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Bifurcation of aT-periodic flow towards an nT-periodic flow and their 
non-linear stabilities 

G. IOOSS (PARIS) 

WE CONSIDER a basic T-periodic flow as a solution of the Navier-Stokes equations. Let us 
suppose that this ·flow becomes unstable when a parameter passes through a critical value, 
then we give sufficient conditions to obtain a new periodic solution with a multiple period nT, 
and we study its stability. 

Rozpatrujemy podstawowy przeplyw T-okresowy stanowi~cy rozwi~nie r6wnan Naviera­
Stokesa. Zakladaj~c, :ie przeplyw taki staje si~ niestateczny po osi~gni~iu przez pewien para­
metr wartosci krytycznej, podaje si~ warunki dostateczne do uzyskania nowych rozwi~n 
okresowych o zwielokrotnionym okresie nT oraz rozwai:a si~ zagadnienie statecznosci tych 
rozwi~zafl. 

PaccMaTpHBaeTcH OCHOBHoe T-nepHo,n~Aeci<oe TeqeHHe cocrasmuo~ee .pemeHHe ypaBHeHHH 
HasLe-CTol<ca. Ilpe~onaraH, qro Tai<oe TeqeHHe CTaHOBHTCH Heycro~BbiM, Kor~a Hei<o­
TOpbm napaMeTp ~OCTHraeT l<pH't~CCl<Oe 3HaqeHHe, npHBO~CH ~OCTaTO~bie ycJIOBHH 
nepHo~oM nT, a Ta.IOI<e pacCMaTpHBaeTcH npo6neMa ycroiiquaoCTH 3THX peweHHH:. 

1. Introduction 

IN 1972, C. S. Yrn and C. H. LI [1] studied the convection phenomenon of a viscous 
incompressible fluid between two plane horizontal plates, submitted to different tem-
peratures periodic in tirrze (upper plate: 0 = 01 +02 coswt, lower plate: 0 = 00 -02 coswt). 
They observed numerically that, for a fixed value of 02 /00 -01 , if they increase the Ray­
leigh number (proportional to 00 -01), then, for a critical value of this parameter, the 
periodic known basic flow (the rest for speed, plus a periodic distribution for temperature 
and pressure) becomes unstab,e, and there appears a new periodic flow, either with the 
same period, or with a double period, according to the value of 02 /00 -01 • 

On the other hand, G. S. MARKMAN [2] has mathematically shown for a similar problem 
how there may occur a bifurcation towards a new periodic solution with the same period 
as the basic one. 

In [3], the same author formed that this is related to the fact that an eigenvalue of the 
monodromy operator, noted hereinafter by S;,(T), escapes from the unit disc, passing 
by 1 when A = Ao, which is the critical value of the parameter A of the problem (such 
as the Rayleigh number). 

Finally, D. D. JOSEPH [4] has given a formal method for building, for Navier-Stokes 
equations, a bifurcated quasi-periodic solution (with two fundamental periods) which 
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appears when two conjugated simple eigenvalues of the monodromy operator escape 
from the unit disc, passing through two points, not roots of unity, on the unit circle. But, 
when the two conjugated eigenvalues cross the unit circle passing by roots of unity, his 
method fails. 

In this paper, our method gives in general the solution in this last case, and enables 
us to justify mathematically the first cited work [1]-i.e., the apparition of a new periodic 
fiow with a multiple period nT, n being determined by the eigenvalues of the monodromy 
operator at the neutral stability. This case is obviously very different from the case studied 
in [4] which is in fact not mathematically justified, where the quasi-periodic bifurcated 
solution is in fact periodic for certain values of the parameter A, with period kT, but 
a non-fixed k. 

2. Genenl formulation 

Generally the fiow is characterized by (Y,p) satisfying 

(2.1) 

I 
av 1 -+V· VV+V = vAV+ t) . . ot . P f( m a regular bounded domam D, 
V·V=O 
VlaD = a(t), 

where " is the inverse of the Reynolds number, f -and a are given T-periodic vector func­
tions (obviously not necessarily constant in space). In fact, when we have thermal pheno-

. mena, there is a coupling between this system and the energy equation, with the occurrence 
of temperature, but this does not change the structure of the system (2.1) (see [5]). On the 
other band, in the case in which the domain of the fiow is unbounded, we suppose that 
the fiow has a spatially periodic structure such that we can always take a bounded D. 

