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Uniqueness, .existence and estimate of the solution in the dynamical 
problem of thermodiffusion in an elastic solid 

GAETANO FICHERA (ROME) 

THE PAPER is devoted to the theory of a system of five second-order partial differential equa
tions describing the dynamic problem of thermodiffusion in a · deforming elastic body. The 
system is hyperbolic with respect to some of the unknown functions, parabolic with respect 
to the rest of them. A particular case is the coupled thermoelasticity. 

Rozpatruje si<t teori<t ukladu piCiciu r6wnan r6miczkowych c~tkowych drugiego I'ZCidu, opi
suj~cego zagadnienia dynamiczne termodyfuzji w odksztalcaj(lcym si<t ciele spfCiZyStym. Uklad 
hiperboliczny ze wzglCidu na czCiSc niemanych funkcji, paraboliczny ze wzglCidu na pozostale. 
Przypadkiem szczeg6lnym jest sp~na termosp~stosc. 

PaccMaTpHBaeTcn TeopiDI CHCTeMI>I IIJlTB AB«<KK>epeHIUiaJihHhiX ypaaHemm aroporo nopn):{I<a 
B 't12CTHbiX npoH3BO,lUibiX, onHChiBaiOm&JI ~eCI<yiO npo6JieMY TepMo,zu~$4>y3HH B ,l:{e
cpopMHpyro~eMCH ynpyroM Terre. CucreMa .BBJIHe'l'CH nm:ep6oJIH'tleCI<oit omoCBTem.Ho 'tlaCTH 
HeH3BeCTHbiX cf>ymamii H napaOOJIHllecKOit OTHOCHTe1ILHO OCTaJihHbiX. lJaCTHbiM CJIY't!BeM 
naJIHeTcn conpnmeHHan TepMoynpyrocn.. 

THE ANALYTICA~ problem which will be discussed in this paper was proposed to me by 
Prof. Witold Now ACKI, during the Polish Conference on Mechanics of Solids, held in 
Zakopane last September. This problem is originated by the study of the dynamical pro
cesses of thermodiffusion in an elastic solid(!). It consists in investigating a system of five 
2nd order partial differential equations which is hyperbolic with respect to some of the 
unknown functions and parabolic with respect to the others. This system contains as 
particular case (assuming equal to zero some of the coefficients) the well known system 
of partial differential equations of coupled thermoelasticity (see [2], p. 41). The existence 
problem in the case of thermoelasticity is studied in [3]. More general "coupled equations" 
are considered in [4]. 

Suitable boundary and initial conditions must be associated with the system of partial 
differential equations. 

I have restricted myself to consider here only Dirichlet boundary conditions. However 
the method used in this paper should work even with more general or different boundary 
conditions. 

It must also be remarked that the method developed in this paper applies to· non 
isotropic, inhomogeneous bodies as well. However this extension will not be discussed 
here. 

(1) For more information on the physical aspects of the problem we refer the reader to the forth
coming paper [1] of Prof .. NOWACKI and to the bibliography quoted in it. 
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904 G. FICHERA 

I am very pleased indeed to submit for publication in a Polish journal this paper, 
originated by stimulating discussions with Polish Colleagues and, in particular, with 
Prof. NowAcKi, during the unforgettable meeting in Zakopane. 

1. Statement of the problem 

Let us denote by u = (uttu2 ,u3) a 3-vector valued function with real compot;tents and 
by() and p real valued f11:nctions. In this paper by the term function we refer to vector 
valued functions with any number of real or complex components, and, in particular, 

to scalar functions. H v is a function, by "'" and "'"" we denote the partial derivatives 

iJfJ iJ"fJ 
ox,' ox,ax" 

with respect to space variables. Differentiation with respect to the time variable t will 
be denoted either in the usual way or by a dot, i.e., 

• iJfJ • • iJ"v 
'V =7ft' 'V = iJt2 • 

We shall consider the following system of partial differential equations 

Gu111JJ+(i.+G)u11111 -eii11 -p;01,-p,.p1, = F11 (x, t), h = 1, 2, 3, 

(1.1) K0,11 -c0-dfo-p(Ju111 = f(x, t), 

Dp1JJ-nfo-dB-p1JJ111 = g(x, t). 

G, ;., f! : p ,pP, K, c, d, D, n are given real constants; F(x, t) = F1(x, t), F2(x, t), F3 (x, t), 
f(x, t), g(x, t) are given functions with real components. The point x = (x1 , x2, x3) 

varies in a bounded domain (open set) A of the 3-dimensional space and the variable t 
is such that 0 ~ t < +oo. 

We assume that the domain A has a piece-wise smooth boundary and that the Gauss
Green formulas which transform volume integrals into surface integrals hold for the 
domain A. 

With the system (1.1) we associate the following boundary conditions, for x e iJA, 
0 ~ t < +oo, 

(1.2) 
u(x, t) = u(x, t), . 

O(x, t) = ii(x, t), p(x, t) = fi,(x, t), 

where ii, 0, p are given functions with real components and the following initial condi
tions for x e A 

(1.3) 
u(x, 0) = u0 (x), 

O(x, 0) = 0°(x), 

u(x, 0) = u'(x), 

p(x, 0) = p0 (X), 

where U
0

, u', 0°, p0 are given functions with real components. 
Let us define the function class where we shall study the problem (1.1), (1.2), (1.3). 

