi’ o2 —L6,68+ s |; i by

A

+c|é]=+2dam,é‘~)+n[ﬁ1=}dx =- f (F‘.u:-%”w%g”ﬁ‘)dx.
A
A D A a 1 A 1 ~

(3.3) f=29-5'l52 |4 + s[2 3,*1911"' | Tzz Pu#u}‘bf: d f(ka‘:_;fﬂ*‘;g:“')dx'

A A

11 Arch. Mech. Stos. or 5/74
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If we multiply both sides of (3.3) by s,/s; and sum to (3.2), we get

A A A A A K A D A A T i
(3.4) f{Gumu:ui-(2+G’)umu,t,,+9[s|’]u|’+Evﬂuﬁﬂ+}l—#upﬁ+c|3]2+2dﬂ(p, 6*)
A
Ao A a 1 by 1 Ay 82 - A 1 ‘\“ 1 A
4 t a

Let us denote by y,(4, G) the lowest eigenvalue of the quadratic form Q given by
(2.8).
Set

ya(e d, ) = 3 {(e+n)—[(e—n)? + 447},
From (3.4) we deduce(®)

f{«’o}’o(l, G')ﬁ;,”t?;:,j +05o |s]212]2 +K3;jB;+Dﬁuﬁfr+so?1 (c, d, n)[I6]* + Iﬁl‘]}d’f
A

< 2([ (BPE+1£12+182ax) [ si21if + 1672 + 1))’
A A
Set

(3.5 y2 = min[o, y(c, d, n)].
We have

f {5070 (4, G)ﬁmﬁ:ﬁj + K067+ Dﬁuﬁﬁ‘*‘?z So[Is121a12+ 612+ | 4]} dx
A

4 A Hy A
< = [ QFr+1fi+ g,
Y25 ¢

Hence we have the following theorem:

I11. Let s, be a given positive real number. Suppose that Rs > . If F, f: ¢ belong to
L*(A) and if (4, é, i) is a solution of the problem (3.1), (2.4) in the function class
€' (A) N €*(A), the following integral estimate holds

G.6) [ oyt + 08+ o A+ 102+ 1072+ 1217 dx < 2 [ (B +1f12+1817)dx,
A A

where

4 ;

(3.7 y: = min[s,yo(4, G), K, D, y250].
Y250

Let us denote by v the 5-vector valued function whose components are the functions

N

Uy, ty, 3,0,
&’)2?1(1':, d, n) is the lowest eigenvalue of the positive Hermitian quadratic form c|é]2+2dQ@6=)+
+ﬂf?‘[) 'I.ike in Sec. 2 we use the identity
A_f (Gt + (A+ Gy jidkyn) dx = Adex.
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and by ¢ the 5-vector valued function whose components are the functions
ﬁl;f‘Zsﬁa’%ﬁégv (as}SO}O)

Moreover, let us multiply both the fourth and the fifth equations of the system (3.1) by
1/s and write the resulting differential system in the abridged form
(3-8) LV =,

where the meaning of the 5x 5 matrix differential operator L is self explanatory.
Let us consider the problem

Lﬁ—g$=*='¢i’ inAs
w=0 ond4d,
where ¢ is a given S-vector valued function and 5, = #s.

We shall denote by H,,(4) the space of 5-vector valued functions with L? generalized

derivative up to the order. m endowed by the usual norm || [.(7). Let H,(A) be the sub-
space of H,(A4) formed by the functions vanishing on 4 (in the sense of the functions
of H,(A)).

The quadratic form associated to the boundary value problem (3.9), assuming
z = (24, %,,125,1,7), is the following

(3.9)

B(Z,2) = f{GE,,UE:H+(A+ G)zyzn+o(s* +53) 2y 28 +p, Tzt + Pz
A
A Ak A A K - 4\‘ D T A A ANy ANk AA g Alg i\’\‘
-p z,,'r,,,—p,,z,,vﬁ+Tr”t“+—s— Vv +ess (T +99*) + ettt +dvet +dTv* +mvy* dx.

We have for every Z € H,(4) and for &s > s,
(3.10) AB(Z, 2) > qls|=*12I13,

where g is a positive constant independent of Z.

