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Stress in isotropic elastic solid under superposed deformations

W. PIETRASZKIEWICZ (GDANSK)

Tue expriciT formulae for Cauchy stress tensor in isotropic elastic solid under successive super-
position of two deformations have been given. Any deformation can be finite, small or infini-
tesimal one. The exact formulae for elasticity tensors of zeroth, first and second order in
arbitrarily deformed reference configuration have been obtained from the Lagrangian con-
stitutive equation. For infinitesimally and smally deformed reference configurations the elas-
ticity tensors have been expressed in terms of elastic constants of the first or also the
second order in the natural state. Derivatives of some useful functions of the second-order
tensor are given in the Appendix.

Podano zamkniete wzory na tensor naprezenia Cauchy’ego w izotropowym ciele sprezystym
poddanym dwu kolejnym odksztalceniom. Odksztalcenia te moga by¢ skorficzone, male lub
infinitezymalne. Z réwnania konstytutywnego Lagrange’a wyprowadzono $ciste wzory dla
tensorOw sprezZystoéci zerowego, pierwszego i drugiego rzedu w dowolnie odksztalconej
konfiguracji odniesienia. Je$li konfiguracja odniesienia powstaje w wyniku odksztalceri infi-
nitezymalnych lub malych, to tensory sprezysto$ci wyraza sie za pomoca stalych sprezystych
stanu naturalnego pierwszego wzglednie réwniez i drugiego rzedu. W “Dodatku” podano
uzyteczne wzory na pochodne funkcji od tensora drugiego rzedu.

Harorca 3aMxHyTHIe (GOPMYNBI ANA TeH30pa HanpspxeHwd KoIlm B M30TPONHOM YIpyrom
Tesle, MOABEPrHYTOM HABYM IOCHe[OBaTeNBHBIM Aeopmarmsam. ITH fedopMaLmy MOryT OuITH
KOHEUHBIMH, MAJIbIMK WM HHbMHATeIuMaBHEIME. W3 onpeaensmouero ypasHenus Jlarpan-
’Ka BHIBEJICHBI TOYHBIE (DOPMYNBI JUIA TEHSOPOB YIPYTOCTH HYJEBOrO, MEPBOTO H BTOPOrO
MOPAAKOB B NMPOHM3BOJIEHO JecopMupoBaHHOK KoHbHrypaumn orcuera. Ecim koHbHrypanuu
0TCYeTa NOABEPrHyThl HHOHHUTESHMATLHEIM HIIH MATEIM Aed)OpMaIHAM, TO TEH30PE! YIPYro-
CTH BBIDR)KAIOTCA NPH NOMOLIM YIPYIMX NOCTOAHHBIX ECTECTBEHHOIO COCTOAHMA MEPBOTO
¥ BTOporo nopaaxkos. B ,,JlomonHeHnn’’ npuBeNeHBI IMONE3HLle (GOPMYINBI UIA NPOH3BOA-
HBIX (PYHKIMH OT TEH30pa BTOPOTO MOPAMKa.

1. Introduction

WITHIN the general theory of continuum mechanics presented by NoLL [1] and TRUESDELL
and NoLv [2], the form of strain energy function for an elastic solid depends on the choice
of reference configuration. The response of the elastic solid to deformation from an arbitra-
tily deformed reference configuration is different from the response from the unstressed
natural state. This fact was referred to as deformational anisotropy by BERG [3] and
URBANOWSKI [4] and can be taken into account directly by specifying the elasticity tensors
in the reference configuration. These elasticity tensors are in general different from those
specified in the unstressed natural state.

In this paper we discuss the stress-strain relations for an isotropic elastic solid under
successive superposition of two deformations. The first deformation is assumed to connect
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the unstressed natural state with the deformed reference configuration, the second one
connects the reference and actual configurations. Three kinds of deformations, depending
on the norm of displacement gradients, have been taken into account: the finite, the small
and the infinitesimal.

First of all we present the exact formulae for the elasticity tensors of the zeroth, first
and second order, derived in an arbitrarily deformed reference configuration [5]. These
formulae have been obtained from the Lagrangean constitutive equation with respect
to the reference configuration. For infinitesimally and smally deformed reference con-
figuration the elasticity tensors have been expressed in terms of elastic constants of the
first and also the second order in the natural state, respectively.