We assume that there exists a basic fiow (V0 ,p0) solution of (2.1), which is T-periodic 
in time, and we note by (U, w) the perturbation of this solution. Then we introduce 
some classical functional spaces to facilitate study of the evolution in ·time of U, the 
initial condition for (U, w) being given. 

Let us note 
H = {U e {L2 (!J)}l; V· U = 0, U · nlao = 0}(1

), 

9J = {U e {H2 (!J)}3
; V· U = 0, Ul~ = 0}, 

K = {U e {H1 (!J)}3
; V· U = 0, U· nlao = 0}, 

where H"'(!J) is the classical Sobolev space, and n the exterior normal of the domain !J. 
We have the following compact imbeddings: 9J <~ K c; H, where we have put the usual 
Hilbertian structure on the spaces. Now, we project the first equation of (2.1) orthogona]]y 
on H, in {L2 (.Q)J3, as in LADYZBENSKAYA's [7], and we obtain, for the perturbation U, 
an evolution equation of the following form 

(2.2) 
dU dt = d1(t)U+M(U). 

(1) For the complete justification of this, see J. L. LIONS [6]. 
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We seek solutions U of (2.2) in C0 (0, oo; !'J) n C1(0, oo; H), the space of continuous 
and bounded functions in Pi, with a continuous and bounded derivative in H. We assume 
the initial condition U(O) = U0 belonging to ~- The characteristic parameter A. of the 
problem occurs by V0 or (and) v. We assume that A. belongs to some real (for physical 
meaning) compact interval / 0 • 

2.1. Properties of the liDear open tor A.t (t) 

Let us give the different properties of the operators in (2.2). First, we have a decompo­
sition: 

{2.3) 

where A.t and BJ{t) are linear and correspond to the parts not depending or depending 
on time in the term 

YL1 U- [V0 (t) · VU+ U · VV0 (t)] 

projected on H. Moreover, we can define a scalar product on !'J, of the form: 

(U, V)• = (AloU,~AoV)s+(U, V)B, 

all norms being equivalent to any .1.0 in / 0 • In fact, there exists a complex domain D0 ::> / 0 

such that {A.aheDo can be extended in a holomorphic family of (A). type in H, with domain 
!'J (see [8] for the definition). 

A classical result is that A.a is the infinitesimal generator of a holomorphic semi-group 
{eA"'} in H, and is with compact resolvent in H (see [5]). Finally, this semi-group satisfies 
the important following estimate [9]: 

(2.4) lleA,ttlls>(K; !lJ) ~ Ct-«, IX = 3/4, t E )0, T), 

where c is a constant and !l'(K; !'iJ) denotes the space of linear bounded operators from 
K to E'}. 

For the family BJ.(t), it can easily be shown that t-+ BJ.(t) is T-periodic, continuous 
and bounded in!l'(f'}; K) and holomorphic in A.. This results from the fact that for U e f'}, 
we have 

2.2. Properties of the non-linear operator M 

The function U -+ M( U) is quadratic, continuous from !!} to K, and we have a constant 
y such that 

(2.5) IIM(U)IIK ~ yll UII~-
This is obtained immediately from the Sobolev imbedding theorems in dimension 2 or 3. 

2.3. Resolution of the linearized evolution problem 

Let us consider the following problem: 

(2.6) { a; = J>l1(t) V, V(O) = V0 e £il, 

http://rcin.org.pl



798 G. Iooss 

where we seek a function t -+ V(t) continuous in !1J for t ~ 0, with a continuous derivative 
in Hfor t > 0. 

Knowledge of the solution of (2.6) i~ necessary to give us a "good formulation" of 
our problem -i.e., investigation of a bifurcated non trivial periodic solution of (2.2). 