Let v(x, t) be a function defined in Ax [0, + oo). We consider the following conditions 

i) V E t6'1 {A-x [0, +oo)} () CI2 {A X [0, +oo)}. 
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UNIQUENESS, EXISTENCE AND ESTIMA~ OF THE SOLUTION IN THE DYNAMICAL PROBLEM 905 

ii) Two positive constants c0 and s0 exist which depend only on 'lJ and are such that, 
if D111 denotes any partial derivative of fl(X, t) of order m, We have 

ID"'tJ(X, t)l ~ c0 esrl, X eA, 0 ~ t < +oo, m= 0, 1, 2. 

We denote by ~ the function class, formed by all the 3-vector valued functions u 
and by all the scalar functions () and p, such that each of the functions u, 8, p satisfies 
conditions i) and ii1. 

If (u, 8, p) belongs to§' we may assume that the positive constants c0 and s0 are the 
same for each function u, 0, f'· 

2. Uniqueness theorem 

Let us as.sume from now on that the following conditions are sati$,/ied 

G > 0, K > 0, D > 0, e > 0, c > 0, n > 0, 
(2.1) 

A.+2G > 0, d2 ~en. 

Suppose that the "data" of the problem are identically zero, i.e. 

F(x, t) = 0, f(x, t) = 0, g(x, t) = 0, 

(2.2) u(x, t) = o, O(x, tJ = o, p(x, t) = o, 
u0 (X) = 0, 0°(X) = 0, p 0 (X) = 0, u'(x) = 0. 

Let (u, (), p) be a solution of the problem (1.1), (1.2), (1.3), belonging to !F, and 
assume that the conditions (2.1), (2.2) are satisfied. For any complex numbers such that 
ats > s0 (2), we may consider the Laplace transforms 

00 

u(x, s) = f u(x, t)e-stdt, 
0 

00 

O(x,s) = J O(x,t)e-''dt, 
0 

00 

p(x, s) = J p(x, t)e-stdt. 
0 

From (1.1), (1.3) and (2.2), we get 

" (., " 2" " "' GU,1u+ ~~.+G)u11,1 -es u11 -p88111 -p,..p11 = 0, 

(2.3) KO/JJ-csO-dsjl,-p8m1u = 0, 

DP,111 -nsP,-ds6-p,..mJ/J = 0. 

h=1,2,3, 

The functions u, 0, P, belong to 'l1 (A) n<l2 (A) and satisfy the boundary conditions 

(2.4) u = 0, 0 = 0, fo = o on oA. 

(2) If a is a complex number, we set a= Bla+i Ja with Bta and Ja real. 
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906 G. FICHERA 

If a is a complex number, we denote by a* its complex conjugate. By multiplying 
both sides of the h-th equation (h = 1, 2, 3) of system (2.3) ·by -ut, both sides of the 

fourth equations by _ _!:_§. and both sides of the fifth equation by _!._/,&*, by summing 
s s 

and by-integrating over A, we get, after some integrations by parts and recalling (2.4), 

(2.5) 1 { GU•u U:,1 + ( l+ G)UJJJU:,, + es2U.U: + 2ip -'(~.Ut)+ 2ip•-' (jl,,Ut) 

K A A D... ... ...... ...A ...... } +- ()/1()1~+- PJJI-'fi+c()0*+2d91(ft0*) +n~Jp* dx = 0. s s 

Set 

(2.7) 

The following Hermitian quadratic form in the 9 variables u,11 (h, j = 1, 2, 3) 

(2.8) Q = au,,Jutu+().+G)u}/Ju:,,+2u~(u1/2uf,1-u1/1uf,, 

is positive definite(l). 
Because of the boundary condition u = 0 on oA, we can write (2.6) as follows: 

(2.9) 1 { GU•ulil,1+ (A+ G)U1,1U:,, + 2ai1t(U,12 Ut,, -U11, i4t12 

A A. A ,. " "• " "* ) + ( 2 2) I All +u213U312 -U2t2U3f3 +u3/1 Ulf3 -U3/3Ulfl (! St -s2 U 

K$1 0 A* Dsl ... ... 02 2d91':;0*) 1"'12}dx 0 + lsl" /JO!i+ lsl" 1-'!11-'t,+cl I + v-e +n 1-' = . 

From (2.9) we deduce that,_ ifs = s1 +is2 satisfies the condition 

(2.10) s1 ~ 0, s1 -s2 ~ 0, s2 +s1 ~ 0, 

the problem (2.3), (2.4) has only the trivial solution u = 0, 0 = 0, p = 0 in the class 

<l1 (A) n<l2 (A). 
I. The problem (1.1), (1.2), (1.3) has at most one solution in the class !F. 
Suppose that conditions (2~2) are satisfied. Then the Laplace transforms u(x, s), 

O(x, s), p(x, s) vanish identically for x eA and for s real and such that s = s1 >so. 
Hence, for a classical theorem on La place transforms, we have u(x, t) = 0, O(x, t) = 0, 
p(x, t) = 0 (4). 