Using the elasticity tensors obtained, six different cases of superposed deformations
can be discussed. In addition to two trivial cases of successive superposition of two in-
finitesimal or two finite deformations, we obtain here the closed explicit formulae for
the Cauchy stress tensor in four other cases of infinitesimal or small deformation super-
posed on a small or finite deformation.

The exact and approximate relations obtained in this paper may be useful in problems
of wave propagation, vibration and stability of initially deformed isotropic elastic solid,
as well as when studying the second-order effects and other similar problems of non-linear
elasticity.

Most of the explicit formulae presented here are new and have been obtained using
absolute tensor analysis. It is interesting to note here that TRUESDELL and NoLL [2] used
extensively the notion of tensor functions, although little was said in that Ref. about
their differentiation. The general rules of differentiation of tensor functions have been
discussed by RYCHLEWsKI [6]. To obtain the results presented in the present paper, it was
necessary to calculate effectively many derivatives of certain simple functions of the sec-
ond-order tensor, which were not otherwise available. We considered it worthwhile
to present some derivation formula® in the Appendix at the end of this paper. We believe
that some of them may be useful also in other problems of mechanics.

2. Notations and basic relations

The absolute tensor analysis in three-dimensional Euclidean vector space [2,6,7]
is used here. The system of notations for the continuum mechanics quantities is adopted
mainly from [2].

Let the Euclidean tensors of the second order be denoted by A, B, ..., H,S, Te®,,
and the metric tensor of this tensor space by 1 € ¢,. The Euclidean tensors of the fourth
and sixth-order are denoted by K, L € ¢, and M, N € 6. If by ® we denote the tensor
product operation, then it is evident that tensors of the types 1® 1,1 E,B@ Be %,,
while 1@ 1@ 1,B@B®B,GR®Ke%. Let g, 8., ... (i, =1,2,3) be the triples
of basic vectors of the Euclidean three-dimensional vector space ¥ = %;. Any set of
nine tensors of the types g, ® g,, g ® ¢, g ® g, ... €¥,, where g;-g/ = ¢/, form
a basis for €,. -
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b, v
LetPe%,, Qe¥, p > q. By PT € ¢, we denote [6, 8] the operation of transposition
(1,v); by trPe%,_, we denote the operation of contraction (u,7), 1< u<v<p,
v

and the simple dot operation and the full dot operation are defined, respectively, by

PQ = tr 1(P RQVe?b, -2,

PP+

2.1 P-Q= tr .. tr PRQEeb, 4rs4>

p—q+Lp+1 p.pta

The derivatives of a tensor function f: €, - €,, R = f(A), are denoted here by
fa.far, ... and their values at A, €%, by fa (Ao) €%,.2, fiaa (Ag) €%, .s. When
A = g(B), g: 6, » €,, the derivative of the tensor function h = fog, h(B) = f[g(B)]
can be found according to the following chain rule:

(2.2) hp =facgps = tr tr (fa®gp)p>q.

r+l,r43 r+2,144

The derivatives of some tensor functions used here are included in the Appendix at
the end of this paper.

Let us consider three different mappings of the body £ into three-dimensional Euclidean
point space & [2]: %y: B — P, C &, the natural state, unstressed; x: & — &, C &, a ref-
erence configuration, arbitrarily deformed; y: # — 2, ¢ &, the actual configuration.
These three configurations define three deformations
23 Xo=%oexg', x=yox™!, y*=vyoxg'

with three deformation gradients
(2‘4) FO = on; F = vx; F. = VZ‘°
For deformation y with deformation gradient F, the following relations hold [2]:

F=1+H, C=F'F, B-=FF,

25 .
@) E=—;—(C—I), E=%(H+H").

Similar relations hold for deformations y, and x*. We can obtain them using
deformation gradients F, and F* and defining in a similar way tensors Hy, C,, B,

Eo, Eo, and H*, C*, B*, E* E*, respectively. Between the analogous tensors defined for
these three deformations we find the following relations:
F* — FFO! B* = FBOFTr
2.6) C* = F{ CF,, E* = F{EF,+E,,
H* = Hy+H+HH,, E*= ﬁ0+ﬁ+-§mno+H§HT).