To solve (2.6), we consider the term B;.(t) V in the second member as a perturbation 
of A;. V, due to the properties cited in 2.1. Indeed, we can write (2.6) as 

t 

I V(t) = eA;.1V0 + J eA;.(t-T) B;.(-r) V('r)dr, 

t -+ V(t) continu:us in !1J for t ~ 0, 

and there exists T > 0 such that (2. 7) can be written 

(2.7) 

V(t) = eA;.t V0 +..<l', V 

in C0 (0, T; !1J), where ll..<l'll < 1 (we take the norm of uniform convergence in !1J for 
C0 (0, T; !1J)). Hence (1-..<l')- 1 is bounded in C0 (0, T; !1J), and we have 

(2.8) V(t) = SJ.(t) V0 , t e [0, T] (definition of SJ.(t)). 

In what follows, we. shall have to consider the similar problem 

dV 
·dt = d).(t+~)V 

with the same other conditions for V. Then we arrive at 

(2.9) V(t) = SJ.(t, ~)V0 (definition of S;.(t, ~), 

and we have the identity (resulting from the definition): 

(2.10) S).(t- r, r) · S (r-n, 'YJ) = S;.(t-1], 'YJ), t ~ r ~ 'YJ, 

which enables us to determine SJ.(t, ~), Vt e (0, oo). The following properties of the family 
SJ.(t, ~) are not very difficult ·to prove: 

i) S;.( ·, ~) is strongly continuous at o+ in !1J; S;.(O, ~) = 1. 
ii) S;.( · , ~) is continuous in !£(!1J), for t > 0. 

iii) S.(t, ~)is analytic in D0 , with values in !£(!1J). 
iv) SJ.(t, ~) is compact in !1J for t > 0. 

a 
v) atSJ.(t-r, r) = d;.(t) · SJ.(t-r, r) e ..<l'(!1J; H). 

vi) IISJ.(t, ~)II~(K;~> ~· et-«, ex= 3/4, t e] 0, T]. 
The properties i), ii), iii), vi) can b@ shown from the formulation (2. 7), and v) results from 
the construction. The property iv) results from (2.7) and the compactness of eA;.t for 
t > 0 (see [5]); this has also been proved by G. S. MARKMAN in [3]. 

Another class of very useful properties, of the family SJ.(t, ~), is obtained by making 
use of the T-periodicity of dl. Then we obtain: 

vii) SJ.(t, ~ + T) = S ;.(t, ~), 
viii) SJ.(t+ T, ~) = SJ.(t, ~) · S).(T, ~), 
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this latter being a particular case of (2.10) with vii). The identity viii) is very important 
for study of the behaviour of the solution V(t) of (2.6) when t--+ oo. This fact was first 
noted by V. I. IuooviCH in [10]. If the spectral radius of SA(T, ~)is less than 1, then V(t)--+ o 
exponentially in ~' when t--+ oo. If the spectral radius of SA(T, ~) ("the monodromy 
operator") is greater than 1, then there exists V0 in~ such that IIV(t)ll~ is unbounded when 
t--+ oo. Note that the spectrum of SA(T, ~)is independent of~ (see [5] for the demonstra­
tion). 

2.4. A good formulation for tbe non-linear evolution problem 

First, let us consider the following nonhomogeneous problem: 

(2.11) 
dV dt = .9/A(t) V +f(t), V(O) = 0, 

where f e C0 (0, oo; K), with the same conditions on V as for (2.6). The unique solution 
of (2.11) is given by: 

t 

(2.12) V(t) = SA{t)V0 + f SJ.(t-T, T)/(T)dT. 
0 

The demonstration of the required properties of V is analogous to that made in [11, Ch. 7]. 
Now, we consider the complete evolution problem: 

(2.13) U(O) = U0 E~. 

Then, due to the resolution of (2.11), we have the following equivalent formulation: 
t 

(2.14) U(t) = SA(t)U0 + f SA(t-T, T)M[U(T)]dT, U0 e~, UeC0 {0, oo;9J). 
0 

Now, it is easy to show that: 
• If sprSJ.(T) < 1 (spectral radius), 3~ > 0, such that IIUoll~ ~ ~induces the exist­

ence of a unique solution U of (2.13), depending analytically on U0 and which tends 
ex.ponentially towards 0 when t --+ oo. 