(3) See [5], Lemma I. 
(
4

) See [6], p. 62: Corollary 6.2b. 
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UNIQUENESS, EXISTENCE AND BSTIMATB OF THE SOLUTION IN THE DYNAMICAL PROBLEM 907 

For getting the existence theorem we need to prove that the uniqueness theorem for 
the problem (2.3), (2.4) holds in a larger subset of the complex plane than that determined 
by conditions (2.10). Actually we have: 

11. Ifs iS such that s 1 > 0, the problem (2.3), (2.4) has only the trivial solution u = 0, 

0 = 0, p = 0 in the function class <l1(A) n ~2(A). 
· Suppose s1 > 0. Let us multiply the h-th equation (h = 1, 2, 3) of (2.3) by -ut, 
the fourth by _!_§•, the fifth by !jJ•. By summing and integrating we obtain 

s s 

Considering the imaginary part of (2.11) we have 

(2.12) 

which for s2 =I= 0 proves the theorem. For s1 = 0 the uniqueness was already known. 

_ 3. "A priori" estimates for the Laplace traDsforms 

Let us now assume that the functions F(x, t),f(x, t), g(x, t) have Laplace transforms 

F(x, s),f(x, s), g(x, s) which for any s, such that als > s0 > 0, belong to the space L 2(A). 

Suppose that the functions ii(x, t), B(x, t), P,(x, t), u0 (x), u'(x), 8°(x), p,0 (x) vanish identic

ally. Then the La place transforms u, 0, fo of u, 8, p satisfy in A the differential system 

h = 1, 2, 3, 

(3.1) 

'\ "ds(JA A A 
Dp111 -nsp- -ppSUJIJ = g 

and the boundary conditions (2.4). 
Assume s 1 = als > s0 > 0. By the same procedure used in Sec. 2 we get the analogous 

equations of (2.6), (2.12) 

(3.2) 

(3.3) 

f{G" ~ (" ~A A. ( 2 1)1AI2 Ks1 ~ n• Ds1 " "• u,.fiuhtJ+ Jl.+v,uJ/Juhth+e s1 -s2 u + lslz vtJv/J+Wf'tJPJJ 
A 

+cllil2 +2d£f@, 6*)+niPI2}dx = -tit J (F.u:+ !tll*+! gp• )dx, 
A 

11 Arch. Mech. Stos. nr S/74 
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908 G. FICHERA 

If we multiply both sides of (3.3) by s2 /s1 and sum to (3.2), we get 

(3.4) 

+nlfol2}tix= -rJt f (i.U:+! jli0 +~gp•)t~x- ~:-' f (i.u:-! jll•-! cfo• )t~x. 
A . A 

Let us denote by y0 (A., G) the lowest eigenvaJue of the quadratic form Q given by 
(2.8) . . 

Set 
1 ! 

y1 (c, d, n) = 2 { (c+n)-[(c -n)2 + 4cil)2}(5). 

From (3.4) we deduce(6
) 

f {soro(J., G)uh11 uft1+eso lsl2lul2 + KO!lOu+ Dp11 ,U~+so1'1 (c, d, n)[IOI2 + lpl2]}dx 
A . 

1 1 

~ 2(j (IFI 2 + lf12 + lil 2 )dxf. (J (lsl 2 lul 2 + 101 2 + I.UI 2)dx)2
• 

A A 

Set 

(3.5) /'2 = min[e, y1 (c, d, n)]. 

We have 

J {soro(J., G)uhtJult1+ KOtJO~ + D,U11,U~+y2so [lsl 2 lul 2 + 101 2 + IPI2
]} dx 

A 

Hence we have the following theorem: 

Ill. Let s0 be a given positive real number. Suppose that fJts > s0 • If F, f, g belong to 

L 2 (A) and if (u, 0, jt) is a solution of the problem (3.1), (2.4) in the function class 

~1 (.AJ n '82 (A), the following integral estimate holds 

(3.6) f (uhtJufJJ+o,ho~+,U,h,U;t+lui2 +IBI2 +I,UI 2)dx ~ Y2 f (IFI2+Iil 2 +lil2>dx, 
A A 

where 

(3.7) 

Let us denote by v the 5-vector valued function whose components are the functions 

( 5) Yt(c, d, n) is the lowest eigenvalue of the positive Hermitian quadratic form cJOi 2 +2dai<Po"•)+ 
+nl.UI:z. 

(
6

) Like in Sec. 2 we use the identity 

f {GuhtJut!l+ (A+G)uJtJut,,.)dx = f Qdx. 
A A 
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and by <P the 5-vector valued function whose components are the functions 

A A A 1 .... 1 .... 
F 1 , F2, F3, - f, - g, (fJts > s0 > O). 

s s 

909 

Moreover, let us multiply both the fourth and the fifth equations of the system (3.1) by 
1 fs and write the resulting differential system in the abridged form 

(3.8) 

where the meaning of the 5 x 5 matrix differential operator Lis self explanatory. 
Let us consider the problem 

A 2 " .i. . A L w- es2 w = T m , 
(3.9) 

on oA, 
where ~ is a given 5-vector valued function and s2 == Js. 

We shall denote by H,.(A) the space of 5-vectorvalued functions with L 2 generalized 

derivative up to the order. m endowed by the usual norm 11 11,.(1). Let H1 (A) be the sub
space of H 1 (A) formed by the functions vanishing on oA (in the sense of the functions 
of H 1 (A)). 