From now on we assume that 6A is € -smooth(®). The theory of strongly elliptic differ-
ential systems enables us to conclude that there exists one and only one solution W of the
problem (3.9) which belongs to H,..,(4) if ‘i) belongs to H,,(A4). Moreover, we have the
following estimate

Witz < Kn(S) 1l

Since the Frobenius modulus of the inverse matrix of the characteristic matrix of the
dominant part of the operator L is O(|s|) and the coefficients of L are O(|s|?) and since
(3.10) holds, we may assume

Ku(s) = kals{®,

where k,, is a constant independent of s(°).

(") See [7], Sec. 2.
(* See [7] p. 369.
(°) See [7], Secs. 3, 4, 5, 6.

11
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Let us denote by W = G\A]a the resolvent operator (Green’s operator) of the problem
(3.9), which we consider as a compact operator from L?(4) into L?(4).
The differential system (3.8), with the boundary condition
v=0 ond4
may be written

LV—psiV+os3v=¢ onA,
@.11) { y=0 on d4.
If we set Li—ps2¥ = ¢, the problem (3.11) is equivalent to the problem
(3.12) $+0s2G = .

Since for &5 > 5, > 0 we have an uniqueness theorem for the problem (3.11), we have
that there exists one and only one solution \ﬁ of (3.12) belonging to L?(4). Hence G&fa
belongs to H,(4). By an induction argument we deduce from (3.12) that if ¢ belongs
to Hu(4), tﬁ belongs to H,(4) and, in consequence, v = G:I) belongs to H,4,(4); hence

IV. If. (F,f, ) belongs to H,(A), the problem (3.1), (2.4) has a solution belonging to
Hpei2(A).

From Theorem III we deduce (g, 41, 42, --- denote positive constants)

I¥llo = "Gq’“o %H‘P"o (g0 > 0).

Hence from (3.12)
Idlo < gulsi?lpllo
and in consequence
(3.13) 1912 < Kalsl®1Pllo < kagulsl”I]lo-

From (3.12), (3.13) we have

||¢||z < ols?I¥l2+ 12 < ekagilsl®lDlo+ Ipll2-
Hence
(3.14) ¥ < Kalsl*1Dl2 < qalsIplla
By using the Sobolev lemma(*®) from (3.14) we deduce the following theorem:
V. For the solution of the problem (3.1), (2.4), the following estimate holds:

(3.15) Zmaxlud+2{max;u,,.|+2max[u,,,,,|+m;9|+2'max|a,.|+Zmax|s,,.[
A hk A J'Il.k 4 A J'Jc A

+max|f+ Z,‘ max|f,] + Zmaxwu. ALY S max{fl + ZmaXIFmI
A k=1 4 th A

+Zma!ﬂ:u.\+maX|f|+2m3xlf}h|+2m|fﬁ[
Jhk A ih A
1,3

+max |gi+2maxlg;n!+ Z maxigml}
h=1 A4

(1) See [7], p. 354.
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4. Existence theorem

We shall denote by % the matrix differential operator which operates on the S5-vector
valued function v = (u, 0, p) in Egs. (1.1).

In addition to the above specified hypotheses concerning the physical constants of
the problem and the boundary 64 of A, we assume the following ones:

) There exists a 5-vector w belonging to # and satisfying the boundary conditions
(1.2) and the initial conditions (1.3) (*).

B) Set £ = (F, f, g). The vector f—%w is defined in the whole four-dimensional cylinder
Ax (=00, +00), belongs to the class €[4 x (—oo, +00)] and has a bounded support
contained in the half-space ¢ > 0.

VL. If hypotheses (2.1}, «) and ) are satisfied and if 0A is €>-smooth, the solution in
the class & of the problem (1.1), (1.2), (1.3) exists.

Hypothesis «) enables us to assume identically vanishing functions as boundary data
and as initial conditions. Hence we may suppose that hypothesis f) is satisfied by the
vector f. Since F(x, 1), f(x, 1), g(x, t) belong to €* and have a bounded support contained
in the half-space ¢ > 0, if we denote by m any positive integer and by s, an arbitrary
positive real number, we have for &s > s,

— —~ 5 — e”
w(x,s) = fe w(x, t)dt = = i ar” —a(x, t)dt,

(=1

-] o0
a 1 o
wp(x, ) = f e S, (x, f)dt = —f e "'——awp(x, t)dt,
4 L d ot

A 1 i a’
bnx, 5) = [ e o, 1)de = = |« gmomte v
0

where w(x, t) is any of the functions F(x, t), f(x, t), g(x, t) and &(x, 5) the corresponding
Laplace transform. Hence we have

a A
' |' ’ ]wﬂt(x’ S)‘ g Wa |wu.'l(x’ S)I S lsll ’

[&x, 5)] <

where a,, is a positive constant which we may assume depending only on m.