• If spr SA(T) > 1, 3 U0 =F 0 with an arbitrary fixed small norm, such that the solu­
tion U of (2.13) in C0 (0, T1 ;~) {T1 < oo), leaves a fixed neighbourhood ofO fort> t0 • 

3. The necessary condition for bifurcation 

If we want U(t) not to tend towards 0 when t --+ oo, we have to suppose that the spectral 
radius sprSJ.(T) is at least 1. Physically this means that when the basic flow loses its sta­
bility, the parameter ). passes thr9ugh a critical value ).0 such that sprSJ.

0
(T) = 1. Now, 

we have to improve this point- i.e., to study how the eigenvalues of greatest moduli 
leave the unit disc, to yield a bifurcation of a new periodic solution. 

In fact, we seek a solution of (2.13) small in norm, U0 being unknown, such that 
U(t) = U(t+nT), Vt eR, where n is also to be determined. Now, it is not difficult to 

4 Arch. Mecb. Stos. nr 5/74 
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show that the following formulation is equivalent to the preceding one (here we have 
only expressed U(O) = U(nT)): 

(3.1) 

'-
U(t) = SA(t)U0 + J SA(t--r, -r)M[U(-r)]d-r, 

0 
nT 

[1-S,~.(nT)]U0 = j SA(nT--r, -r)M[U(-r}Jd-r, 
0 

Uo e ~' U e C0 (0, nT; ~), 

where we seek a solution U(t) remaining of small norm in~' and where we have to de­
termine U0 and n. 

But, for 11 U0 llg sufficiently small, we can solve (3.1)1 by using the implicit function 
theorem, with respect to U, on [0, nT]. Then we obtain U(t) = dJI(U0 , A, t), t e [0, nT], 
with an analytic dJI in ( U0 , A.) in the neighbourhood of (0, A.0) V A.0 e D0 • In fact, we 
have 

(3.2) dJI(U0 , A, t) = S;.(t)Uo+O(IIUolli). 

Putting dJI in (3.1h, we obtain now in !'J 

(3.3) 

nT 

[1-S,~.(nT)]U0 = f S,~.(nT--r, -r)M[dJI(U0 , A., -r)]d-r, 
0 

which is of the type 

(3.4) (1-K,~.)U0 = BA(U0 , U0)+C(U0 , A.), 

with IIC(Uo, A) lit~~ Ctll Uoll~ for 11 Uoll• ~ t5, and 

nT 

BA(U0 , U0 ) = J S,~.(nT-T, -r)M[S,~.(-r)U0]d-r (quadratic in U0 ). 

0 

The study of the existence of a solution U0 ::F 0 of (3.4) is a classical problem, because 
KA is compact in !'J and depends analytically on A, whereas the second member is analytic 
in (U0 , A) in the neighbotrrhood of (0, Ao) and begins· with at least a quadratic term in 
U0 • We have immediately (see [12D: 

THEOREM 1. It can appear a bifurcation of the trivial solution of (3.1), towards an nT­
periodic one, only from a Ao such that the spectrum of SAoCT) contains at least a Co satisfy­
ing ro = 1. 

Indeed, 1 is an eigenvalue of S,~.0 (n1) = [S,~./T)]" following the property viii. 

4. Calculus of bifurcated solutions 

4.1. Precise hypotheses 

To calculate explicitly the new solution, we . have to make further precise assump­
tions. 

Hl. 3A.0 such that spr [SJ.
0
(T}] = 1, ~ [sprSA(T)h=Ao > 0. Physically, this means 

that the basic flow (the null solution) is stable for A < Ao and unstable for A > la. On 
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the other hand, for A. = A.0 , there exists a finite number of eigenvalues of S;.
0
(T), of mo­

dulus 1, the other eigenvalues being of moduli strictly less than 1. We shall make now 
one of the two folio wing assumptions: 

H2a. S;.
0
(T) has only Co = 1 or -1 as an eigenvalue of modulus one, and Co is simple. 