The Lagrangian constitutive equation for the elastic solid has the form [2, 8]:

(2'7) Sx = zexan.C(C) = 0xTx, E(E):
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where: g, and 7, — the strain energy functions defined with respect to x; g, — the material
density in x; S, — the second Piola-Kirchhoff stress tensor in vy, defined with respect
to x, related to T, the Cauchy stress-tensor in y, by the relation:

2.8) S, = % F-'T(F-Y)T,

For an elastic solid with a specified symmetry group, representation theorems are
formulated for the strain energy functions defined with respect to an undistorted state,
mainly the natural state %,. In terms of ¢, and 7,, the strain energy functions defined
with respect to %,, the Lagrangian constitutive equation has the form:

29 So = 20090,c+(C*) = 0070,e+(E*),
where: p, — the material density in %,; S, — the second Piola-Kirchhoff stress tensor
in v, defined with respect to x,, and related to T by:

(2.10) S = -%' Ft-lT(Fs-l)T_
For an isotropic elastic solid o, and 7, are orthogonal invariants
00(C*) = oo(Ice, Ucs, Ulcs),
TO(E‘) = :EO(IE'Q IIE', ]IIE‘)u

where the principal invariants of E* € €,, for example, are defined by:
IE- = trE*,

@.11)

- Hge = % [(trE*)> —trE*2],

Illgs = detE* = % [(trE*)® —3trE**trE* + 2trE*3].

3. Elasticity tensors

Expanding the constitutive equation (2.7) into Taylor series in the neighbourhood
of », we obtain:

G.1) S,‘=T,‘+L,‘-E+—;TM,-(E®E)+
where

Ty = 20404,c(1) = 0u7xe(0),
(32 L, = 40,0,,cc(1) = 0u7ex(0),

M, = 80,0,,ccc(l) = 0x Tuexe(0)

are the elasticity tensors (elasticities according to [2]) of the zeroth, first and second order,
in the reference configuration .
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To find these elasticity tensors, the explicit formulas for o, or 7z, should be known.
It may be found from (2.7) and (2.8), using (2.5) and (2.6), that .
an-C(C) =F, tT(.'!,C‘(C-*) Fg:
7. e(E) = Fo7o,e+(E*) F,
and assuming o, or 7, to be given explicitly, these relations are, in fact, sufficient for
our purpose.

The transformations below will be effected using the function 7, first. Using the chain
rule (2.2) and the formulae for derivatives of principal invariants of E* [2], we obtain:

(3.3

31‘0
Ollge

aTo

3" Ky
(34 To.e(EY) = —— 14+ -~ Elii

(Tes1—E*) + 0 ([fge1—Igo E* +E*?),

For a fixed deformation y,, tensor E* depends only on E and any function of E* is
in fact the function of E.

The relations (3.4) and (3.3) suggest the introduction of the following useful func-
tions: '

gl(E) = B()’
35 g@®= Bofx-—[BoEBo'l“";—(Btz:—Bo)].
1
83(E) = Bollg.— [BoEBo+"2— (B?:—Bu):lfn-
+B,EB,EBq + — (B’EB[.-!-BOEB )—BoEB, + + (B3-2B3+By).

From (3.2),, using (3.3),, (3.4) and (3.5), we obtain the elasticity tensor of the zeroth
order — which is at the same time the Cauchy stress tensor in x —to be

(3.6) T, = ) G,
r=|
where
a_fo 3?0 afo
i = O = Qu 3~
S TR L M Dl

G, = £,(0) = B,,
i
(3.9 G, =20 = Boll‘.o——z— (B%—Bo),
= g5(0) = By llg,— "‘(Bo Bo)fl!o+ (B3 —2B3+By).

