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Stationary heat exchange in a system of two spheres in uniform recti-
linear motion through a free-molecule medium

S. KOSOWSKI (WARSZAWA)

THE PRESENT paper is concerned with a particular problem of stationary interaction of a system
of two spheres moving in a free-molecule medium. This is a problem of heat exchange at equal
temperatures of the spheres. It is demonstrated that the solution of the continuity equations (imper-
meability of the wall), which constitute a set of Fredholm integral equations of the second kind
can be avoided in this case, in which the heat exchange can be expressed by energy fluxes and num-
bers of incident particles coming only from the ambient medium and inot from the other sphere,
which is the general case). The expression for heat exchange is obtaned in an effective manner
in the case of hypersonic motion. As an auxiliary problem the problem of screening of a sphere
by the other sphere is solved in detail. The quintuple quadratures of interacfion representing
heat exchange are expressed in terms of elementary functions.

Praca dotyczy szczegblnego zagadnienia stacjonarnego oddzialywania ukladu dwu kul, porusza-
jacego sie¢ w ofrodku swobodno-molekularnym, mianowicie wymiany cnepfa przy réwnych
temperaturach kul. Udowodniono, ze w przypadku tym mozna unikna¢ rozwigzywania rownan
ciagloéci (nieprzenikalnoci $cianki), ktore reprezentuja soba uklad roéwnafi calkowych Fred-
holma II rodzaju; wymiana ciepla w takim przypadku daje si¢ wyrazi¢ przez strumienie energii
i iloéci czastek, padajacych tylko z otoczenia (a nie réwniez z drugiej kuli, jak jest w przypadku
og6lnym). Wyrazenie na wymiane ciepla zostalo efektywnie uzyskane dla przypadku ruchu
hipersonicznego w o§rodku. Jako zagadnienie pomocnicze rozwigzano szczegblowo ekranowanie
jednej kuli przez druga. Pieciokrotne kwadratury oddzialywania, reprezentujace wymiang
ciepla, wyrazaja si¢ przez funkcje elementarne.

PaGora Kacaerca ocobeHHOM NPo6IeMBI CTAHOHAPHOTO B3aUMOIeCTBHA CHCTEMBI ABYX LIAPOB,
ABwxylneiica B cBoGOHO-MONEKYNAPHOH cpefe, EMEHHO TeliooOMeHa NPH PaBHBIX TeMmiiepa-
Typax mapoB. J[okasaHo, UTO B 3TOM cliyuae MOYKHO oGOMTH pellleHMe ypaBHeHHil HEIPOHH-
LI4EMOCTH CTeHKH, KOTOpbIe IPEACTABNAIOT coboll cucTeMy AHTErpaiBHBIX ypaBHeHmit Ppen-
romsma II poga — rennooGmen B sTOM Caydae NaeTcs BHIPASHTE Yepe3 IIOTOKH SHEPTHH H KO-
JIN9eCcTBAa YACTHII, NaJalOlHX TOJBKO K3 cpefbl (HO HET TOX(e M3 BTOPOro ILUapa, KaK 3TO0 €CTh
B obmem ciyqae). Popmysna mna Tewioobmena 6rura adydeKTHBHO MONMyweHa IAA CIAyYas
THNEPSBYKOBOTO ABIMEHHMA B cpefic. B xapaxrepe BcmomaraTeNnsHON 3afaty pelleHO NETABHO
SKpaHHMPOBaHHE OIHOM cdepbl — OPYro0. S-KpaTHblE HHTErpajibl BSAHMOACHCTBHA, Mpen-
CTaBRIAIOIIME TeIIoO6MEH, BLIDA)KAIOTCA udepe3 3JjieMeHTapHEIe (yHiumH.

Introduction

THE SOLUTION of the problem of stationary heat exchange gives a (quantitative) answer
to the question as to how the bodies belonging to the system considered should be cooled
or heated, so that their temperatures may remain constant during motion through the
ambient medium. In the general form — that is, for any temperatures of the bodies, any
distances between them and any velocity of the system — this problem cannot be tackled
even numerically. Thus, in the simplest case of spheres at rest, the solution can be reduced
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to ordinary integrals which can be found by numerical means only. It emerges, however,
that in a certain particular case the problem of heat exchange can be accurately solved
by analytic means (this fact does not concern the problem of drag). This is the case of
equal temperatures of the spheres (the temperature of the ambient gas being different,
of course) and the diffusion model of reflection of gas from the surfaces of the bodies.

This solution is not effective, however, since it is expressed in quadratures which cannot
be performed by analytic means. An effective analytic solution can be obtained accurately
if the motion of the system is hypersonic.