H2b. S;.
0
(T) has only Co and Co as eigenvalues of moduli one, with C~ = -,~ = 1, and 

these eigenvalues are simplee). _ 
Note that we do not consider the case when Co and Co, not roots of unity, are the eigen­

values of moduli 1 of S;.
0
(T). We have already observed that this case has been formally 

treated in [4], and corresponds to a bifurcation towards a quasi-periodic solution. Now, 
by the perturbation theory (see [8]), we know that for A. e 1'"(A.0) (real neighbourhood 
of A.0), 

1) if H2a is verified, 3 a simple real eigenvalue C 1 ().) of S;.(T), satisfying 

(4.1) 

where Co = 1 or -1 and C< 1> > 0 by Hl. 
2) If H2b is verified, 3 two simple conjugated eigenvalues C1 (A.) and C1 (A.) of S;.(T), 

satisfying (4.1) with ReC<1> > 0 by Hl. Noting E;. the invariant projection operator 
associated with C1 ().), we know that C1 and E are analytic functions in 1'"(A.0). In the case 
of the assumption H2b, we note E(A.) = E;. +E;., whereas in the case of H2a E(A.) = EA. 

To solve (3.3), we use the Liapunov-Schmidt technique. First, we split the equation 
in the following manner: 

U0 =X+ V, with X= E(A.0) U0 , V= [1;_£(A.o)] U0 , 

and we use the development 

00 

1-S;.(nT) = 1-SAo(nT)- }J (A.-A.0)"S~">, 
k=1 

where 1- SAo (nT) has a bounded inverse Q in [1- E(A.0)]!'J. Solving first with respect 
to V the Eq. (3.3) projected on [1-E().0)]!'J, by using the implicit function theorem, we 
find V= "Y(X, J.) with some good estimations (not made explicit here). Then reporting 
in the equation projected on E(A.0)!'J, we arrive at the "bifurcation equation": 

with 

In the case of H2a, the Eq. (4.2) is a scalar equation, whereas in the case of H2b, (4.2) 
has two dimensions. Moreover we have after some easy calculations: 

case H2a: E(A.0)S~ 1>E(A.0) = nC(1>E;.
0

, with n = 1 or 2, 
case H2b: E(A.0)S~ 1 >£().0) = nC(l> E,.

0 
+nC< 1> EAu. 

Then we separate the two cases: 

(2) Note n the smallest integer satisfying the -identity. 

4* 
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4.2. Case Qf the assumption H2a 

We note u<O) the eigenvector of SAo(T) for Co, and E(Ao)BAo(U<0>, u<0>) = rxU< 0 >. 
H3a. We suppose« =F 0. 
Then it is easy to see that (4.2) has one non trivial solution which is analytic at the 

neighbourhood of l 0 • In fact 

Let us now express the theorem: 
THEOREM 2. Let the hypotheses Hl, H2a, H3a be verified, then there exists a neigh­

bourhood of A0 , 1:'"(10) such that if le r(l0), there exists one and only one bifurcated 
non trivial nT-periodic solution of (2.13), analytic in A. The principal part of this solution 
is: 

nC< 1> 
U(t) = - (l-lo)--SAo(t) u<OJ +0(.1.- Ao)2

, 
ex 

where n = 1 or 2 according as Co = 1 or -1. 

4.3. Case of the assumption H2b 

We note u<O) and u<O) the eigenvectors of SAo(T) for the eigenvalues Co and Eo, and 

E(lo)BAo(u<o>, u<o>) = rxu<o>+fiu<o>, 

2E(l0 )BAo(u<o>, u<o>) = yu<o> +yU<o>. 

Then, if we assume 

H3b. lrxr-PYI =F llrxi 2 -=IPI 21, 

2l(aC<1
> -;;C<1>)2 + 3tJC<1> (yC<1> -aC<1>)1 =~: 191 pc<1>1 2 -laC"< I>- rc< 1

>1
2

1 

to be verified, there always exists at least one non trivial solution of (4.2), having the 
following form: 

00 

X().)= (A-Ao)Yo+ 2; (J.-A0)kXb 
k=2 

where Y0 E E( 10) satisfies 

(4.3) [nC<1>EA0 +nC<1>~JYo+E(A0)BA0(Yo, Yo) = 0. 