The quadratic form associated to the boundary value problem (3.9), assuming 
z = (zl, z2, .Z3, i, V), is the following 

B(" ") jJG"' "'* (, G)" A* ( 2 2)" "'* " "'* " "* Z, Z =A l z,Jizhfi+ 11.+ z111 z~111 +(! S +s2 z,z, +PoTthZh +pJA'PthZit 

" "* " "* K " "* D " "* 2(""* ""*) ""* d""* d" "* ""*)d -p z,-r1,-ppzh'Pth+-T/}T/J+-'Pfi'PI}+(!S2 Tr +'P'P +crT + 'PT + T'P +n'P'P X. 
s s 

We have for every z e H1 (A) and for fJts > s0 

(3.10) 

where q is a positive constant independent of z. 
From now on we assume that · oA is f100 -smooth(8). The theory of strongly elliptic differ

ential systems enables us to conclude that there exists one and only one solution w of the 

problem · (3.9) which belongs to H,+2(A) if~ belongs to H,.(A). Moreover, we have the 
following estimate 

Uwltm+2 ~ K.,(s) 11~11 ... 
Since the Frobenius modulus of the inverse matrix of the characteristic matrix of the 

dominant part of the operator L is O(fsl) and the coefficients of L are O(lsl2
) and since 

(3.10) holds, we may assume 

Km(s) = k.,ls.j 5
, 

where km is a constant independent of s(9). 

11* 

(') See [7], Sec. 2. 
(

8
) See [7] p. 369. 

(
9

) See [7], Secs. 3, 4, 5, 6. 
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910 G. F'ICHERA 

A A 

Let us denote by w = G"' the resolvent operator (Green's operator) of the problem 
(3.~, which we consider as a compact operator from L 2 (A) into L 2 (A). 

The differential system (3.8), with the boundary condition 

v = 0 on oA 
may be written 

{Lv-es~~+es·~. ' = <P on A, 
(3.11) ., 

v = 0 on oA. 
If we set Lv-es~v = "'' the problem (3.11) is equivalent to the problem 

(3.12) .f, + (>S~ G"' = <P. 
Since for dls > s0 > 0 we have an uniqueness theorem for the problem (3.11), we have 

that there exists one and only one solution ~of (3.12) belonging to L2(A). Hence G~ 
belongs to H2(A). By an induction argument we deduce from (3.12) that if cp belongs 

to Hm(A), "'belongs to Hm(A) and, in consequence, v = · G~ belongs to Hm+2(A); hence 

IV. If (F,/, g) belongs to Hm(A), the problem (3.1), (2.4) has a solution belonging to 
Hllri-2(A). 

From Theorem Ill we deduce (q0 , q., q2 , ••• denote positive constants) 

llvllo = IIG~IIo ~ qolli»llo (qo > 0) · 
Hence from (3.12) 

and in consequence 

(3.13) 

From (3.12), (3.13) we have 

ll~lb ~ elsl2llvlb + llcpll2 ~ £?k2qtlsl9 llcpllo + llcplb. 
Hence 

(3.14) 

By using the Sobolev lemma(1°) from (3.i4) we deduce the following theorem: 

V. F,or the solution of the problem (3.1), . (2.4), the following estimate holds: 
3 1,3 1,3 3 1.3 

(3.15) ,S~lu.:l+ ,Sm~xlut1,.1+ ,S~Iutuhl+m~xiOI+ ,Sfll!XIB,,.I+ 2~18,,"1 
k-1 ..4· la,k A ),la,k ..4 ..4 la-1 ..4 ),la ..4 

3 1,3 3 1,3 

+m~xi,UI+ .S m~xi,U1,.1+S~xi,UI/Jh ~ q31sl 14 {l'~x1Ftl+ .Sm~IFt,r.l 
..4 h= 1 A ),la A k= 1 ..4 h,k ..4 

1.3 3 1,3 

+ ,S~xi"''"+~xl/1+ S~xl.~.l+ 2~1~'"' 
J,h,k ..4 A h=l ..4 j,h A 

3 1,3 

+ max lil + .S m~ li,,.l + .S ~ IKtJhl} · 
i h=l ..4 j,h ..4 

(1°) See [7], p. 354. 
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4. Existence theorem 

We shall denote by !l' the matrix differential operator which operates on the 5-vector 
valued function v = (u, 8, p,) in Eqs. (1.1). 

In addition to the above specified hypotheses concerning the physical constants of 
the problem and the boundary oA of A, we assume the following ones: 

a) There exists a 5-vector w belonging to ' and satisfying the boundary conditions 
(1.2) and the initial conditions (1.3) (11). 

{J) Set f = (F,f, g). The vector f-.!l'w is defined in the whole four-dimensional cylinder 

A x ( -oo, +oo), belongs to the class F[A x ( -oo, +oo)] and has a bounded support 
contained in the half-space t ~ 0. 

VI. If hypotheses (2.1), a) and fJ) are satisfied and if oA is CC00-smooth, the solution in 
the class F of the problem (1.1), (1.2), (1.3) exists. 

Hypothesis a) ena~Ies us to assume identically vanishing functions as boundary data 
and as initial conditions. Hence we may suppose that hypothesis {J) is satisfied by the 
vector f. Since F(x. t),f(x, t), g(x, t) belong to <l00 and have a bounded support contained 
in the half-space t ~ 0, if we denote by m any positive integer and by s0 an arbitrary 
positive real number, we have for Ols > s0 

oO 00 ,.. J 1 J o"' w(x, s) = e-"'w(x, t)dt = sa e-llt ot"' w(x, t)dt, 
0 0 

00 00 

w111(x, s) = J e-"'w111(x, t)dt = ~ J e-•t !;' .. w111(x, t)dt, 
0 0 

oo oo· 

WJjlt(X, s) = f e-stw/}lt(X, t)dt = ~ f 1

e-st :;.. WJjlt(X, t)dt, 
0 0 

where w(x, t) is any of the functions F(x, t),f(x, t), g(x, t) and w(x, s) the corresponding 
Laplace transform. Hence we have 

I "( )I a, " a.. " ( ) a, w x, s ~ lsl"', lw1,.(x, s)l ~ lsl"', lw1J, x, s I ~ lsl"', 

where a, is a positive constant which we may assume depending only on m. 