Let (i, 0, ) be the solution of the problem (3.1), (2.4). From the estimate (3.15)
we get

[0(x, $)| € 65angss)**~™,
(4.1) [24(x, )| < 65amgs|s]**~™,
N0, ) < 65amgslst4—™,

where 9(x, s) is any of the functions #(x, s), 8(x, s), A(¥, 5).

(*') Hypothesis o) will be discussed in Sec. 6.
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Consider the functions u(x,t), 0(x,t), u(x,?) defined by the inversion integrals
(51 > 50)

u(x,t) = =21;

'u—..)a

eCrtiniy(x s, +isy)ds,,

=00
o0

00c, 1) = o [ eossisdi(e, 5, +is)dss,
-0

ulx, 1) = % fe(ll-l-lt;)fﬁ(x’ 5y +is;)ds;.

—00
From (4.1), assuming m > 17, we see that these integrals exist (as integrals of absolutely
integrable functions) and the functions defined by them have as Laplace transforms the

functions #(x, 5), O(x, 5), i(x, s), respectively (12). Moreover,

[}
1 n
oA, 1) = f G (x5 4 is,)ds,,
- 00
1 oo
vm(x, l') = E fe"'l“"l"ém(x, 5y +f$2)df2,
-0

‘f)(x, f) = % fse‘"*"’“ﬁ(x, 5y +l.52)d52,

0
o(x,1) = % J.sze(’l‘”’l"a(x, 5y +isy)ds,,

where v(x, ¢) is any of the functions u(x, 1), 0(x, ), u(x, ¢) and o(x, s) the corresponding
Laplace transform(*®). The vector (u, 8, u) belongs to # and satisfies the initial condi-
tions
4.2 u(x,00 =0, wu(x,00=0, 0(x,00=0, pu(x,0 =0(%.

On the other hand, since #(x, s), ﬁ(x, 5), p(x,s) satisfy (3.1), (2.4), the functions
u(x,t), 0(x,t), u(x,t) satisfy the differential system (1.1) and the boundary conditions

4.3) u(x,1) =0, 6(x,6)=0, pux,1)=0, {xedd, tel0,+x0)}.

5. Continuous dependence of the solution on the data

From the analysis developed in the last Section it should be easy to prove, by assum-
ing suitable norms in the function space & and in the function space of the “data”, that

(**) See [8], Theorem 5, p. 178.
(**) See [8], Theorem 9, p. 185.
(**) See [8], Theorem 8, p. 184,
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the solution (u, 8, ) of the problem (1.1), (4.2), (4.3) depends continuously on the “data”
(F,f, g). However, we prefer to use a new approach for proving this continuous depend-
ence, since we wish to have an explicit estimate of the solution, which could be used for
bounding the approximation error in numerical computations.

Let v(x, t), 9(x, s) have the same meaning as in the last Section.

We have for s, > s, > 0 and recalling Theorem III

3
60 [+ Dloute 0+t Of}ax

2t [ [ i+ 3] i v
42,:: fl-‘fl’ {fdx flsizlﬂ(x s)Izdsz+Z fdx fisﬂv;a(x 5)|2ds,

+ f dx fm !s[‘lé(x,s)l’drz} s%e—::i(H%) f [s|*ds, f {IFGx, 9)|?
A 53 : —00 A

+11Cx, )12 +18(x, )I*} dx.

If w and ¢ have the same meaning as in the previous Section, we have

| f et iso(x, .ﬂdsz Idx

[+ ]

o0 o0 3
G [ istas, f |5, HPpdx = f it Si, f e-ﬂ-;—aw(x,:)dr dx
—00 A -0

st f e 2s1dy f dx f at = = f dx f

Since we are pemutted to assume in (5.1), (5.2) s; = 5o, we have the estimate

2

3 aw(x t) dr

T 5 o(x,1)

(5.3) f {luCe, D +unCx, )un(x, 1)+ (x, O +100x, )| +0,(x, 1)0,5(x, 1)
A

+100x, 2+ [Ce, O + a0, O (e, O +i(x, )]} dx
s%zezf(u _\fdx[{aa }df.

ot3
Let us denote by v the 5-vector valued function with components u;, u,, us, 0, u
and by f the 5-vector function with components F,, F,, Fj, f, g. Define as | v||? the integral
on the left-hand side of (5.3) and by |||f]||? the integral over 4 x [0, + oo) which appears
on the right-hand side of (5.3).
Inequality (5.3) gives for every T > 0

(5.4) max ||v[|* < p(so) e [[Ifl|I?,
oI<T

3
a:a 55/ %

F(x, t)
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where
P
(5.5) P(So) = 853 (1+ 52 )

Inequality (5.4) proves the continuous dependence of the solution of (1.1), (4.2), (4.3)
on the “data” in the above introduced norms.