THEOREM 3. Let the hypotheses Hl, H2b, H3b be verified, then there exists a neigh­
bourhood of Ao, r().0), such that if le r(A0), there exists at least one bifurcated non 
trivial nT-periodic solution of (2.13), analytic in A. The principal part of these solutions 
is of the form: 

(4.4) 

where Y0 is a non trivial real solution of (4.3) in E(l0)q). 
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5. Stability of a bifurcated solution 

5.1. General remarks 

Let us pose o/t(t, A.) the bifurcated solution (4.4), and note U = tft +V; then the equa­
tion satisfied by V is: 

(5.1) a:; = .91~ (t)V+M(V), 

where 
dA(t) = d.a(t)+DM[.(t, J.)], 

DM denoting the derivative of M, which takes its values in~ (!?J; K)t We remark that 
dA(t) has the same structure as previously d,a(t). In an analogous way we can define 
the operator SA(t) by: 

I 

(5.2) SA(t) V0 = S;.(t) V0 + J S;.(t- T, T)DM[.(-r, l)] · S,t(T) V0 dT. 
0 

Then we arrive at the monodromy operator Sl(n1), the spectral radius of which determines 
the stability of the solution V= 0 of (5.1). Now, using (5.2}, we have 

(5.3) SA(nT} = S;.
0
(nT)+(A.-l0}S'<1>+0().-).0) 2 • 

We can obviously verify that for A. = A.0 , SAc,(nn = S~(nT) because of .siAc,(t) = .si Ao(t). 
Moreover, we can calculate S'< 1>: 

nT 

S'(l) = S~1~+ J S;.o(nT- T, T)DM[S~(T)Yo]. S~('r)[. ]dT, 
0 

due to (4.4) and (5.2). But, using the definition of m: (§ 3), this can be written 

(5.4) S'<t> = S~1>+2B.a.(Y0 , ·). 

Now, by (5.3), we know that the spectrum of S.i(nT) is obtained by a perturbation from 
that of S;.

0
(n1), where 1 is a semi-simple eigenvalue, other eigenvalues being of smaller 

moduli. By the perturbation theory (see [8D we know that an eigenvalue of S).(nT) near 
1 has the form: 

C(A.) = 1 +(A.- A.0)c<1)+o(A- A.o), 

where ~< 1 > is an eigenvalue of E(A.0)S'<1>E(A.0). 

5.2. Case of the assumptions H2a, H3a 

We can easily calculate the operator E(A.0)S'<1>E(J.0)which operates in a one-dimension­
al space; we find 

E(A.o)S'<1>E(A.0) = -n~<1>E~. 

Now, C< 1> is positive, hence we can conclude with the important 
THEOREM 2'. Let the assumptions of Theorem 2 be verified, then for A. > A0 the bifurcated 

solution is stable, the null solution being unstable, whereas for ). < A.0 the bifurcated solution 
is unstable, the null solution being stable. 
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In fact, the eigenvalue of S.\(nT) which is of modulus near 1 has the form: 

C(A) = 1-nC<1>(l-lo) +0(1-10) 2 , 

where n = 1 or 2 according as C 0 = 1 or -1. 

G. Iooss 

R e m a r k. Here we have a phenomenon analogous to "the exchange of stability" 
for the bifurcation of stationary solutions of Navier-Stokes equations (see [11]). 

5.3. Case of the · assumptions Hlb, H3b 

Taking in the space E( 10) ~ the basis { u<o>, u<o>}, and denoting Y0 = a0 u<o> + a0 iJ<o>, 
the matrix of the operator E(l0)S'<1>E(l0) is: 

(5.5) [
nC< 1> +_2ao ex+ ao 'Y 

2aof3+aor 

and H3b ensures its invertibility. Unfortunately, we can prove that the eigenvalues of 
(5.5) are not necessarily of the same sign. Hence we cannot conclude on the stability 
or instability of the bifurcated solution, in the general case. 
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