The problem of heat exchange for a system moving at a hypersonic velocity is important
for the prediction of the thermal behaviour of satellite systems moving through the space,
and also for the control of their thermal characteristics.

In the non-stationary case, this problem is coupled with that of drag, because the
temperatures of the bodies resulting from the heat exchange between the bodies and
the ambient medium have a direct influence on the value of the drag. Examples of solu-
tions of the problem of heat exchange for convex bodies may be found in the monographs
[1, 2] and for a simple system of two bodies (two parallel plates) in Ref. [3].

1. General expression of the heat exchange and its derivation in an explicit form for spheres
.at equal temperatures

Let us consider two spherical bodies K;, K, of radii Ry, R,, and temperatures T, =
= T, = T, moving in a free-molecule medium the temperature of which is 7° # T, at

velocity q, = q, = q (Fig. 1).

FiG. 1.

It is assumed that

1) A > d — that is, the mean free path 4 of molecules is considerably longer than the
distance d between the bodies and their dimensions;

2) the temperature fields of the bodies are homogeneous, steady and equal (they may
be maintained in an artificial manner);

3) if there are no bodies in the medium, it is in a state of global thermodynamic equi-
librium, the distribution function being a Maxwell-Boltzmann function;

4) the interaction between the surface of a body and the gas is assumed to be of the
diffusion reflection type.
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The energy flux E; furnished to the sphere K| is a difference between the incident in
flux E® and the reflected flux E{"

(1.1) E, = EP—E{.

The energy flux of incident particles E{® is composed of the fluxes E{},, and E{)X:
originating from the ambient medium and the sphere K, respectively,

(1.2) EP = Eflo,+E{% -

This may also be expressed in the form of a sum of fluxes E{J* and E{},, the former
originating from the ambient medium in the absence of the sphere K,, and the latter
connected with the perturbing action of the sphere K,:

(1.3) EP = EQ* + EQm,
where
1.3) EQ}* = EQ+ Ei?;‘no))s Ei(m ‘()tf)z —E'ﬁ’:i?’

and E{%) is the energy flux originating from the ambient medium in the space region
screened by the sphere K.
The energy fluxes E{}$ and EfY,, are expressed thus:

(1.4 Es = 3m f [ f chu(— o 1) OB, |2,
I,"Z

(1.5) ?lﬁ)z— mf[ f c3i(—¢24 - my) f} ‘1’d3cu]d21,
Zwt 051y

1.6 B =am [ [ [ chulcorsmsixiiree |z,

Zwl Q%ap1y
where
m mass of a gas particle,
€o; velocity of a particle of the ambient medium with reference to the sphere
K,
n, external normal to the sphere K; at an arbitrary point P,
d* volume element of the velocity space,
Z, total surface of the sphere K,
dZ surface element,
/2 velocity semi-space connected with the normal ny,
¢2; velocity of a particle emitted from K as referred to Kj; €21 = €22—(q:1—42)
= ¢33, since q; = qz,
Zy: internal surface of the sphere K; (that is, the surface viewed from the sphere
K),
0Ka(Pg) solid angle of view of K. from the point Pg; o, f = 1,2; « # f,
(X velocity distribution function of particles of the ambient medium in the

system connected with the sphere K ; f{7® = AV _Bm‘c‘“”’)z
velocity distribution function of particles emitted from K, in the system
connected with the sphere K; fx‘;m fﬂe‘sﬂc"w"q‘)i
P,, P, arbitrary points on the surfaces of the spheres K; and K, respectively,

2% P region in the velocity space, corresponding to Rk (py).

G
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The energy flux of the reflected particles E{” will be represented as a sum of the flux
E(? reflected from the outer part of the surface and the flux E{) reflected from the inner
part of the surface. (By the term “inner part” of the surface 2';,, of the sphere K; we under-
stand that part of its surface which is viewed from the sphere K, and by the outer part
of the surface X, of the same sphere that part of its surface which is not viewed from K;)
n EP = EQ+ER.