Let (u, 0, P,) be the solution of the problem (3.1), (2.4). From the estimate (3.15) 
we get 

lv(x, s)l ~ 65a,.q3 lsl14
-"', 

(4.1) lv,,(x, s)l ~ 65a,.q3 lsl14
-•, 

· lvu,(x, s)l ~ 65a,.q3 lsl 14
-•, 

where v(x, s) is any of the functions u(x, s), B(x, s), P,(x, s). 

(
11

) Hypothesis ~) will be discussed in Sec. 6. 
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Consider the functions u(x, t), O(x, t), t-t(x, t) defined by the inversion integrals 

(sl > So) 
00 

u(x, t) = ~ J eC•,+isz>tu(x, s1 + is2)ds2 , 

-oo 

00 

1 J'· A O(x t) = - . eC'1+is2>'0(x s +is )ds , 2n . · , 1 2 2• 

-oo 

00 

t-t(x, t) = ~ J e<•,+'•2>t#(x, s1 +is2)ds2 • 

-oo 

From (4.1), assuming m > 17, we see that these integrals exist (as integrals of absolutely 
integrable functions) and the functions defined by them have as Laplace transforms the 

functions u(x, s), O(x, s), P,(x, s), respectively (12) . Moreover, 
00 

'i}/h(x, t) = ~ . f ees,+bz>tv,h(x, sl +isz)dsz, 
-oo 

-eo 
00 

v(x, t) = .! f se<'1+is2>tv(x, sl +isz)dsz, 
-oo 

-00 

where 'iJ(X, t) is any ofthe functions u(x, t), O(x, t),ft(X, t) and v(x, s) the corresponding 
Laplace transform(1 3

). The vector (u, 0, !-') belongs to fF and satisfies the initial condi
tions 

(4.2) u(x, 0) = 0, u,(x, 0) = 0, O(x, 0} = 0, p(x, 0) = 0 (14
). 

On the other hand, since u(x, s), B(x, s), }l(:x, s) satisfy . (3.1), (2.4), the functions 
u(x, t), O(x, t), t-t(x, t) satisfy the differential system (1.1) and the boundary conditions 

(4.3) u(x, t) = 0, O(x, t) = 0, f.'(X, t) = 0, {x E oA, t E [0, +oo)}. 

5. Continuous dependence of the solution on the data 

From the analysis developed in the last Section it should be easy to prove, by assum
ing suitable norms in the function space g; and in the function space of the "data", that 

(
12

) See [8], Theorem 5, p. 178. 
( 13) See [8], Theorem 9, p. 185. 
(1 4

) See [8],. Theorem 8, p. 184. 

http://rcin.org.pl



UNIQUENESS, EXISTENCE AND ESTIMATE OF THE SOLUTION IN THE DYNAMICAL PROBLEM 913 

the solution (u, 0, #)of the problem (1.1), (4.2), (4.3) depends continuously on the "data'' 
(F,f, g). However, we prefer to use a new approach for proving this continuous depend
ence, since we wish to have an explicit estimate of the solution, which could be used for 
bounding the approximation error in numerical computations. 

Let v(x, t), v(x, s) have the same meaning as in the last Section. 
We have for s1 > s0 > 0 and recalling Theorem Ill 

3 

(5.1) J {lv(x, t)l 2 + 2 ·1v1h(x, t)l 2 + lv(x, t)l 2}dx 
A h=l 

00 3 00 00 

= ~:~ J {I J eis1tv(x, s)~2 1
2 

+ 21 J ei81'v1h(x, s)~2r + j J eisz'sv(x, s)ds2 1

2

}dx 
A --oo h= 1 -oo -oo 

00 00 3 00 

~ ~:~ J ~~ {J dx J lsl 2 lv(x, s)j
2
ds2 + 2 J dx J lsl 2 lv1h(x, s)l 2ds2 

-oo A -oo h=l A -oo 

00 00 

+ J dx .J lsl41 V(x, s)l21h2} .;;; r; •;:·• ( 1+ 8~ ) J ISI4 dr 2 J { iF(x, s W 
A -oo -oo A . 

+lf(x, s)l 2 +lg(x, s)l 2 }dx. 
If w and (JJ have the same meaning as in the previous Section, we have 

Since we are permitted to assume in (5.1), (5.2) s1 = s0 , we have the estimate 

(5.3) J {lu(x, t)l 2 +u1h(x, t)u1h(x, t)+lu(x, t)l 2+10(x, t)l 2 +01h(x, t)()1h(x, t) 
A 

+IO(x, t)l 2 +lf-t(X, t)l 2 +f-t1h(x, t)f-t1h(x, t)+lfo(x, t)l 2 }dx 

Let us denote by v the 5-vector valued function with components u1 , u2, u3, (), f-t 
and by f the 5-vector function with components F1 , F2 , F3 , f, g. Define as 11 vll 2 the integral 
on the left-hand side of (5.3) and by lllflW the integral over A x [0, + oo) which appears 
on the right-hand side of (5.3). 