To find the higher-order elasticity tensors, we note first that according to (2.6), and the
appropriate differentiation formulae

1,4 1,3
69 B} = (FSEFo)x = [(Fo ® Fo)' + (Fo @ FD)'),
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and for any invariant o(E*), o: *¢, — &, we have:
(3.10) ag = ope o E% = Foo g FJ.
In particular, for the principle invariants of E* it follows that
Ige g = Folpe g Fj = g,(E),
(3.11) Hgeg = Follgs 5 ¥§ = g2(E),
Hlge,x = Folllgs 5 F§ = g3(E).
Now, from (3.5), (3.11) and the appropriate differentiation formulae, we obtain:
g,e(E) =0,

1 I?'" |i‘3
(3.12) g,k(E) =B, @ By— 5 [(B, ®@ By)" +(By ® By)'],
1 1,4 1,3
23,e(E) = By @ BoJgs— 3 [(Bo @ By)™ + (B, @ By)"] Jge
— 1 [Bo ® (B} ~B,)+ (B3~ B0) ® Bol— (B, EB, ® Bo+Bo ® BoEBo)
1.4 1,3
+ % [{Bo ® (B2—By)+(B3—Bg) ® Bo}T + (B, ® (Bi—By)+ (Bi—B,) ® B,}']

1 1,4 1,3
+ T [B,EB, ® By+B, ® B,EB,)" +(BoEB, ® B, +B, @ BoEB,)"].

Let us define the tensors
K, = gl.E(o) =0,
1 14 13
K; = 2,£(0) = By ® Bo— a5 (B, ® By)" + (B, ® By)'],

1,4 1,3
(.13) K = £3(0) = Bo ® BoJ,— - [(Bo ® Bo)' +(Bo @ Bo) e,
~ 5 (B ® (B3—Bo)+ (B3—Bo) ® Bo]

5 1,3
+ 2 [{Bo ® (B3~Bo) + (B3—By) ® By} + (B, ® (B3—Bo)+ (B~ Bo) ® Bo});

N, = g1.EE(0) =0, N,= gg,m(o) =0,
1,4 1,3
(3.14) N3 = gS.EE(o) = Bo ® BO ® Bo— "%" {Bo ® [(BO ® Bo)f+(Bg ® BO)T]
1,6 1,5 1,4 1,3
+[Bo ® B, ® Bo) +(By ® By ® Bo)T1+ [(Bo ® Bo)™+(Bo ® Bo)'] ® By}
1,4 1,3 1,6 1,5 1,4
4+ (@0 © [Bo ® Bo)' + (B, ® Bo)! 1+ [(B, ® B, ® Bo) + (B, ® B, @ B)' D'

4 ; 1,51,3
+(Bo ® [(Bo ® Bo)' + (Bo ® Bo) 1+ [(Bo ® Bo® Bo) ™ #@Bo® By ® B ))').
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Differentiating (3.3), according to (3.2), and using (2.2), (3.7), (3.8), (3.13) and (3.14),
for the elasticity tensors of the first- and second-order in x we obtain:

3
L= (K + 3 5.6,06),
s=1

r=1

4,6

3 3 3,54,
(3.15 M, = 2{1,N,+ Z ['r,,(K, ® G+ {K, ® {1},}1g T

r=l

3
+G,®K)+ D 746, ® G, ® G},
where =
7, 0%,
G16) T = e e T O A ol Al | ge0”

It is worthwhile once more to point out here that the relations (3.6) and (3.15) obtained
for the elasticity tensors of the isotropic elastic solid are exact and valid for arbitrarily
deformed reference configuration . The relations analogous to (3.5) can be found in [2].
The explicit exact relations for L, and M, given here in (3.15) have not been discussed
in the literature and are new, [5].

In a special case when x is a natural state, ®¥ = %,,thenE; = 0,By=1,T, =T, =0
and the elasticity tensors of the first and second order in %, have the form:

Lo = 11® 1+4[1 ® DI +1 ® DT,
GAN My =%1016 145 {1818 Di+1 ® 1
H1®181) +1818 1)""51+[(1 D +1® 11 ® 1}
{181 D +1e DI+ 18 D +1 818 V]

L5 1,3

1.4 1,3 1,6
+AR[AR D +1 DI+ @11 1T+1 8 1@ 1))},

where

A=3,+9,, p= -%ﬁz,
(3.18) 1 1

Yy = 1911.1.'*'31912‘}“1933 ¥ = _T(ﬂu'l“ﬂs): V3 = Tz?a,
(319) ﬂr - rr's-xua ‘3‘,, - rulx—xav ﬁ‘rﬂ = Tost |x-xo°

The second-order elastic constants »,, »,, v5 and the relation (3.17), written in com-
ponents with respect to the natural basis of a coordinate system given in x,, have been
introduced in [9].