The fluxes E{? and E{7) are expressed thus:

1
(1.8) E}',’=Em f[f c}l(clyn,)f‘l';’d’c“]dl'l,
I ﬂ‘i".,z
19 E=am [[ [ duetnymaeds.,
Ewl 95
where

¢y, velocity of a particle reflected from the sphere K, -in the system connected
with Ky, _
AL distribution function of particles reflected from the outer part of the surface
of Kis /42 = AP,
) distribution function of particles reflected from the inner part of the surface
) 'B*‘u

‘,:wl.s fl(\:l = A(r
The interaction flux E{)5? originating from the sphere K,, originally written with
reference to the sphere K, will now be written with reference to the sphere K:

(1.10) - _,,, f [ f &l i) f(o(zrdacn]
Ok 1p2)
Since it has been assumed that f§} is independent of time (the motion is stationary),
the symbol A$X® (P,) may be written before the sign of integration over the velocity
space ¢;,, thus reducing E{)X* (owing to the assumption of q, = g,) to the form:

1
(L.11) QR = smgs. [ APOPIgdZ e,
Z
where
o

(1.12} g2 = J‘ ng B_B’c;"d(:gg,

0

c

(1.13) 820 = f (- nz)mlns | P9 = czz )

DXI(PZ) 22

df),,, denoting an element of the solid angle connected with the direction l,,. Similarly,
E{?) can be expressed in the form:

1
E?ﬂh;.—,hu f A(lr\i(Pl)dzlw’

w1

(1.14) EQ =
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where
(1.15) hye = f cile"‘m‘{‘dcu,
0
(1.16) b= [ Quom)ddy,, 1, €71
11

22

The remaining fluxes EQy¥, E{X®, E®), which are needed for expressing the heat ex-
change E,, can be obtained directly by quadratures, all the quantities being known, with
the sole exception of A{(P;) in (1.8). This can easily be found, however, from the local
continuity equation(*) at the point P; of the external surface. (Case with which this may
be done is a consequence of the fact that the external surface is not perturbed by the in-
fluence of the sphere K3):

(1-17) Nfl)(Pl) = N}?(Pl);

where

(1.18) NOP) = [ (—cor my) [0,y
2%,

(1.19) NOP) = [ (eusm) fQdey,.
2{

Thus, we obtain for the heat exchange E, the expression:

(120) B, = EQ*-EQQ+ 1 mpac [ ADO®IggdEw,
Zw2
1
B mhichy, [ ARP)Z.
Zwi

An analogous expression is obtained for the heat furnished to the sphere K, (This can
be achieved by 4 formal change of indices 1 ==2):

1
A21) B = ER-EQD+ 7 mgi [ AQOP)gidw,

Lwi1

B Tmhach, [ ARPIZ,
Zy2

Bie = 810 B1g = f (UTR n,)dQ,, ,
Ox2p1)

hZC = 8¢5 hz; = f 022'“2)‘1{2}” = hlﬂ"
Q412

To complete the solution, we must obtain the quantities A{)(P,) and A% (P;) (48>
= AY), APY = A()), which are still unknown. We can attempt to find them from the

(*) The condition of impermeability of the wall.

2
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local continuity equations for the point P; of the inner part of the surface of the sphere
K, and for the point P, of the inner part of the surface of the sphere K,. The situation
is not easy, however, because the continuity equations for points of the inner parts of
the surface constitute a set of two complicated Fredholm integral equations of the second
kind with four variables (the points'P,, P, on the surfaces of the spheres being determined
in an unequivocal manner by prescribing the relevant directions). In the case of complete
symmetry ¢[0,0,, we should have two variables only. This difficulty can, however,
be avoided.

Such is the case of equal temperatures of the spheres, T, = T, = T # T,. To de-
monstrate this, let us write the overall equations for streams of particles, The stream of
entering particles is equal to the stream of a body leaving particles,

The overall continuity equations are obtained in the same manner as for the exchange
of energy:

(122) N, = N -NOQ+g0 [ AQD(P,)gd0dz,.,
Zy2

~NQR-WPHY [ AQPYAE,, =0,

Lyt

(123) N = NR N+ [ AQOP)ePdz,

Lwi
—NR-KPOHY [ ARAP)dE,, =0,
Ly

where

0 o

g = [ cheBhide,, g = [ eBelideyy,

0 0

[-+]
(1.24) WY = [ e-betide,, = g,

0

w
2
hY = f c3,e-Brade,, = g&‘!’;
o

N, N, are the total streams of particles supplied to the spheres K, and K,, respectively
Since the integrals in the expressions of the exchange of particles and energy differ by the
power of the velocity modulus, we have immediately:

(125) gg:’ = 829; kg:) = hu: h(lh;) = hus gf:) = L1g+
If now we assume that T, = T, —that is, B, = B, —then g = A{¥, and from the.

continuity Eqgs. (1.22), we find that:

129 [ ADOPdZ,—H [ appyaz., - -g;—,,,(—Ns's*+N§*i¥°’+Ni?).
Z'wz c

i1
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The same difference will be observed, with the same assumption, in the expression
for the exchange of emergy (T; = T, — g, = h,.). This fact enables us to eliminate
this difference in the expression for the exchange of energy (1.20), making use of the con-
tinuity equation in the form (1.26). Thus, finally, we obtain the following expression
for the exchange of energy:

1 c
(1.27) E, = E{)§—EWY-EfJ+5m g;,, (VD +NOD—NES).
Bearing in mind that
1 c
(1.28) Efe=om g;';, N2,

the expression for the exchange of energy is seen to be considerably simplified:

i 1
(1.29) Ey = Eff~EQS+ 5 m2os (VR -V,
It is seen, as a consequence, that the expression of 4¢} starting out from the local continuity

equation at the point P, is no longer necessary.
The analogous expression for the energy exchange for the sphere K is:

) 1
(1.30) Ey = B8~ EQS+ g m-Los (NQUS - NRe).

Thus, the solution of the problem of energy exchange between the ambient medium
and the spheres moving at equal velocities is reduced, if their temperatures are equal, to
fivefold quadratures. (The equality of temperatures eliminates the necessity of solving
a complicated set of integral equations). The quadratures for E‘.‘)’,‘, N@ do not present
major difficulties. They are expressed in terms of erf functions, by contrast with the quadra-
tures for E$X”, NG which can be reduced to single integrals only even in the case of
spheres at rest with reference to the ambient medium. However, these quadratures can be
performed, if the system of spheres moves through the ambient medium at hypersonic
velocity — that is, if

1

(1.31) q/( 2”")5 > 1.

m

In such a case the incident stream of gas may be considered to be homogeneous. If we
observe that hypersonic velocities are realized in the space adjacent to the Earth, the
problem becomes of importance for astronautical practice, since its solution may furnish
information on the thermal behaviour of satellite systems.

For the hypersonic problem, the general expression of the heat exchange can be ex-
pressed (on the basis of the Egs. (1.29), (1.2), (1.3) and (1.3’) in the more convenient
form:

: 1 & il
(1.32) E, = Eﬂ)o)_f g(zm Ni()m-
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To evaluate the energy flux E{Y, and the particles flux N{%, of incident particles for
the sphere K;, we must first, in the general case — that is, for a velocity of the system
directed in an arbitrary manner with reference to the line connecting the centres of the
two spheres — solve the problem of screening of one sphere by the other.

2, Determination of the screened region

If the two bodies are located in a homogeneous flow, one of them is screened by the
other. A body is screened if the direction from the other body to the body considered
coincides with the direction of flow. Thus, a certain region of its surface will not be “ir-
radiated” by the flowing particles. The problem of finding the screened region for a system
of two spheres K; and K, is reduced to analysis of the intersection between the cylinder
whose generator lines are tangent to one of the spheres and are parallel to the direction
of flow and the surface of the other sphere. The screened region is the surface region
of the sphere considered, bounded by the intersection line with the cylinder. Let us consider

Fia. 2.

a Cartesian system of coordinates with its origin at 0, (Fig. 2). The direction of the z’-axis
will be parallel and opposite to the direction of flow (q), the y’-axis will lie in the (z’, 0, 0,)

0,0, . : ; T ; ;
plane, and j'+d,> 0 (d, £ 0—1?}3 , j — unit vector in y'-axis dlrectlon). The intersection
1.M2

curve KP of the cylinder W and the sphere K, is a solution of the set of equations:

KP = ! R W (the equation of the cylinder)
~ | R K, (the equation of the sphere K,).
In the vector notation, this set of equations is:

@.1) r=Rn,,
(2.2) (m)? = R3,
2.3) m-q =0,
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where
@.3) m=r—To,, Toy=d+g, @2 —}
and

r radius vector of a surface point of the sphere or cylinder,
n; direction normal to X;,

d =0,0,,

q velocity of particles,

row radius vector of the axis of the cylinder with its end determined by the para-
meter A.

The solution of the set of Egs. (2.1), (2.2), (2.3) in polar coordinates @y, 6; (the polar
and azimuthal angle of n,) is the curve 6, (¢p;) expressed by the relation:

1
@4 b, = kil [sin, sin g} + (k2 — sin,cos? })7).

6, is the angle between the direction z’ and the line 0,0, (this angle describes the geo-
metrical characteristic of the problem — that is, the direction of flow with reference to
the line connecting the centres of the two spheres), k; = R,/d, k, = R,[/d. The + sign
in the equation of the curve means that, under certain conditions (with appropriate values
of the parameter 6, and if k, and k, are considered to be constant for the particular problem
under consideration), there may exist two solutions 0;,, and 6;_, for a single value of

@,. The existence of an intersection curve (2.4) requires the satisfaction of the following
three criteria:

(2.5 1)  k3—sin’6,cos’p; > 0
(the radicand must be positive)
(2.6) 2) cosfy,, = 0.