6. Remarks on hypothesis «) and integral estimate of the solution in the general case

We intend to show in this Section how it is possible, under reasonably general assump-
tions, to satisfy hypothesis «) of Sec. 4.
Let us suppose that, in addition to (2.1) and to the hypothesis concerning the

%>- smoothness of dA4, we have
i) The functions #(x, 1), 6(x, t), ji(x, t) belong to the class {94 x [0, +o0)} and
have a bounded support.
ii) The functions 4°(x), w'(x), 6°(x), u°(x) belong to €*(4).
iii) The following equations are satisfied for every x € 04
U, 0) = 1'(x), ux,0) = u(),
0(x,0) = 0°(x), p(x,0) = u°(x).
VII. Under the assumptions i), ii), iii), hypothesis «) is satisfied.
Because of the hypotheses on 94, it is possible to determine g, > 0 such that, if £ € 04
and 0 < g < gy, the mapping

6.1) x = E+ov(5),

where »(£) is the inward unit normal to 84 in &, is a one-to-one mapping of the Cartesian

product 94 x [0, go] onto the closed domain 4—A4, (where 4, is a domain such that
Ay is interior to A). If £ is determined on 94 by the local coordinates &;, &,, let us introduce

in A— A4, the curvilinear coordinates &,, &,, o.
Let @(p) be a > real valued function such that ¢(p) = 1for0< ¢ < %Qo, p@ =0

forp > Ego. Set

3
= @@u(,t) for x=~£&+ev(), 0<p<po
62 uD(x, £ )== 0 for sedidg
= ()0, 1) for x=~E¢+ov(f), 0< o< 0o,
62 i r){= 0 for xeA—Ay;
= p@pu¢,t) for x=~E&+pv(8), 0<p<op,
64 O, 0{= 0 for xeA—A,.

It is evident that u((x, 7), 00 (x, 1), u"(x, f) belong to $*{A x [0, +occ)} and satisfy
the boundary conditions (1.2).
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Set v = (uV), V), W), Let us now define v(?) = (), 612, u®) as follows
u®(x, 1) = (X)) —u®(x, 0)+t[u (x)—uN(x, 0)],
ﬁz)(x’ ‘) = GO(x) "8(1)('.‘, 0)9
pA(x, 1) = p°()—pM(x, 0).
It is easy to see that the vector w = V{1 +v(? = ()44, 462, 1M 4 u(2))
belongs to & and satisfies hypothesis «).
Let us now suppose that
iv) f = (F, f, g) is such that hypothesis f) of Sec. 4 is satisfied, if we assume as w the
above defined vector.
Let z be the solution of the differential system
L1 =1-%w
satisfying the homogeneous boundary and initial conditions (4.2), (4.3). This solution
is provided by Theorem VI. Hence v = z+w is the solution of problem (1.1), (1.2), (1.3)
belonging to &. From (5.3) we easily get

(6.5) Ivl < W)+ ¥/ p(so) e (111 + 1| Zw]]).
We have

(6.6) Iwll < [vEOf + [[v¢]

and

IV = { [ [, )12+, ()PCx, 1) + 1O, 1) +100Gx, )2
A

1
+ODCe, DO Ce, 1)+ 160 (e, D+ DG, DI+, O, 1)+ O, )P},
IV < {[ 110260 + 1 I + () + 1 09) (U ) + 1)) + [ G +16° )2
A

+O3(0)6; (x)+|p°(x)12+pf.(x)y,,(x)]¢c} +{ 110G, 0+ (x, 0)ufi(x, 0)