Inequality (5.3) gives for every T > 0 

(5.4) max llvll 2 ~ p(so)e2
s0TIIIf!W, 

0-o;t~T 
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914 G. FICHERA 

where 

(5.5) ,2 ( 1 ) p(so) = -
8
3"" 1 + 2 . 
s0 So 

Inequality (5.4) proves the continuous dependence of the solution of (1.1), (4.2), (4.3) 
on the "data" in the above introduced norms. 

- 6. Remarks on hypothesis IX) and integral estimate of the solution in the general case 

We intend to show in this Section how it is possible, under reasonably general assump
tions, to satisfy hypothesis IX) of Sec. 4. 

Let us suppose that, in· addition to (2.1) and to the hypothesis concerning the 
fl00

- smoothness of oA, we have 

. i) The functions u(x, t), if(x, t), Ji.(x, t) belong to the ci~SS ft00
{ oA X (0, +oo)} and 

have a bounded support. 

ii) The functions rfl(x), u'(x), 8°(X), p 0(X) belong to <I00(A). 
iii) The following equations are satisfied for every x e oA 

u(x, 0) = rfl(x), 

8(x, 0) = 8°(X), 

~(x, 0) = u'(x), 

Ji.(x, 0) = p,0 (X). 

VII. Under the assumptions i), ii), iii), hypothesis IX) is satisfied. 
Because of the hypotheses on oA, it is possible to determine eo > 0 such that, if E E oA 

and 0 ~ e ~ eo' the mapping 

(6.1) 

where v(E) is the inward unit normal to oA in E, is a one-to-one mapping of the Cartesian 

product oA X [0, eo] onto the closed domain A-Ao (where Ao is a domain such that 
A0 is interior to A). HE is determined on oA by the local coordinates E1 , E2 , let us introduce 

in A-A0 the curvilinear coordinates E1 , E2, e. 

Let fJJ(e) be a ro real valued function such that cp(e) = 1 for 0 ~ e ~ ! eo, fJJ(e) = 0 

2 
for e ;?; 3eo. Set 

(6.2) 

(6.3) 

(6.4) 

c•>( l { = 'l'(e)ii(~, t) for x = E+ev(E), 0 ~ e ~eo, 
U X, t = O for x e:A-A0 ; 

O!'>(x, r){: ~(e)ii(~. t) for x = E+ev(E), 0 ~ e ~eo, 
for x e A-:__A0 ; 

(1)( ){= cp(e)Ji(E,t) for X= E+ev(E), 0~ e ~eo, 
I' X, t -- 0 &" A tOr x e: A- o· 

It is evident that u<1>(x, t), 8<1>(x, t), p,<1>(x, t) belong to ft00 {Ax [0, +oo)} and satisfy 
the boundary conditions (1.2). 
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UNIQUENESS, EXISTENCE AND ESTIMATE OF THE SOLUTION IN THE DYNAMICAL PROBLEM 

Set v< 1> = (u<1>, 0< 1>, pP>). Let us now define v< 2> = (u<2>, 0<2>, pP>) as follows 

u<2>(x, t) = U0 (X)-u<1>(x, O)+t[u'(x)-uU>(x, 0)], 

0<2>(x, t) = 0°(x)-0<1>(x, 0), 

p<2>(x, t) = p0 (X)-p< 1>(x, 0). 

91S 

It is easy to see that the vector w = v<1> + v<2> = (u<1> + u<2>, (J<l> +0<2>, ,u<t> + p<2>) 
belongs to :F and satisfies hypothesis a). 

Let us now suppose that 
iv) f = (F,f, g) is such that hypothesis {J) of Sec. 4 is satisfied, if we assume as w the 

above defined vector. 
Let z be the solution of the differential system 

!i'z = r-!i'w 
satisfying the homogeneous boundary and initial conditions (4.2), (4.3). This solution 
is provided by Theorem VI. Hence v = z+w is the solution of problem (1.1), (1.2), (1.3) 
belonging to !F. From (5.3) we easily get 

(6.5) llvll ~ llwll + Y p(so) e'o'(lllflll + lll!i'wlll). 
We have 

(6.6) 

and 

llv<1>1l = {J [lu<1l(x, t)l 2 +z4~>(x, t)z4~>(x, t)+ lu<1>(x, t)l2+ 10<1>(x, t)l 2 

A 
1 

+~l>(x, t)~l~(x, t)+ IB<1>(x, t)l2 + lp<1>(x, t)l2 + ,u~l>(x, t),u~l>(x, t)+ I,U< 1>(x, t)l 2]dx}2, 

llv<2>11 ~ {j[lu0 (X)+tu'(x)l2 + (u~11(x)+tu;,.(x))(u~11(x)+tu;,.(x)) + lu'(x)l2 + I0°(X)I 2 

A 

1 

+0~11(x)0~11 (x) + lp0 (x)l2 + ,uf,.(x) ,uf11(x)]dx}
2 

+ {J [lu<1>(x, 0)1 2 + ~l>(x, 0) z4l>(x, O) 
A 

1 

+10<1>(x, 0)1 2 +0~l>(x, O)O~l>(x, O)+l,u<1>(x, O)l2 +,u~l>(x,O) ,u~l>(x, O)]dxp: 
1 