(Although the region cosf; ,, < 0 is screened against the flowing particles, this screening
action is due to the upper surface of the same sphere)

(eX) 3) sinff,, < 1.

In agreement with the above the variability interval D of ¢; is a conjunction of three

intervals of ¢{ denoted D*, D,, D,, for which the respective criteria 1, 2 and 3 are
satisfied :

(2.8) D =Dy A D2 A Dgy,

A being the conjunction sign.

The conditions for which each particular criterion is satisfied are established and
discussed in detail in Ref. [5].

Knowing the region D of existence of the screening curve, we can determine the solid
region corresponding to the part of the surface “irradiated” by a homogeneous stream.
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The integral may be expressed thus:
(2.23) [oae=[-1,
2 2 0

where £ is the region “irradiated” by flowing particles, £, — the region “irradiated”
under conditions of absence of the other body, and {2, — the screened region. In view
of the symmetry with reference to the (z’, y') — plane and the differentiation of the in-

terval D in the regions ¢; € (—;‘— s n:) and @5 € (n, %n), the integration over the screened

region 2, can be expressed in the form:

(2.24) [=2][..d0+ [..a0],
- a7 a4
where
(2.25) @ =g e(% n), 2% =g e(n, -;-n)

The region £, is directly connected with the screening curve KP. The latter determines
in an unequivocal manner £,, because it determines the surface region on the sphere
K, corresponding to the solid angle £2,. By discussing the existence of a region D depend-
ing on the value of 6,, we can find the region £, — therefore also a method of integra-
tion with respect to the variables ¢y, 6;. The results are represented in Tables 1, 2 and 3
corresponding to the three cases occurring in the discussion of that region — namely,
those of Al =k, > k,, k, < 2k,, A2 =k, > ky, k, > 2k, and B =k, < k,. The
variability interval ] is divided in the Tables into two subregions sing; > Oand sing; < 0.
The first column contains [sketches representing the projections of the system on the
(x’, y')-plane for the limiting values of 6, of the interval of 6, considered. The subsequent
column contains the regions D*, D~ of existence of the intersection curve + and —,
and the last — the integration method over the solid region £2,.

3. Integration of the expression of the heat exchange

The screened region having been effectively determined, and the integration method
in that region being known, we can proceed to perform the quadrature of the expression
of the heat exchange. This double quadrature can be performed for each case separately
(the number of cases is large because there are several cases in each of the schemes A4,,
A,, B); we shall attempt, however, to express it in a general manner. The heat exchange
is characterized in our problem by the incident fluxes only — that is, the flux of energy
E!, and particles Ni,. Starting out from the formulas expressing the fluxes

1
Gy By =gmg [ (e mImedZe, Ny = [ (g n)dZ,,
Zy Zy
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Table 1. 4; = (k2 < ki, k1 < 2k3)

singp; = 0 sing; <0
Case and plane diagram
D* D~ Integral form D* D- Integral form
O<sin Sq € kq-kp s
T E , 3 37T ,
—(Q |BI] o | e e | T
2
kq“kz‘ﬁfﬂ&g€k2 . g
x 6+ L 3 2" e+
© - @ @™ 0 | [If - aldsis [ [[ - oldni| (s 3w) {0 [ L[ .. olas
?* 0 0 E
2
kg < sin 8y < Vk3+k3 ,,
» o T 214 o+
X -4 e * . # - S
(O = | | o |Jul st il i) oo o
2
ka*kzgsfhaqékfsz
0 (i;»,q:") 0 0 2,=0

(-0




CTFA)

Table 2. Az = (k; < kl,kl < %3}

singy = 0 singy <0
Case and plane diagram
D* D- Integral form D+ D- Integral form
O<sin g < kg 5
# a ot 3 2" e
- (? u) 0 j[{ ... d6]dp} (n. —2-::) of [ [f .. do]dg;
= ] (1]
2
kp < sin Gy < ky=ky
T 4 n % ’;.4 o+
. (—z-.wz) ('i""’d) ! [_‘[_ A 0 0 2,=0
K
ky-ky < sin 8y < VkE +kE n
o % 2 o u
@ @7, 91 (7.%") ;{ [o.[---d?]dqiﬁﬁ_{x [s‘! ... d8]dgp} 0 0 2, =0
E
VkEkE € 5in Gy €ketkg o =
1 2
Co—o |« |E] DTloaw | ol an
2