Similar relations can also be obtained in terms of the strain energy function ¢,(C).
The equivalent formulae are only more complicated in the present case since for C = 1
some terms do not dissapear, as was the case for E = 0 when we used 7,(E). In the present
-case, we also introduce the functions:

8:1(C) = Icoc = By,
(3'20) g’z(c) o HC'.C = BOIC‘_BOCBCI,
23(C) = Hlce,c = BoIlce—B, CBy Ice+ B, CBo CBy,
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and from (3.2) by analogous transformations we obtain the exact relations for the elasticity
tensors in x:

(3.21)
_ 3 _ P _
M,=38 0N+ ) [0.K ® G+{K ® G} T +G, @ K)
r=1 Sa=]
3
+ D 0,46, ® G, ® G},
t=1
where B N
Gr — Er(l)s Kr = gr.C(l)s Nr - gr.CC(l):
- 90, B 9,
3.22) Gy2 = Ok s bl | eni® ™ 0312 = Ox WE; P

The explicit formulas for G,, K, and N, can easily be obtained from g,(C) in exactly
the same way as those found before for G,, K, and N, from g,(E), and we do not present
them here. When » = x,, we obtain the relations (3.17), where the elastic constants
A, pand vy, v,, v, are defined in terms of o, by some more complicated relations, for
example:

A=A +E) A6 +28 4+ 83 +2(62 +2855+E23) + 63+ &30+ E35),

3.23
( ) Ju = _2(§2+E3)9

where
(3'24) Er =¥ arluﬂxn’ Erx = onlx-uo-

4. Smally strained reference configuration

The exact results for T,,, L, and M, have been derived analytically assuming the explicit
from of the strain energy functions 7, or o, to be given for the isotropic elastic solid.

For a wide class of elastic solids, the explicit analytic formulae for the strain energy
functions have not as yet been established. The material properties of the solid are usually -
described in terms of some elastic constants of the first and second order defined in the
natural state x,. These constants, which are determined experimentally, enable us to
describe satisfactorily the behaviour of the solid for the most important class of relatively
small deformations from the natural state.

The magnitude of deformation y, is usually described by a norm of displacement
gradient Hy, defined by |[H,| = (H, ' H,)"/?> ~ e&. In this paper, we consider deformation
%o to be small if 1+&* ~ 1 and infinitesimal if 1+¢&> ~ 1.

For small deformation y,, the elasticity tensors T,, L, and M,, describing the solid
material properties in a reference configuration %, can be found approximately, by
expanding them in the neighbourhood of x, into Taylor series with respect to H,.
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All such expansions have the form:
@1 fHe) = FO)+ £ 0) - Ho+ 7 St (Ho ® H+ ..,

where fg,, fHm, , --- are obtained using the chain rule (2.2) and derivatives of the ap-
propriate tensor functions given in the Appendix. For various terms of (3.6) and (3.15),
we obtain the following expansions [8, 10]:

B, = 1+2E,+H,H,
4.2) BZ—-B, = 2E,+ (4E2+H HD) + ...,
B}—2B2+B, = 4E2+ ...,

E, = Eo+%H§H°, E2=E2+.., Ei=+..

4.3) q
I&=Ife+7[ﬂ§ﬂﬂ! Ilg, = g+ ..., Hlg,= + ...
Qo 1/2 1 2 - 1
—E— = (detCQ) ¥ = 1+Iﬁ,+ '““2_1&4-2[1&"'-2_!“3‘“0 + ...
4.4) > A
£x =,1—ff°+(w I%,—Zlfgo—fua'm)+
Qo 2

1
(4"5) T, = §r+(§rl_ﬁr)lﬁu+['§_ (’91'1'_19:)!“;“0
1 3 2
+ 76,11—§r1+'§'79’ I§n+(19‘,2—219,)11ﬂ; + aas
Tps = 79'.!"'(&"1'—'!9")1&4'
Tog = Qput ...