10D Cx, 02 +65Cx, 0Cx, 0)+ 4O, O +uP(x,0) f(x, onda:}E

o] [ 1O, 02 +ifPCx, 0)ig(x, 0)-+ e, O)P1dx)?,
A
6D lIlewll = |1y

[ f dt f {9[(2+G}2 1T Dl +9 2 |

ata +9(pﬂ +P0) ats B,I arg

2
is_é(n

63
+9(P§+P3)?P§§’FMSP+8K’jﬂﬁﬂ-§gaﬁi+ B(c*+d%)
2

+3(d2+n=) ,um

i
+8(Ps +Pu+P°) 13 ."1 13 “(fh}'" SDE 913 F"kl FTE r dx:“

Po is an arbitrarily chosen positive constant.
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If we denote by @(f) a vector valued function belonging to [0, +oc0) and with
support contained in the bounded interval [0, T], we have, for any positive integer n
and any ¢ > 0,

o) = (;n .
Hence
|T Il:u 1 4
PO < DT f Ip™() 2]

For 0 < t < T we deduce

Tzu 1

T
©9) O < =y | 19O

Suppose that the functions u(x, t), 0(x, t), i(x, t) vanish identically for t > T.

From (6.1), (6.2), (6.3) we deduce that u)(x, t), 6")(x, t), u")(x, ¢) vanish identically
for ¢ > T. Hence, if we denote by P(v(")) the integral which bounds |||Zv")|||? by (6.7),
using (6.8) we have

©9) v +{ [T, 02 +uf(x, )P (x, 0) +[69(x, 0)f
A
+0(x, 0)0P(x, 0)+ 4D (x, 0)[2 + P (x, O) s (x, O)de}

+{[ a0, OF +is(x, 0if G, 0)+|ﬁf'><x,0)131dxlis(bo+zbn{P[v<“J}f,

where

T° T [1 1 1
LS i 753 T 737 (F* PE+d) T P@ )

3

i T-"( 1 1 - 1 i 1 )}’
TS\ PG ) | R n) | R@4pd) | @)

™ T 1 1 )
o3 P 237 \ @ rad) T B@ )
1

& T’( 1 i S 1 )}’
225 \ 2°(p5+pi +pd) 32(p§+p%) 32(pi+po) 1)’

(6.11)

b { T? Ts
1=\ Tt 2’(pe +p,‘+po)
Let us decompose d4 by a triangulation into a finite set of non overlapping open
surfaces Z,, ..., Z, such that Z; (i = 1, 2, ..., /) admits the parametric representation
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x = x(&;, &) with x(&,, &,) 3-vector valued > function in the triangular closed domain
S; of the (&,, &;)-plane; x(&,, £,) maps one-to-one S; onto 2; and the Jacobian matrix

a(xl y X2, x.!)
(&1, £2)

has rank 2 at each point of S;.
If we consider for (£,,&,)€S;, 0< p < gy, the above introduced curvilinear co-
ordinates (&,, &,, p), we have that the determinant J(&, p) of the Jacobian matrix

a(xh X2, xﬁ)
©1 R
is given by
JE o) = [1-20H(E)+*KOWEG-F?,

where H() and K(£) are respectively the mean curvature and the total curvature at the
point & of 94 and E, F, G have the usual meaning, i.e., they are the coefficients of the
first fundamental form on 34

ds® = EdE? 4+ 2FdE, dE,+ GdEL ..
Let M be a positive constant such that for (¢, &,)e S; (i =1, ..., ) we have

0xp(€1, £2)
| 08
xp(£y, &2)
0E; 08
h=1,2,3; k,j=1,2,
[HEI < M, |K(®)| <M.

We are permitted to assume M independent of i. Moreover, we suppose g, < 1. It
is convenient to denote by &, the coordinate ¢ in some of the subsequent computations.

Let Jy(&;, &2, &3) be the co-factor of the entry in the h-th row and in the k-th column
of the Jacobian matrix (6.12). We have

J(£1,8:,8) 2 (1—39M)]/EG—F2.

We suppose that g, < (3M)~".

Let ¢ be a positive constant, independent of #, such that )Y EG—F? > ¢ for (&,, £,) € S;.
We have

g M; iv’!(éln Ez)i £ M’

u(&y, &)
o0&y

a;”k(f 13 &)

(43) 3%, 0%,

<M, <M, <M,

a&k - Jﬁk(fl ] 62: 53}
axk ‘!(EU E.‘Zs 53.) ’

0 0& 1y, 1 oJ o0&

0

< 18M3(1+0o)?,
( +90) aEJ

-fnx‘ < 4M3(1+ o).

"aa"’
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Hence
|68 | _ 2M2(1+00)* _

1) %y | S T=300M)e ~

iiaeklgw(lm)z (1 M3(1+90)3) 8,

ok, x| S (1-3 1-3p, M
619 & x| ( 9;:‘:)8 (1-3goM)e

k
0x; 0x;, < 3up.