Table’3. B = (kz>ky)
' sing} = 0 sing; < 0
Caso and planc diag D* D- Integral form D* D'l Integral fomr
O< sin Gy < kp=kq L3 L]
P a3 LT s ) x 2
(IO\“ O \\. (1] 0 J‘ ["! S dald?l 0 0 j [ J.... dB]dq:’l
n n 0
\\"--.._.Il} \-—-—/J z 2z
kz"kf‘n’l'neq" kz"k1 o % %n o+ ;;x 12'-
o | o J1f - bl (g o | L [f - aoldons [ [[ . olami
O @ : i
2
Vk,_!-_f.,z-ssmﬂq sk i o % i 5 l—:;-n
N | emm | o |1 s LS aldni | (mga) |0 J 1 - ol
) Q) 3 i .
kg‘&?HEQ-{sz“'kg .‘IS % w"d o+
@5, ¢ (—:— 9’1") [ .. doldgi+-[ [[ ...do]d| O |0 Q2:=0
n o 0‘1‘ -
e ) ?
'kz“‘k, ‘Slﬂgq'{kfsz pe =
°F 2
Q) O ¢ || Juem o)
’ 2 = '
2
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and replacing the integral over the “irradiated” surface by that over the solid angle Q
and the integration region £ by the difference between the region £2, and the screened
region £2,, we transform the two fluxes to obtain:

1
Es?o) = qu3ﬂo Rf[ fcosﬁ{dﬂ; = fOOSG{dQ; ’
20 Q:
(.2) Niiy = ano R3( [ cos0id@; — [ cost;d2;),
2 0:

dQ; = sinb}do;dy;.

The integration over the solid region £, is very simple:

(33) [ costidQ; = .
29
The iptegral over the screened region is split up, in agreement with (2:24), into two:
(3.4) [ cosbia@i =2[ [ cosbid@i+ [ cosdid@i],
where
, [ = ; 3
(3.5) Dﬂl} =@ E(T,ﬂ:), Dwz) =@ E(ﬂ,—z—ﬂ).

The integrals over the regions Dy, and Dy, may be expressed in the form:

P2
(3.6) I= [ Id;,

®1

where @, and g, are the limits of ¢ in the region Dy, or Dg,2y, and I is the result of
integration with respect to 0}

02
3.7 B f cost, sin d, = —-;—(005265—00529{),
o1

where 0, 6 are the corresponding limits for 6;.
From the analysis of the integration schemes A4,, 4,, B it is inferred that the limits
03, 0} are at most of the type:

(.9) a;=e+v-’,}, 0! =6~ v 0;

V is the alternative sign.
This enables I, to be expressed, for any possible combination of the limits 63, 6;,
in the form:

(39) I = -—%(acos’ﬁ*—ﬂcos’ﬁ‘—y},
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where a, B and y are indices characterizing the particular combination of the limits 6;, 6; .
Thus, for each combination, we have:

0; = —

(3.10) I2 2 «=0, =0, y=1;
0, =0
8 =2

G.11) I" 2 ¢=0, f=1, y=0;
0, =6~
0; = 6+

(312) {6;=0‘ a=1, ﬁ=0, y=1,
0; =6+

(3.13) i35=9' a=1, pf=1, =0

To facilitate the integration of I, with respect to ¢;, we express I, in a somewhat
different form:

(3.14) L= —%(ﬁsin’ﬂ’—asin’9++r*), y* = a—f—y.

On performing in I integration with respect to @1, we obtain, in general (for all the possible
cases of the schemes 4, 4, and B):

(315) I = (— }2—)%’[2@”'&)Sin26‘13+(ﬁ"‘a) (kz—Sinzﬁq)Io
1

; 1
+2(B+a)sinb, 1] - - y* (92— 1),

where
?2
(3.16) L = [ dpi = ¢:~9,,
L
3 1 1 1
G17) I, = rsinch{dfpi = ——z-sinqagcos¢2+§-(992vqa1)+ —2—sinqplcos¢1,

o
P

L] 1
(3.18) I = — | singj(k3—sin?6, cosp})2dg;

P

-

1 : 1 ;
cos, (k3 —sin0,cosp,)? + %k:.z' 1 arc siﬂ(COS‘Pz S‘;B" )
. 2

2

sinf

1 " LI | 1 . sinf
= 5003991 (k% ——smﬁﬂqcosztpl)z _Ekgm;arcsm(cos% = a)
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The fluxes Ni, and E}, can therefore be represented thus:

4
(319) N}R = 2qno Ri I:? —Ipﬂn'—lpﬂz)],
7
(3.20) E} = rmfnoﬂf[f —Imu—fmz;],
where
Ipgy = (@1, 92), P15 @2 € Dyyy,
(3.21)