From (3.8), (3.13) and (3.14), and using (4.2) and (4.3), we can find the expansions
of G,, K, and N,, then put them together with (4.5) into (3.6) and (3.15), and make use
of (3.18) to introduce the elastic constants A, z and v, , v, v3. After lengthy but elementary
algebraic transformations, we obtain the following expansions for the elasticity tensors:

T, = [l-l- (121— +v2—).) Iﬁ]!ﬁe1+2[p+ (v2+ l—p)fga]f‘.o
+ (% Infro— 2v;!!f.)l+pHoH§+4(vs +WE}+ ...
1,4 1,3
(46) L,=[A+—AIg ® 1+ [u+0—wIE][1QDT+(1 @ 1]
20, + DA @ Eg+E, ® 1)

5 2 1,4 = = 1,3 -
+203+ W) [(1 @ Eo+Eo @ DT+ (1 @ Eg+Eo ® D]+ ...
MN = M0+ s

9 Arch. Mech. Stos. nr 5/74
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The relation for T, analogous to (4.6); with different second-order elastic constants
has been obtained in [10, 11]. The explicit relation for L, given here in (4.6), has not been
discussed in the literature and is new [5].

For infinitesimal deformation yx,, it follows from (4.6), that

T, = Alg 14 2uky+ ...
L = Lo+ veey
and this result is well known from the classical linear theory of elasticity.

4.7)

5. Stress under superposed deformations

The exact (3.6), (3.15) and the approximate (4.6) relations for elasticity tensors in
arbitrarily and smally deformed reference configuration, respectively, make it possible
to formulate the basic field equations of the non-linear theory of elasticity with various
degrees of approximation. Here we discuss in greater detail only the stress-deformation
relations under successive superposition of two various deformations.

We have introduced here three different kinds of deformations: the finite, the small
and the infinitesimal. Thus there may be at most nine different cases of superposition
of these deformations. We do not discuss here, however, the superposition of the finite
on small or infinitesimal deformations, or the small on an infinitesimal deformation,
since these cases are physically unjustified. For the six remaining cases of superposition
we present the explicit relations for the Cauchy stress tensor T.

a) Successive superposition of two finite deformations,
In this, the most general, case from (2.9) and (2.10) we have:

(5.1) T = oF*1o 5 (EX)F*7,

and this relation is useful only within the exact non-linear elasticity [2].

b) Small deformation superposed on a finite deformation.
The appropriate relation for T can be obtained from (2.8) using (3.1), (2.5), and an ex-
pansion for p/p, similar to (4.4),. Retaining only the terms quadratic in H, we obtain:

(52 T=T~ET+HT,+TH +L, K+ -g—fé—szg-fﬂrﬂ):.
— I (HT, + T,H+L, - E)+ HT,H+ H(L, " E)+ (L, E)H’
1 1 = -
+ o5 Lo HH+ 5 Mo EQB+ ...,

where T,, L, and M, are given by (3.6) and (3.1).

¢) Infinitesimal deformation superposed on a finite de-
formation. Retaining in (5.2) only the terms linear in H, we have:
(5.3) T=T,~lgT +HT,+T,HT+L, - E+ ...

The general relations of this kind are well known [2, 12, 13, 14], but they are specified
usually only for homogeneous deformations. Here the explicit form of (5.3) can easily
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be found for the isotropic elastic solid, if we make use of (3.6) and (3.15),. In particular,
the last term of (5.3) is the linear combination of the following terms:

G, E = tr(FTEF,),
(5.4) G, E = Ig tr(FLEF,) — tr(FoE, FTE),
G, E = Ig tr(FSEF,) — Ig tr(FoEo F3E) + tr(F, E3 F3 E)
1’ 0,
(5.5 K, E = Bytr(F}EF,)—B,EB,,
K, - E = By I, tr(FT EF,) — B, EB, I, — By tr(F, Eo F3 E)
— FoEo Fitr(F5EF,) + FoEo FLEB, + B, EF, E, FI.

d) Successive superposition of two small deformations.

The appropriate relation for T follows from (5.2) if the expression of (4.6) are used for

the elasticity tensors. Retaining only the terms square in H, or H and their products,
after extensive but elementary transformations we obtain:

Lal
ekl
I

(56) T= [ﬂ. + (321- 4, —}t) I.;i;,,,g)] I+ 51 +2[p+ (v2+A— p)l(ﬁo,,g,}(ﬁo +f£)

2 A
=3 [“— Tay T o+ + 5 Lo+ ndu T — 292 H(ﬁq+'l":):|1 +u(Ho+H) (Ho + H)T

2 2
+p(HH,+ HEHT) +4(3 + ) Bo + B + ...