Denote by y a function which is €™ in 4—A4,. We have, after elementary computa-
tions,

(6.16) Yy < 902 aﬁ 2;
Py Oy
4 5,202
(6.17) YmPyme < 27 3ot ag,ag, 651651 s o 0F; 0¢;

Suppose that we have for x = £+ ov(£), £ €04, 0 < p < go:
v() = 9@,

where (&) is a €™ function defined on d4. .
Setting for (§;,&)e S (i=1,...,0)

[Vewl* = |,
IVE 9l = 19g,e,* + 290,01 + 190,

IZ

+lvel?,

we have
W i)+ 51210 (o)
(6.18) o, L, [Vawl*le(@)1* + [p1%l¢' (0)I2;
02 2 -
6.19) YTV wrlle@l + 21V ¢ @ + 7 le" @

OF, 0F, OF, 0,

If we use (6.16), (6.17), (6.18), (6.19) for estimating P[v()] and estimate the right-
hand side of (6.5) by the inequalities (6.6) and (6.9), we get the proof of the following
theorem:

VIII. Under the assumptions. 1), ii), iii), iv) of this Section, the following estimate holds
for the solution of the problem (1.1), (1.2), (1.3,, in the function class &

{[ 1, O + e, DuaGe, 1)+ lisGe, P +16Ce, DF +6,0x, D8 (x, 1)
A

+100e, 2+ 1 0e, O +pu (e, O e, 0+l r)|=]a'.ac}E

< [ 1920+ 1 GO + () + 1 () (43 + 1)) + [ I
A
1

160G + 80039+ WP + iy (i) | e} X
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+{p(so)]'e‘°‘{f dt f ({ ?;:fl[ !g:{lz Ilgjfl )dx} +{bo+b1r+[p(so)]3é°'}x
o o [ [re S8 arve ] a [ [0S
+c4fdtf da+c,f f 6 do

Vc arﬁ
53"* 'z'
v; a 3 da+£'sfdtf V¢ a 3 da} .

The constants p(s,), bo and b, are given by (5.5), (6.10), (6.11). The constants ¢, ..., ¢o
are given by the following equations:

a'o'+ c; dt

v#aa

d6+65 dt

ot

Bl iote, f dt f L)
oA

€as

+c-, dt

or*

Qo
ey = 2+ 9%a*(A2+267 +246) [ (1-3Mo) lp(o)|*de,
0
@¢o
¢2 = 229%a*(#2+2G?+246) [ (1-3Mo) I’ (0)|*do+]6 - 9°a?f*(A2 +2G* +24G)
(]
Qo
+2%902(p} +p2+08)] [ (1-3Mp) lp(0)\*de,
0

Qo
es = 6+ 9*T*a*(A*+2G*+24G) [ (1-3Mp)|¢'" (0)|*de
0

+T4[2- 933263(13+2G2 +21G)+24a*(p? +P§ +pd)] *
o Qo
« [ (1-3Mo) g @do+9 [ (1-3Mp) lp(o)*de,
e 0
Qo
ce = 249°K3a* [ (1-3Mp) (o)l *dp,
0
Qo
cs = 259K % [ (1-3Mp) ¢/ (0)|do
0
Qo
+ [9%a2(p} +p3)+243%022K?] [ (1-3Mp) (o)l do,
0
[
Cs = T*[3*(p+p3) + 23K a4 [ (1-3M0) lg' (@) *de
0

Og Qo
+243°T2K 20 [ (1-3Mo) I (0)*do+8(c* +d?) [ (1-3Mg) |p(0)|*de,
0 0
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fo
¢7 = 243*D%* [ (1-3Mp)lp(0)|*de,
0

]
cs = 293*D%a* [ (1-3Mo) |9/ (o)|*de
0
(1]
+[9%02(p2 +p3)+243%a262D?] [ (1-3Mop) |p(0)|*de,
0
o
o = T?[3*a*(p2+pd)+2*3°K*a*p?] f (1—-3Mp) ¢’ (0)|*de
0

. 2o
+2434T2K%a* [ (1-3Mo) ¢ (O)Pde +8(d*+n?) | (1-3Mp) |p(o)|*do.
H 0

It must be remarked that all the constants considered in the above theorem are explicitly
expressed in terms of the physical constants and of the geometry of the domain 4. One
could get better values for these constants by performing more refined (and much more
tedious!) computations. We leave this task to the reader interested in concrete numerical
computations.
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