3
Inpy = I(9t, 0%), ot 0% E(ﬂ, 53)-

From the analysis of the integration schemes it follows that the regions Dy, De2y
can be divided by a characteristic point @] (such as ¢*, ¢7*, ¢{®) into two subregions.
Bearing this in mind, we can reduce the incident fluxes Nio, Eio of particles and energy
to the form:

(3.22) Nio = 2qn, Rf[iz‘— - Z(HI*)],
(3.23) E = mgn, R: [12‘- - Y+ 1*)].
where

I=I(9’1'972)’ %3%6(%,::),
(3.24)
I* = Igt, o8), ot tpge(n,%ﬂ);

Z is in agreement with the subdivision of the regions Dy ), Dy2, into two subregions.
The final expression of the heat exchange is:

(3.29) E, = mqnoR?[-’;—— 2 (I+I*)] (Q’— :aij)

or, after finding ¢,., ¢5¥:

(3.26) E, = mqn, R (qz— ﬁ,}) [% —r.], L&Y a+r).

The expression in square brackets concerns the geometrical characteristics. Bearing
in mind that the factor /2 corresponds to the case in which the sphere K; is not screened,
it is seen that the screening effect is proportional to 3, (I+I*). The expression (3.26) for
the total energy flux imparted to the sphere K1 is of a general character. The form of E
in each particular case is obtained within the schemes 4,, 4, and B by substituting in
I and I* the limits for ¢; and 0] — that is, the indices «, f, ¥ and the limits ¢,, ¢,.
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Below, making use of the general formula (3.26), we shall determine E, in a few cases
of screening selected for simplicity from geometrical and physical interpretation owing
to the structure of the Eq. (3.26) in which the geometrical and energy parts are separated.

The aim of this analysis will be not only to find E, in some particular cases but, prin-
cipally, to verify the functionality of the Eq. (3.26).

4. Particolar cases

1. A,,sinf, =0
The projections on the (x’,y) and (z’, y')-plane are as follows (Fig. 3). From the
scheme A,, in the case of sinf, = 0, we have:

3
a6 " e
@y Ya+m= [ [[ ..ao)dpi+ [ | .,f . @93 dpi, = I(py, @) + (01, 93).

af2 0

——N o

Fia. 3.

In this case, the sum reduces to a single term (the intervals D, Dy, are complete
and contain no characteristic values @;). The indices @, f, ¥, * and the limits ¢,, @,
are as follows:

for the first integral and

¢t=“3 ¢!=%‘ﬂs ﬁ=,1, ﬁ=0’ y=1: 7‘=0

for the second integral,

On substituting them into the formula for E,, we find:
“2 B, = mqny R (1- 12) (g2 2T
2 54

m

The energy flux is less than 1 by the value k3/k%, due to the screening effect. If k, = k;,
(R; = R;), we have E, = 0, which corresponds to complete screening. If k, = 0 (R, = 0),
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4kT .
we have E, = E}, = mgno R} g—(qz——m— , which corresponds to the absence of the
sphere K, (there is no possibility of k; = 0 in the scheme 4,).

2. A'l’ Sinﬂq = kl +k2

The projections on the (x, y') and (z’, y')-plane are as follows (Fig. 4). In the case
under consideration we have:

D U+1%) = Ipy, 92),

7T
2
* —

T x
4.3) =gy G-

a=0, f=1, =0, vy -1.

Fig. 4.
From the Eq. (3.26), we obtain:
4kT
(4.4) El = mgn, Ri%(qz_ ?

— that is, the energy flux for a non-screened sphere, which is correct.
3. A,, sinb, = k, —k, (Fig. 5)

FiG. §.
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The energy flux E, can be found by making use of the fact that sinf, belongs either

to the interval k, < sinf, < k, —k; or to the neighbouring interval k, —k, < sinf, < k,
a) k,<sinf, < k;—k,,
b) k;—k, < sinf, < k,.
The results obtained in a) and b) are identical. We find:

2
E, = mqnoRif;—(l —ﬁ)(q“— ﬂ)

k3 m
4. B, sinf, = k; (Fig. 6)

a) Vk3—k? < sinf, < ks,
b) k, < sinf, < Yki +k3.

The results for a) and b) are identical, namely:
4kT\ n
E, = m‘I”oRf(qz-‘Tn—)—z" g1 (),

— i _l

Fio. 6.

where
(n) = I—il—larcsin 1 +—:—r—+L —l-arcsin(l )
81?? - P 2 2’} 4 .qz 2 2’7
i, e 2 1 . [1 _—2) }
—41”/4 Pt 2arcs:n(2|/4 n ]
5. B, sinf, = Yk3—k? (Fig. 7)
a) k,—k, < sinf, < Yk3—Kk3,

Fic. 7.