A similar result in terms of different elastic constants and applying a certain perturba-
tion technique was obtained in [10].

Note that in this case we need to know only the elastic constants of the first- and second-
order in ®,, and not the explicit form of the strain energy function. For such small deforma-
tion non-linear theory of elasticity, it is possible to formulate all field equations which
would be applicable beyond the limits of classical linear elasticity theory.

e) Infinitesimal deformation superposed on a small de-
formation. For this case, it suffices to omit in (5.6) all the terms which are quadratic
in H, to obtain:

G7) T= [z+ (”T‘ +v2-—.1) Ifn:lf(f°+§)l+ (12‘- +y2—,1)fg1.g;1
+2[p+ 2+ A=) Ig) (Bo + E) +2(v, 4+ A— p) IR E,
A
+ —2"[1(H0+H]HI+2IH‘E'°+IH;HT]1“‘21’2 [Iffo-l-]fox’ﬁ—fﬁoﬂl

+pu[(Ho+H)HT + 2HE, + HEHT] +4(v; + ) (B3 + B, E+ EEo) + ...
The same result follows also from (5.3) if the expressions (4.6), , are used.
f) Successive superpositionoftwo infinitesimaldeforma-
tions. Retaining in (5.7) only the terms linear in H, and H, we obtain:
(5.8 T = Mg i 1+2uEo+E) + ...,
which gives us the well known superposition principle of the classical linear theory of
elasticity.

g*
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Appendix

Derivatives of some functions of the second-order tensor

The formulae presented here for derivatives of tensor functions f:%, » %, and
f:%, — %, have been obtained bearing in mind that for any Be ¥, and a e #

d
fa(A)-B = 'a;f(A“' aB)l;=0.
For example, for f{A) = A? we have:

SAR) B = L [(A+aB)A+ 3Bl = BA+AB
and

A® DB = AlgB (g (5 )i ® g = BA,

(1® AN B = gUA B (g 8)e; 25 ® 8 = AB.

The formulae for derivatives can be presented in many other equivalent forms; for
example, we have also:

2,3 1.4 2,3
AB=AQ®1" - B=[A0®1DT-B=[A0®1T] B=..

Many similar tensor identities have been given in [8).
Derivatives of some simple functions of the second-order tensor are given in Table 1.

Table 1
No. f(A) LaA) Remarks
1A ae® 1)1""
1,3 [6, 8]
2 | AT aen’
1,3 1,4
3 | ATA AT +a AT
1,4 1,3 [6! 8]
4 | AAT AT’ +AeA)T
'f‘
5 | PAQ Q@®P7)
1,3 P,Qe¥,
6 | PATQ QeP)T
;ﬁ 1’,:.
7 | g(A) h(A) {[h(A)lr[g_A A1} +gA)h 4 (A) g%, %,
y 3,54,6 Ly
8 | EW®AANT | (g4 QAANT T +g(A) @ h 5 A)T h:€, €,
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In applications to continuum mechanics, the argument A of f'is usually the symmetric

tensor A € *¢,. To find f at °¢,, we extend finto €,, defining /' (A) = f [%- (A+A7)],

then find.f4 at %,, and finally restrict €, to *¢, by putting A = AT.
Derivatives of some tensor functions of symmetric argument are given in Table 2.

Table 2
No. f(A) fA(A) Remarks
1 1,4 ;,s
1A Eium)’ +aen’ ] 6, 8]
1,4 1,3
2 | A2 —;-[(A@ 1+1@ AT +(A®1+1@A)" | (8]
l 1,4 1,3
3 | PAQ 5 1Q®PH +@8P) ]
1,4 1,3
4 | PAQAR ' %{(QAR @PT+R@QTAPT)T +(QAR® P+R ® PAQ)T ]
1 1,6 1,5
5 | PAQ@R 5 @®R@P)H +QREPT ] P.Qc¥,
1 1,4 1,3 R,5¢¢,;
6 | P ® QAR 7P®[(R®Q’")T +RRQT ]
1 1,6 ;‘.s
7 | PAQ ® RAS E[(QGPRAS@PT)T +(Q®RAS®P)
?4 1,3
+PAQ ® (S ® RT)T +PAQ® (S®R) ]
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