+t{J [lu<1,(x, O)l2 +u~~>(x, O)~l>(x, 0)+ IU<1>(x, O)l 21dx}l, 
A 

· (6.7) lll!i'wlll = lll!i'v<1>lll 

.. [idtJ{9[(A+G)'+G'J ::. ulll ::. uJ:l +91 ::. ii<'f +9(phY.> ::.liJl' ::.liJl' 
a3 a3 a3 a3 I a3 . 12 

+9(p~+pa) at3 ,u~l> at3 ,u~l> +SK2 at3 ~1 at3 O~+S(c2+d2) at3 o<1> 

+8(tP+n')i !', fo<'f +8(p:+p~+p~) ::. ull' ::. ull'+8D2 ::.14U ::. p~fl}dx J; 
Po is an arbitrarily chosen positive constant. 
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916 G. FICHERA 

If we denote by cp(t) a vector valued function belonging to ~00 [0, + oo) and with 
support contained in the bounded · interval [0, T], we have, for any positive integer n 

and any t ~ 0, 
t 

f (t-T)n-1 
cp(t) = (n- 1)! cp<n>(r)dr. 

T 

Hence 

For 0 ~ t ~ Twe deduce 
T 

(6.8) lcp(t)l
2 ~ (2n-~~~:~ 1)!]2 f lcp<n>(r)l 2dT. 

0 

Suppose that thefunctions u(x, t), O(x, t), Ji,(x, t) vanish identically for t ~ T. 
From (6.1), (6.2), (6.3) we deduce that u(l>(x, t), ()(l>(x, t), pP>(x, t) vanish identically 

for t ~ T. Hence, if we denote by P(v<1') the integral which bounds lll!l'v<1>lll 2 by (6.7), 
using (6.8) we have 

(6.9) liv<1>11 +{J {lu(l>(x, 0)1 2 +u~~>(x, O)z4l>(x, 0) + IO{l>(x, 0)1 2 

A 

1 

+O~i>(x, O)O~l>(x, O)+l,u(l>(x, O)l 2 +,u~l>(x, O),u~~>(x, O)]dx}
2 

~ 1 

+t{Jrlu<1>(x, O)l 2 +ufi>(x, O)UJl>(x, O)+lu<l>(x, O)l 2]dxY ~ (bo+tb1){P[v(1>]}2 , 
A 

where 

1 

(6.11) J T' rs T3 12 
bl = l22J47 + 22325 + 3. 23(p~+p;+p~) . 

Let us decompose oA by a triangulation into a finite set of non overlapping open 
surfaces E 1 , ... , E1, such that Ei (i = 1, 2, ... , /) admits the parametric representation 
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UNIQUENESs, EXISTENCE AND ESTIMATE OF THE SOLUTION IN THE DYNAMICAL PROBLEM 917 

X = X(~ 1 , ~2) with X(~1 , ~2) 3-vector valued ct00 function in the triangular closed domain 
Si of the (~1 , ~2)-plane; x(~1 , ~2) maps one-to-one Si onto .Ei and the Jacobian matrix 

o(Xt, X2, X3) 

8(~1' ~2) 

has rank 2 at each point of Si . 
If we consider for (~ 1, ~ 2) E Si, 0 ~ e ~ eo, . the above introduced curvilinear CO

ordinates (~1 , ~2 , e), we have that the determinant J(~, e) of the Jacobian matrix 

(6.12) 

is given by 

o(X1, X2, X3) 
ac~1, ~2, e) 

where H(~) and K(~) are respectively the mean curvature and the total curvature at the 
point ~ of oA and E, F, G have the usual meaning, i.e., they are the coefficients of the 
first fundamental form on oA 

ds2 = Ed~i + 2Fd~1 d~2 + Gd~~ .. 
Let M be a positive constant such that for {~1 , ~2) E Si (i = 1, ... , l) we have 

I Ox·~~~ ~2) 1.;; M, /v,(~,, ~2)/ .;; M, 

(6.13) 

h=1,2,3; k,j=l,2, 

IH(~)I ~M, IK(~)I ~M. 

We are permitted to assume M independent of i. Moreover, we suppose eo < 1. It. 
is convenient to denote by ~3 the coordinate e in some of the subsequent computations. 

Let Jhk(~u ~2, ~3) be the co-factor of the entry in the h-th row and in the k-th column 
of the Jacobian matrix (6.12). We have 

J(~~' ~2, ~3) ~ (l-3eM)yEG-F2
• 

We suppose that eo < (3M)- 1• 

Let e be a positive constant, independent of i, such that y' EG-F2 ~ e for (~1 , ~2) E Si. 
We have 

a~k Jhk<~~, ~2, ~3) 
OXIJ J(~1' ~2, ~3) , 

a a~k 1 aJhk 1 aJ a~k 
o~1 oxh = J o~i -, o~1 oxh' 

I il~ Jl.;; 18M•(t+eo)•, I iJ~. J .. t.;; 4M2(1+eo)2. 
j J ' 
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918 G. FlCHERA 

Hence 

(6.14) 

(6.15) 

I 
aze" I axlax, ~ 3a.p. 