3 Arch. Mech. Stos. nr 5/74
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The results for a) and b) are identical:

4T\ =
= 2[2_ AL 7
E, = mgno R} (qz e ) ) &2(n),
&) =1 ;—{—2———2?[-3—!-13 Y 1—n%+arcsin /1—7 :"

On the basis of computations performed for a few examples it can be stated that the
general equation (3.26) enables us to obtain in a simple manner the total energy flux
E, in all cases with the schemes A,, A,, B. In addition, its verification in the cases 1 and
2 has given a positive result. The diagrams of the geometrical factors g;(n) and g,(n)
in the cases 4 and 5 (the remaining cases being simple) are represented in Figs. 8 and 9.

&) A

a5

04

0z~

ar-

FiG. 8.

Their deviations from 1 characterize the screening effect. From the graphs it is seen that

1 n—_—
g21(n) and g,(n) F ) and &2(1) =7 0, which is correct.

Thus an accurate analytic solution has been obtained for the problem of heat exchange
in a system of two spheres of equal temperatures moving at hypersonic speed in a free-
molecule medium using the diffusion model of reflection.

This problem comprises three problems which are independent from the mathematical
point of view: 1) the problem of the continuity equation constituting in its general formula-
tion a system of two Fredholm integral equations of the second kind in four variables;
2) the problem of screening of a sphere by another sphere in a homogeneous flow; and
3) the problem of quadratures of the expression for the heat exchange, reducing to fivefold
integrals. Despite the necessity of considering over a dozen cases separately (the schemes
Ay, A;, B), we have succeeded in éxpressing the quadrature in a general manner.

The solution of the problem is a new item in the small group of non-trivial exact analytic
solutions in the theory of flows past non-convex bodies or systems of bodies.
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The structure of the equation obtained for the heat exchange enables simple (and
very accurate) verification of the validity of the interaction model assumed. For example,
if we consider the ratio of thermal powers supplied to the screemed sphere for two
different values of the varying parameters (for example two attack angles of the gas with
reference to the system considered, two different ratios of radii or two different
distances), it is found from the solution that this ratio depends on neither the density

#h
049 -

ass (—

a9 -

Fic. 9.
of the medium nor the velocity of the system, nor the temperature of the sphere;
therefore, it is independent of quantities which may be incorrectly determined or assumed.
Since the ratio of the thermal powers imparted to the sphere can be determined by
direct experiment, this fact offers a possibility of simple and accurate verification of the
diffusion reflection model assumed (in a very broad sense, because the analysis can be
made for several values of various parameters).
Finally, we shall appraise the heat exchange which can be expected in the space adjacent
to the Earth, the conditions of which are those of a free-molecule medium. As a heat
flux S transmitted to the sphere considered, we shall assume the energy flux of incident

3
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particles originating from the ambient medium under conditions of absence of the other
sphere. (Thus, we assume for the appraisal the maximum flux, disregarding the screening
effects and the energy flow of reflected particles. These, assuming that the temperature
of the body is lower than the temperature corresponding to the velocity of the stream,
may constitute only a fraction of the maximum flux). On the basis of the principle of
calorimetry, the time At necessary to heat the body by a definite temperature rise
AT is:

_ Mc,, AT OmCpw. ATR,
a S 24’

where M is the mass of the body and c,,,, the specific heat of the body. (The above equa-
tion is valid for sufficiently small times). Assuming
Cpo = 0.22},%‘—3—, AT =1K, ¢~ ?.2%

om = 3g/cm?® (density of the material of the sphere), we find in the zone 50-130km high
(above sea level) the time A#(1°) necessary to heat the sphere by 1°K for sphere with
different radii (the radius is varied with the altitude in such a manner, however, that the
conditions of a free-molecule medium are preserved).

The results are collected in the following Table 1.

8
At '3—

»

Table 4
H Co A R, t
[km] [g/cm®] [cm] [cm] [1°]
130 7.6x10-12 1.02x 10° 102 2.8x10%s
100 5%10-1° 1.6x10 1 42s
90 3.1x10°° 2.56 10-1 7x107%s
50 1.03x10-¢ 8.3x10-? 10-¢ 2x107%s

The values of g, and A have been taken from Ref. [4].

It is seen that the thermal effect is essential. The times of heating A0, for particles
of 1y (micrometeorites) at low altitudes are so small that the particles will be burnt.
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