Denote by "P a function which is f/00 in A-A0. We have, after elementary computa-
tions, 

(6.16) 

~ 2. 34 4 az"P a2"P 2. 35 2p2 a"P a"P 
<6·17) "PJiik"PJhlc "'<:: a. , aeiae, ae}ae, + a aej a~j. 

Suppose that we have for X = ~ +e11(~, ~ E aA, 0 ~ e ~ eo: 
VJ(x) = q;(e)'P(~), 

where jj(~) is a <800 function defined on aA . • 
Setting for (~IJ E2) E S, (i = 1, ... , l) 

we have 

(6.1&) 

(6.19) 

IV('PI2 = I'P~.I 2 + I'P~ll 2, 

IV~'VJI 2 = I'P~.~.I 2 +21'P~.~li 2 +I'P~l~ll 2 , 

:;: ;~ = IV(~I 2 Iq;(e)l 2 + 1~1 2 lq;'(e)l 2 ; 

_2_ _2_ = I.Y~''PI 2 Iq;(e)l 2 + 2IV(I2 1qJ' (e)l 2 + I'PI 2 Iq;" (e)l 2
• 

a~1 a~, a~1 ae, 
If we use .(6.16), (6.17), (6.18), (6.19) for estimating P[v(l>] and estimate the right

hand side of (6.5) by the inequalities (6.6) and (6.9), we get the proof of the following 
theorem: 

VIII. Under the assumptions. i), ii), iii), iv) of this Section, the following estimate holds 
for the solution of the problem (1.1}, (1.2), (1.31, in the function class !F 

{j[lu(x, t)l 2 +u1,(x, t)u1,(x, t)+lu(x, t)l2 +10(x, t)l2 +01,(x, t)O",(x, t) 
A. 

1 

+ IO(x, t)l 2 + l,u(x, t)l 2 + ,u1,(x, t),u1,(x, t) + lfo(x, t)l 2]dx}
2 

~ {J lu0 (x)+tu'(x)l 2 + (ur,(x)+tu;,(x)) (ur,(x)+tu;,(x)) + lu'(x)l2 

A 
1 

+ I8°(X)I2 + o;,(x)or,(x) + l,u0 (X)I2 + ,u~,(x) ,ur,(x)] dx} 2 
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X {c, j dt f jv;· :;~ r da+c. j dt Jlv; ~:~ 1
2 

da+c, j dt f I:;~ 12 

da 
0 t)A 0 t)A 0 t).4 

foo f I iJ3ifl2 foo f I iJ3ifl2 foo f I iJ401 +c4 dt V'c' 
013 

da+c5 dt V~ 
013 

da+c6 dt 
014 

da 
0 M 0 t)A 0 o.4 

00 00 00 1 

+c,J dt Jjv;· :;~jda+ca J dt Jjv; :;~ jda+c. J dt J I~~ ldar 
0 t)..f 0 oA 0 oA 

The constantsp(s0), b0 and b1 are given by (5.5), (6.10), (6.11). The constants c1 , ... , c9 

are given by the following equatidllS: 

l'o 

c1 = 2·93 cx4 (l2 +2G2 +2A.G)J (1-3Me)l<p(e)l2de, 
0 

C?o 

c2 = 22 93 cx4 (A.2 +2G2 +2A.G) J (1-3Me) l<p'(e)l 2de+£6 • 93cx2~2 (A.2 +2G2 +2A.G} 
0 

C?o 

+239cx2(p~ +p;+P~>lf (1-3Me) l<fl(e)l 2de, 
0 

C?o 

c3 = 6 · 92 T4 cx4 (A.2 + 2G2 + 2A.G) f (1-3Me) l<p"(e)l 2de 
0 

l'o 

c4 = 24 92K2 cx4 f (1-3Me) l<fl(e)l 2de, 
0 

C?o 

cs = 25 92K2 cx4J (l-3Me) l<fl'(e)l 2de 
0 

h l'o 

x J (1-3Me)l<p'(e)l2de+9 f (1-3Me)l<p(e)l 2de, 
0 0 

(lo 

+ [92 cx2(pl+pa)+2435 cx2~2K2] f (1-3Me) l<fl(e)l 2de, 
0 

C?o 

c6 = T2 [34cx2(p~+p~)+24 35K2cx2~2lf (1-3Me)l<p'(e)l 2de 
0 

% ~ 

+24 34 T2K2 cx4 J (1-3Me) l<fl"(e)l 2de+S(c2 +d2
) J (1-3Me) l<p(e)l 2de, 

0 0 
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(lo 

c7 = 24 34D2 cx4 J (1-3Me)l97(e)l 2de, 
0 

(lo 

cs = 25 34D2cx4 J (1-3Me)l97'(e)l 2de 
0 

G. FICHERA 

Oo 

+ [92 cx2 (p;+p~)+24 34cx2/FD2] J (1-3Me) 197(e}l 2de, 

Oo 

c9 = T2 [34 a2(p;+pa)+24 35K2 a2{J2]j (1-3Me)l97'(e)l 2de 
0 

0 

~ ~ 

+24 34 T2K 2 cx4 J (1-3Me)l97"(e)l 2de+8(d2 +n2
) J (l-3Me)l97(e)l 2de. 

0 0 

It must be remarked that all the constants considered in the above theorem are explicitly 
expressed in terms of the physical constants and of the geometry of the domain A. One 
could get better values for these constants by performing more refined (and tnuch more 
tedious!) computations. We leave this task to the reader interested in concrete numerical 
computations. 
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